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Abstract: The immuno-compatibility of implant materials is a key issue for both initial and long-term
implant integration. Ceramic implants have several advantages that make them highly promising
for long-term medical solutions. These beneficial characteristics include such things as the material
availability, possibility to manufacture various shapes and surface structures, osteo-inductivity and
osteo-conductivity, low level of corrosion and general biocompatibility. The immuno-compatibility
of an implant essentially depends on the interaction with local resident immune cells and, first of
all, macrophages. However, in the case of ceramics, these interactions are insufficiently understood
and require intensive experimental examinations. Our review summarizes the state of the art in
variants of ceramic implants: mechanical properties, different chemical modifications of the basic
material, surface structures and modifications, implant shapes and porosity. We collected the available
information about the interaction of ceramics with the immune system and highlighted the studies
that reported ceramic-specific local or systemic effects on the immune system. We disclosed the gaps
in knowledge and outlined the perspectives for the identification to ceramic-specific interactions
with the immune system using advanced quantitative technologies. We discussed the approaches
for ceramic implant modification and pointed out the need for data integration using mathematic
modelling of the multiple ceramic implant characteristics and their contribution for long-term implant
bio- and immuno-compatibility.

Keywords: bioceramic; innate immunity; macrophage; inflammation; healing; regenerative medicine;
immune response

1. Introduction

The use of medical implants provides advanced solutions for major fields of clinical
medicine, such as oncology, cardiovascular medicine, orthopedics and dentistry. For exam-
ple, the global market for knee implants in 2021 is estimated to reach USD 9.8 billion [1],
and the global dental implant market in 2021 accounted for USD 3.9 billion [2].

Implanted materials are commonly recognized by the immune system as foreign
bodies, and their installation may be accompanied by the development of inflammatory
reactions that can lead to implant rejection [3]. Macrophages are key elements of the innate
immune system that recognize the shape, surface structure and material of the implants,
and orchestrate the reactions of the tissues at all the stages of implant integration, starting
with initial acute inflammatory reaction followed by resolution of inflammation and healing,
fibrotic cap formation and long-term integration [3–5]. Accumulated data provide evidence
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for the specific transcriptional and secretory profiles induced in the innate immune cells by
distinct implant materials, justifying large experimental effort for researchers to develop
new, improved biomaterials with the most compatible composition.

Each type of material can cause different biological complications when implanted
in vivo. An adverse immune reaction can be the cause of prosthesis failure on a me-
chanical level [4]. For example, metals exhibit corrosive behavior and cause metallosis
in the peri-implant tissues, and non-biodegradable materials are prone to aseptic loos-
ening. Aluminum-oxide-based ceramic implants stimulate a gradual development of a
non-adhesive fibrous membrane at the implant’s surface, which reduces the strength of con-
nection between these membranes and surrounding tissues. In the case of zirconium-based
ceramics, hydroxyapatite (HA) and beta-phase tricalcium phosphate (β-TCP) ceramics,
bone resorption around the implant is common. It results in the loss of natural bone tis-
sue [6,7]. Ankylosis and decreased fracture resistance of the implanted materials are the
typical outcomes of the use of bioglass materials [8].

The outlined processes are frequently explained by the mechanical or chemical prop-
erties of the materials themselves, while the impact of the biomedical response on the
material microstructure is insufficiently considered.

The identification of the cellular and molecular interactions that mediate biological
and immune responses to the foreign material is a pre-requisite for the advanced design of
implant biomaterials with controlled integration at tissue-specific or organ-specific sites.

One of the main trends in current biomedical research is the development and produc-
tion of materials for regenerative medicine based on bioceramics. They play an important
role in tissue regeneration and repair because of the effect on cell proliferation and differen-
tiation in the implantation area [3,4]. Ceramic materials based on calcium phosphate have
the properties of osteoconductivity and biocompatibility due to their chemical similarity to
the mineral phase of the native bone, but have worse mechanical properties in comparison
with the materials traditionally used for implants [5].

Moreover, the interaction of osteogenic cells with ceramics leads to good bone integra-
tion and regeneration [3].

In order to provide a deeper understanding of the topic further discussed in this article,
it is important to introduce some of the terms that will be frequently mentioned later in the
text. Osteoconduction is the ability of bone-forming cells in the transplant area to move
through the scaffold and slowly replace it with new bone over time. Another important
property necessary for implants is osteoinduction, which can be defined as the process by
which osteogenesis is induced [9,10].

Currently, intensive investigations are focused on the further enhancement of osteo-
conductivity and improvement in their mechanical properties. Further, the use of ceramic
implants for the regeneration of soft tissue injuries is an emerging area of science. The
development of such implants is still mostly at the investigative level in experimental
models; however, the Food and Drug Administration (FDA) has cleared the implants for
use in veterinary medicine, and FDA approval is pending for clinical use in daily practice
in humans [11–19].

Despite all the advantages of bioceramics, their application today is still limited
by the mechanical properties of the materials. The design and structures of implants
most favorable for biointegration have reduced compressive, tensile strength and other
mechanical properties compared to metal implants or natural bone tissues. Therefore,
therapeutic manipulations with biological responses are strongly suggested in order to
avoid further reductions in mechanical stability of the ceramic constructions. The local
immune system at the site of implant installation has the ability not only to destroy the
implant material itself by changing chemical milieu (ion concentrations, pH, oxidative
reactions due to ROS production), but can also destroy the extracellular matrix structures,
making implant fixation in the tissue inefficient or even impossible [20,21]

This review summarizes the beneficial and limiting properties of ceramic implants,
highlights the features of ceramic materials, their interaction with different types of cells
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and tissues and also demonstrates the available knowledge and the gaps in knowledge
about the interaction of ceramic implants with the immune system. In this article, we also
identified areas for improvement and development of new ceramic materials for wider
application and long-term integration, in particular by the optimization of their interaction
with innate immunity.

2. Types of Ceramic Materials for Implant

Bioceramics are a large class of specially developed ceramics used to repair and
reconstruct damaged structures [22,23]. Since ceramic materials are highly biocompatible
and have a similar chemical composition to bone tissue, are bioactive, osteoconductive,
osteoinductive and have good mechanical properties, ceramic implants are increasingly
used for bone defect replacement [24–30].

Although bioceramics are biocompatible and rarely cause implant rejection, the avail-
able experimental data are not unequivocal. In a cohort of 108 patients, ossiculoplasties
with bioceramic implants were performed, and patients were followed up clinically for a
minimum of 7 years [31]. The rejection rate after 9–12 years was 21% (23 out of 108 patients).
Histological integration rate was 79% (85 out of 108 patients), similar to results reported in
the literature for both bioceramic and titanium implants [31].

All ceramic materials can be divided into two groups: biodegradable and non-
biodegradable (see Table 1). Non-degradable ceramics include such materials as aluminum,
titanium and zirconium ceramics; this type of material is not subject to degradation in vivo
and has an insignificant material wear rate. These materials are used in orthopedics for
bone injuries that cannot heal on their own, in the treatment of bone cancer to replace am-
putated skeletal parts and in dentistry for various dental issues [26,27,29,32–36]. However,
non-degradable ceramics are not osteointegrative, which increases the risks of implant
replacement.
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Table 1. Types for ceramic materials for implants.

Type of Material Medical Field Pathology Limitations of
Material Complications Delayed

Inflammation Ref

Non-absorbable alumina (Al2O3) Orthopedic implants bone damage,
arthrosis non-osteointegrative

to develop a
nonadherent fibrous

membrane at the
interface,

encapsulation
aseptic loosening

yes [3,37,38]

zirconia ceramic Orthopedic implants,
dental implants

bone damage,
arthrosis, teeth issues

low thermal
conductivity,

non-osteointegrative

bone resorption and
increased fracture

risk
aseptic loosening

yes [37]

Titanium ceramic Orthopedic implants
dental implants

bone damage, bone
cancer

poor
mechanicaquality,

mismatch of
mechanicaproperties

allergic reaction
aseptic loosening yes [39–41]

Biodegradable
/Bioactive HA

Orthopedic implants,
skin implants,

respiratory implants,
drug delivery system

bone damage,
hepatocellular

carcinoma, lung
cancer, bone cancer,

breast cancer

Fragility uncontrolled bone
resorption yes [3,31,38,42–44]

β-tricalcium
phosphate

Orthopedic implants,
skin implants, dental

implants,
drug delivery system

bone damage,
osteoporosis bone

cancer, dental issues

poor fatigue
resistance and

brittleness

uncontrolled bone
resorption yes [30,43,45,46]

Bioglass

Orthopedic implants,
skin implants,

respiratory implants,
cardiovascular

implants,
Neurological

implants, drug
delivery system

spinal fusion,
Cutaneous wounds,

osteoporosis,
Bone cancer,

myocardial necrosis,
chronic obstructive
pulmonary disease,

peripheral nerve
injuries, Gastric

ulcers

slow degradation,
fragility

Causes ankylosis and
decreased fracture

resistance
Yes [11,30,37,41,44,47–49]
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The other type of material includes HA and β-TCP ceramics. The most important
feature of this type is gradual degradation with gradual replacement by the patient’s own
bone [33,50–52]. This behavior is ensured by their ability to stimulate osteoinduction and
osteoconduction. This feature of the material allows its use in a wide range of medical
applications: in orthopedics, in bone injuries, in dentistry and in oncology for bone cancer.
Its biodegradability is beneficial to develop self-destructive drug delivery systems for
treating cancer, osteomyelitis and periprosthetic infections [53–61].

Bioglass stands out among biodegradable materials due to its bioconductive and
bioinductive properties [62–65]. Bioglass can be used for the replacement not only of bone
defects but also soft tissues—skin implants, respiratory implants, cardiovascular implants,
neurological implants for skin necrosis, myocardial necrosis, chronic obstructive pulmonary
disease, peripheral nerve injuries, gastric ulcers and others [29,53]. The main limitations
of ceramic materials are fragility and inconsistency of the mechanical properties with the
native bone [3] (table in Section 3).

The broad possibilities and benefits of using biodegradable materials are being studied
by numerous research groups. In cancer patients, the use of the implant construction
enables the controlled and continuous release of the drug into the tumor microenviron-
ment, which, in hand, leads to a reduction in the effects of systemic drug treatment [66,67].
Applications of nanohydroxyapatite/collagen scaffolds filled with doxorubicin, encap-
sulated in microspheres of poly (lactic-co-glycolic acid) (PLGA) in vitro demonstrated a
prolonged drug release for a period of up to 28 days and significant growth inhibition of
human osteosarcoma lineage cells (MG-63) [67]. In vivo experiments evaluated the im-
mune response elicited by the subcutaneous implant on rats of these scaffolds, confirming
their biocompatibility. The implants did not cause a significant inflammatory response, as
assessed by histological evaluation of inflammation. The study did not search for local or
systemic inflammatory markers [67]. The scaffold-treated group containing doxorubicin mi-
crospheres showed less tumor progression and fewer adverse effects than the control group
or doxorubicin intraperitoneal injection group, demonstrating its promising anti-tumor
effect [67]. However, the effects of such doxorubicin microspheres on intertumoral immu-
nity, in particular, on tumor-associated macrophages, that can interfere with doxorubicin
cytostatic effect on cancer cells [68], were not assessed in this study [68]

In addition to chemical drug delivery, bioceramics allow for the delivery of other
biologically active substances. Human amniotic epithelial cells (hAECs) exhibit a strong
capability to restore ovarian function in chemotherapy-induced premature ovarian failure.
The injection of sodium alginate-bioglass (SA-BG)–hAECs composite hydrogel has been
shown to be an effective strategy for ovarian tissue regeneration in mice. The injection
restored follicle development, granulosa cell function and enhanced ovarian angiogenesis
in mice’s ovarian system [69]. However, further studies using control groups comparing the
delivery of hAECs to the ovaries by different pathways are needed. Further, the dynamic
effects of alginate-bioglass (SA-BG)–hAECs composite hydrogel on the local immune
system must be studied in detail, at least during the first 4 weeks after application.

Micropatterned nanofibrous scaffolds with bioglass nanoparticles encapsulated inside
coaxial fibers were prepared by electrospinning and tested in a wound-healing model in
diabetic mice [70]. The full-thickness 8 mm wounds were treated with different scaffolds.
Healing of a wound in treated and non-treated mice was monitored on days 3, 5, 7, 9 and
14. The bioglass scaffold loaded with PLA/Gel coaxial fibers significantly enhanced wound
healing to non-treated, PLA-treated or PLA/Gel coaxial-treated groups (Figure 1). Histological
analysis showed that bioglass implants stimulated the formation of continuous epithelial
tissue, essential for healing [70]. The study included an immunohistochemical search for
vascular endothelial cells, but no search for markers of local or systemic inflammation.
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group [72]. Thus, the results of the implant are comparable to the gold standard for im-
plantation by allograft. The research did not examine markers of local and systemic in-
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In another randomized clinical trial, forty patients (51 hips) with avascular necrosis 
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decompression, autologous bone-marrow-aspirated buffy coat and angioconductive bioc-
eramic rod grafting; group B received treatment of core decompression with β-TCP 

Figure 1. Application of micropatterned nanofibrous scaffold with bioglass nanoparticles for soft
tissue regeneration (concept of this figure was developed in reference [70]).

Bioglass nanoparticles integrated in hydrogel with sodium alginate (BG-SA) were
injected into the peri-infarct area of the rat myocardium [14]. After 4 weeks, a comparative
analysis of the myocardium of rats receiving an injection of BG-SA or sodium alginate or
normal saline was performed. The echocardiography showed a statistically significant
improvement in the left ventricular ejection fraction in (∆LVEF), specifically in the BG-
SA group. Injection of BG-SA resulted in a statistically significant decrease in the infarct
expansion index, increased number of capillaries accompanied by elevated VEGF levels
and suppressed cardiomyocyte apoptosis [14]. The study did not look for markers of local
or systemic inflammation.

Four consecutive cases of chronic osteomyelitis treated with antibiotic therapy, one-
stage surgical debridement and bioglass implantation, were prospectively followed for a
minimum of three years [71]. All patients achieved proper healing at the latest follow-up
of a of minimum three years. No successive surgical treatments were required at any time.
No complications related to the bioglass were detected [71]. The authors of the research
did not search for signs of local and systemic inflammation.

Further, 182 patients with osteonecrosis of the femoral head were randomly divided
into four groups: implanted autogenous fibula graft (FFG), free vascularized fibular graft
(FVFG), fresh bone marrow was collected and mixed with an autologous iliac bone graft
(ABG) and β-TCP bioceramics particles and rod were implanted into the canal [72]. The
results showed no significant difference in baseline data among the four groups. All patients
were followed up for 42 to 48 months. Three hips collapsed on the femoral head in the FFG
group, two in the FVFG group, two in the ABG group and three in the β-TCPG group [72].
Thus, the results of the implant are comparable to the gold standard for implantation by
allograft. The research did not examine markers of local and systemic inflammation.

In another randomized clinical trial, forty patients (51 hips) with avascular necrosis
of the femoral head were randomly divided into two groups [73]: group A received
core decompression, autologous bone-marrow-aspirated buffy coat and angioconductive
bioceramic rod grafting; group B received treatment of core decompression with β-TCP
granules and angioconductive bioceramic rod grafting. The clinical failure rate was 4.5%
(1/22) and 17.2% (5/29) in groups A and B, respectively. Kaplan–Meier analysis did not
show obvious statistical differences in survival (p = 0.203) but suggested a trend that
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survivorship of the femoral head in group A is higher than that in group B [73]. In the
study, immune responses were not examined.

Thus, various organs, localized both internally and at the surface of ceramic bioma-
terials, have shown improved tissue regeneration in animal models. Promising results of
pre-clinically obtained animal models lead researchers to the next step of clinical studies
on patients. Additionally, the results of studies of various bioceramics on humans are
not unambiguous and leave a wide scope for further research. However, there is an ur-
gent need to understand how local immunity, defined predominantly by tissue-resident
macrophages or infiltrated monocytes, will interact with these newly developed ceramic
material delivery systems. Currently available methods in quantitative immune histology,
confocal microscopy and spatial transcriptomics have to be applied in combination with
ex vivo modelling to decipher the mechanism of interaction of ceramic biomaterials with
primary human immune cells.

3. Benefits and Problems of Implant Materials and Composition (Mechanical)

The mechanical properties of an implant define its application in different medical
fields for different purposes. To assess the mechanical properties of materials used in
implantology, the following parameters are utilized:

• Compressive strength or compressive strength is the ability of a material or structure
to resist loads tending to reduce the size.

• Young’s Modulus (GPa) is the ability of the material to resist tension and compression
under elastic deformation.

• Poison’s ratio is a measurement of the deformation (expansion or contraction) of the
material in the directions perpendicular to the specific direction of loading.

• Flexural strength (MPa) is the ability of a material to resist bending failure.
• Tensile strength (MPa) denotes the maximum mechanical tensile stress.
• Corrosion is spontaneous destruction of metals and alloys as a result of chemical

and/or physical interaction with the environment.
• The wear rate is the change in size, shape, mass or surface condition of a product or

tool due to the failure of the product’s surface layer under friction [74–76].

The microarchitecture as well as composition of the implant affect its mechanical
properties. A porous zirconia scaffold has a lower Young’s modulus and compressive
strength than a monolithic zirconia implant. However, in order to compare porous implants
made of different materials, it is necessary to compare the porosity and particle size values
of the implants. For some types of implant materials, no measurement of mechanical
parameters was performed in the form of scaffolds, so it is impossible to make a comparative
assessment of them. Aluminum and zirconia ceramics show higher compressive, flexural,
tensile and Young’s modulus values compared to those of HA and β- TCP ceramics, bioglass
and natural bone (Table 2), but specific values significantly depend on the individual studies.
Thus, compression strength of bioglass ranges from 1.7 to 140 MPa and the tensile strength
of HA ceramics ranges from 38 to 300 MPa (for summary references, see Table 2).
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Table 2. Mechanical properties of ceramic implants in comparison with native bone and metal implants. “+” has the property; “-” has no property, “?” indicates that
no information has been found.

Material
Compressive Strength

(MPa) Young’s Modulus (GPa) Poison’s
Ratio

Flexural Strength (MPa) Tensile
Strength

(MPa)

Corrosion
Average Wear Rate

of the Placed
Implant

Ref

Bulk Scaffold Bulk Scaffold Bulk Scaffold

Alumina
Ceramic 4500 - 300–400 - 0.21–0.22 379 106.2 350 - 1 µm/year [3,74,77–79]

zirconia
ceramic 2500 0.6–2.04 210 0.78 0.30 1100 - 650 - ? [3,24]

Titanium
ceramic ? - 53 - 0.27–0.32 ? - 665 + ? [3,24]

HA Ceramic 300–900 3.44–5.98 0.17–0.26 0.17–0.26 0.27 9 - 38–300 - ? [3,24,79–81]
β–TCP

Ceramic 292 21.3 80–162 - 0.22–0.29 147 - - - ? [3,79]

bioglass 500 1.7–140 35 13.2 0.26–0.39 70 11 42 - ? [3,79]
Trabecular

bone 0.1–50 N/A 0.05–0.5 N/A 0.25 10–20 N/A 60–160 N/A N/A [3,82]

Cortical bone 30–200 N/A 7–30 N/A 0.3 50–150 N/A 50 N/A N/A [3,82]
Stainless

steel 170–310 - 200–210 - 0.29–0.3 170–310 - 480–620 + ? [3,74–76]

Titanium
based
alloys

130 - 102.7–104.1 - 0.35 172–240 - 240–550 + ? [3,74,75]
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Material particles resulting from metallic wear (macro-, micro- and nanoparticles) are
an important parameter to consider in implant manufacturing for all types of applications,
including arthroplasty. Released debris particles can activate undesired immune reactions,
but we found no studies analyzing this parameter for most metal ceramic materials. Data on
the resistance to wear of metal implants is variable, and metal implants are also susceptible
to corrosion, which also leads to the formation of immunogenic particles. Metal wear
occurs due to displacement of surface material and detachment of debris particles, metal
corrosion is the destruction of metals as a result of an oxidation reduction process [83–88].

The susceptibility of metal implants to corrosion is an essential limitation that argues
towards development of the materials, including new ceramic variants, that would improve
implant stability and biological integration by reducing the corrosion rate. Major directions
for such improvements include creating new corrosion-resistant materials and coating
metals with corrosion-reducing particles and surface modification [88–95]. When compar-
ing the performance of monolithic (non-porous) aluminum ceramics, the zirconium (Zr)
scaffolds are the closest to the performance of trabecular bone. Porous bioglass implants
are closest to both trabecular and cortical bone (Table 2).

Young’s Modulus (GPa) is the highest in non-porous aluminum ceramics, the closest
to native trabecular bone is HA ceramics and bioglass is the closest to cortical bone (Table 2).
The Poisson’s ratio of most ceramic materials is close to the value of the corresponding
coefficient of native bone with the exception of aluminum ceramics (Table 2). The highest
value of Flexural strength is for Zr ceramic, the closest to the trabecular bone is non-porous
HA implant and to the cortical bone is non-porous β-TCP ceramic.

It is impossible to choose one material with the highest mechanical properties or the
closest mechanical properties to native bone. When choosing an implant material, we
should define the properties needed for the implant in certain medical fields and in certain
pathologies. For example, if an implant is planned in segments with high axial load, use of
HA ceramic-scaffold-type implants is currently impossible, but bulk-type titanium implants
can be used.

The most-required mechanical properties that are currently being developed in leading
laboratories include compressive strength, bending strength, tensile strength, durability
and fatigue resistance to meet mechanical stress [3,87].

4. Immune Response to Bioceramic Implants

Any material placed in the living body will be recognized by the immune system and
can induce an immune response. Despite their high biocompatibility, ceramic implants also
cause a variety of local and systemic immune responses, which may be easily detectable by
overt clinical symptoms or may proceed as low-grade, latent inflammation. All types of
ceramic implants can potentially cause an inflammatory response in the body (summarized
in Table 3; see also specific reference). Currently available methodology also provides
high sensitivity to detect low-grade inflammation; however, it does not provide sufficient
precision to distinguish between specifics for each implant type’s detrimental effects on
the local and system innate immunity. Such specific reactions are defined, first of all,
by the direct material, surface structure and shape recognition by the resident tissue
macrophages [96].
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Table 3. Type of immune response on ceramic implants. “+” has the type of reaction “-” has no the type of reaction.

Types of
Inflammation Alumina (Al2O3) Zirconia Ceramic Titanium Ceramic HA β-Tricalcium

Phosphate Bioglass + (Type IV) Ref

Sterile or bacterial
(what kind of) Mostly sterile Mostly sterile Mostly sterile

1. Mostly Sterile
2. Neisseria Meningitidis

(one report available)
Sterile Sterile [97–101]

Chronic intensive - - + No reports No reports No reports [102–110]
Chronic low grade + + + + + + [100,109,111–122]

Allergic No reports + (type IV) + (type IV) No reports + (type IV) No reports [121,123–125]
Tissue destruction

without clear
inflammation

+ + + No reports No reports No reports [111–113]
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Implant placement is accompanied by an immediate and delayed inflammatory re-
action, with monocytes/macrophages and neutrophils participating in inflammatory re-
sponses. The immediate/hot innate immune response within 4–6 h is characterized by
precipitation of blood proteins (implant opsonization), platelet aggregation, complement
activation and, in some cases, involvement of mast cells, NK, T cells and B cells [126].
The delayed immune response can be caused by overactivation of innate immunity (first
macrophages) and can also involve B and T lymphocytes [127]. Such unbalanced and
delayed inflammation is characterized by an unbalanced production of pro-inflammatory
factors (TNFα, IFN-γ, IL-2, IL6, IL8, IL12) and anti-inflammatory/pro-healing/pro-fibrotic
factors (IL-4/IL13, IL-10, TGF-β, GDF15) [128,129].

Macrophages are key regulatory cells at all stages of tissue/implant interaction. In
the ideal case, macrophages should switch off the inflammatory reactions and ultimately
induce the healing program in the tissue [130]. However, due to their inability to destroy the
implants, macrophages stay permanently in the status of “frustrated phagocytosis”, which
can be accompanied by the undesired release of cytokines and enzymes. The spectrum
of the detrimental macrophage reactions will depend on the implant characteristics as
well as the status of the immune system (both local and systemic) of the patient. For
example, implant integration in diabetic patients is significantly compromised by pro-
inflammatory programming of innate immunity by metabolic factors (hyperglycemia,
dyslipidemia) [131–135].

In the case of ceramic implants, all types of inflammatory reactions have been re-
ported (for summary and references, see Table 3). Several studies on different animal
models demonstrate that ceramic materials induce an acute inflammatory response on
the first few days after implantation, but later, the inflammatory response decreases
rapidly [79,136–138].

Sterilized bioceramic discs were implanted subcutaneously into the interscapular area
of 32 rats; then, histological reactions were quantified by light microscopy and observed
from 1 day to 300 days after implantation [138]. The control group underwent surgery with-
out inserting the disc and underwent similar histological studies. The results showed that
various numbers of inflammatory cells, including neutrophils, macrophages, lymphocytes,
giant foreign body cells and fibroblasts and fibrocytes, accumulated around the bioimplants.
One day after implantation, peri-implant tissues were dominated by macrophages (69.8%),
followed by neutrophils (19.7%) and lymphocytes (8.8%); no proliferation of fibroblasts
and fibrocytes was observed. Three days after implantation, there was a decrease in the
neutrophil level to almost zero (0.49%), and macrophages and lymphocytes decreased to
53.3% and 4.4%, respectively. Seven days after implantation, fibroblasts and fibrocytes were
detected, macrophages and lymphocyte levels continued to decrease and no neutrophils
were observed. The results 14 days after implantation showed a persistently low level of
macrophages and lymphocytes, the level of fibroblasts began to decrease and only the level
of fibrocytes continued to increase [138].

In the control group, macrophages were present 1 day after surgery, but they com-
pletely disappeared 7 days after surgery. Neutrophils were only visible on day 1 postopera-
tively. Fibroblasts and fibrocytes gradually increased after 3 days [138].

In the experimental group, from 30 to 300 days after implantation, there was a steady
decline in macrophages and lymphocytes to very low levels, and the capsules of fibrous
tissue around the implants were maturing. At later stages, implants were surrounded by
mature fibrous capsules consisting of collagen with fibrocytes and fibroblasts [138].

However, the clear beneficial features for ceramic implants are the low frequency of bac-
terial contamination (in most cases, implant-induced inflammation is sterile) and reduced
intensity of the acute inflammatory phase [79,139]. Acute periprosthetic inflammatory reac-
tion is more typical for “metal-on-metal” implants than for ceramic implants [140,141]. It is
characterized by soft tissue necrosis, infiltration of T-cell and B-cell lymphocytes, as well as
accumulation of plasma cells and macrophages and abnormal articular fluid [140,141].
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Intensive chronic inflammation is more typical for alumina and zirconia implants,
while low-grade inflammation can be caused by all ceramic implants, indicating that further
significant improvement is needed to overcome innate immune reactions on a long-term
basis. Aluminum oxide particles showed a moderate nonspecific granulomatous reaction of
the synovial membrane in the knees of rats in vivo, which increased the production of IL-1ß
and MCP-1 (CCL2) when interacting with macrophages [142]. Chronic low-grade local
inflammation was detected in 44 patients recruited at the University of Zurich, Switzer-
land, with a single missing tooth replaced by a zirconium implant between 2011 and 2013
within 6 months after the installation of dental zirconium implants [143]. Patients (22 men;
22 women), average age 49.1 years (range 21.3–81.4 years), had no moderate/severe sys-
temic disease or bruxism. All patients had good oral hygiene, including smokers and
nonsmokers. Analysis of samples of peri-implant tissues taken during histological examina-
tion revealed a large number of fibroblasts and fibrocytes (part of granulation tissue), as well
as inflammatory cells (monocytes, lymphocytes and macrophages) [143]. This study did
not address specific types of macrophage activation, but only the total number evaluated
by optical microscopy for descriptive histology with semiquantitative analysis [143].

The application of at least three major ceramic implant materials, alumina, zirconia
and titanium, can also be accompanied by tissue destruction [111–113]. These failures
are classified as aseptic or septic. They are associated with the presence of implant wear
particles. Aseptic loosening is the result of chronic inflammation caused by the activation
of immune cells in contact with implant wear particles. Septic loosening is determined by
the presence of chronic infection at the implant site. However, studies show the assessment
of the cause of inflammation can be misleading. The study shows the effect of wear debris
on the formation and survival of a biofilm [111]. Routine microbiological diagnosis can
misdiagnose aseptic loosening. The interaction of implant wear particles with macrophages
and neutrophils impairs the ability of the innate immune system to remove bacteria. In
addition to disrupting the innate immune system, wear particles destroy dendritic cells
and T lymphocytes of the adaptive immune response [111]. This aggravates both aseptic
and septic loosening, causing chronic inflammation and greater osteolytic resorption. It
can be assumed that tissue destruction can be caused by more than simply inflammatory
activity of macrophages in a state of “frustrated phagocytosis”, and it has to be investigated
in the future for the mechanism and biomarkers.

Despite the fact that inflammation associated with ceramic implants is most often
sterile, isolated studies also report cases of inflammation caused by bacterial contamination.

Postoperative follow-up of 1549 patients (991 men, 558 women) with porous HA
implants for cranioplasty showed infectious complications in 33 cases [99]. The patients
were 7–87 years old, with an average age of 32 years. Implants were placed predominantly
in Europe (Germany, France, Italy); eight were placed in the Middle East, six in Africa, two
in Canada, one in Central America, one in Oceania and one in South America. Infectious
complication was more common in patients with head trauma (27 patients). The devel-
opment of an infectious complication occurred at different times: less than 6 months in
22 patients, within 6–12 months in 2 patients and after 1 year in 9 patients. In 18 cases of
infection, the implant was reinstalled after treatment; the study did not indicate whether
the infectious agent was determined [99].

Inflammatory reactions that are specific for ceramic implants are currently insuffi-
ciently investigated, mostly due to the superficial methods to assess inflammatory reactions.
For example, inflammatory status was analyzed in peri-implant tissue obtained from pa-
tients during the planned removal of the implant from yttrium-stabilized zirconium oxide
(Y-TZP), aluminum-oxide-reinforced zirconium oxide (ATZ), aluminum-oxide-reinforced
zirconium oxide (ZTA) or titanium [144]. The presence of macrophages, B lymphocytes,
T lymphocytes and plasma cells (antibody-secreting cells) was detected in all samples by
quantitative histological analysis using ImageJ software with CD3 1:200 (T lymphocyte),
CD20 1:400 (B lymphocyte), CD138 1:50 (plasma cell, clone MI15), CD68 1:200 (macrophage,
clone PG-M1) biomarkers. The authors did not find significant differences in the number
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of inflammatory cells around ceramic or titanium implants [144]. However, this study
was limited to very general cell-type biomarkers, and specific biomarkers for macrophage
subpopulations that are highly diverse in their phenotypes and functions have not been
assessed. The number of patients examined was also limiting for making quantitative
conclusions [144].

In an experimental animal model, ceramic materials were compared to metal and
polymeric particles with regard to local inflammatory complications during histological
examination of peri-implant tissues. All types of materials were placed in the right femur
of the rat [145]. This study compared particles made out of ceramics (Al2O3, range size
0.2–6.3 µm), chrome cobalt (Co–Cr—0.2–5.6 µm), titanium alloy (Ti–6Al–4V—0.2–3.8 µm)
and ultrahigh-molecular-weight polyethylene (UHMWPE −0.2–9.5 µm). Assessment of
inflammation was performed 16 weeks after implantation. As a quantitative parameter
for the level of inflammation, the thickness of inflamed tissues was determined histolog-
ically using a computerized image analysis system. The analysis of the inflammatory
tissue thickness between the animal groups with different types of particles showed that
both UHMWPE and ceramic particles significantly led to the formation of inflammatory
periprosthetic tissue [145].

There are reports of type IV allergic reactions to all ceramics, with the exception of
aluminum and bioglass (Table 3). A type IV allergic reaction is a delayed reaction mediated
by a cellular response [146]. It is mediated by T cells that provoke an inflammatory
response against various antigens. In some situations, other cells, such as monocytes,
eosinophils and neutrophils, may also be involved. After exposure to the antigen, an
initial local immune and inflammatory response occurs, which attracts leukocytes. The
antigen absorbed by macrophages and monocytes is transmitted to T cells, which then
become sensitized and activated. These cells then release cytokines and chemokines, which
can cause tissue damage and lead to disease. Type IV reactions are divided into IVa,
IVb, IVc and IVd, depending on the type of T cells (CD4 T-helper type 1 and type 2)
and the cytokines/chemokines produced [146]. Conflicting data were published for the
allergic reactions to β-TCP [123,124,147]. Depending on the manufacturer of the bioceramic
material, different researchers reported/did not report allergic reactions [123,124]. A
delayed-type allergic reaction was detected for calcium-phosphate ceramics in C57BL/6
mice that were observed 2 and 4 weeks after ceramics administration [123]. Antigenic
specificity was demonstrated between calcium-phosphate ceramics and foetal bovine
serum in cross-over. The adverse reaction was manifested as swelling of the paw pads.
Because of the reaction time, the authors of the study assumed a delayed-type allergic
reaction [123]. In another study, the antigenicity of β-TCP ceramics was studied using
delayed skin reactions in guinea pigs. Skin reactions appeared 13 days after immunization
by intradermal injection of ceramics into the dorsal sides of guinea pigs. After 24 and 48 h,
these reactions were evaluated by measuring the diameter of the erythema, the degree of
haemorrhage and its induction. However, no detailed study of the reaction mechanism has
been performed [124].

Positive paw pad reactions to β-TCP ceramics were shown in C57BL/10 (H-2b) and
C57BL/10 X BR (H-2k) but were not observed in C57BL/10 X D2 (H-2d). However, the
mechanism of the allergic reaction has not been investigated [124].

Despite the absence of clinical symptoms of systemic inflammation, when ceramic
implants are placed, we found a study claiming the presence of markers of systemic inflam-
mation [114]. The biomarkers used characteristics for all types of traumatic injury, and their
increase in circulation can be simply caused by surgical intervention. However, an interest-
ing observation was made for the 105 patients (123 affected teeth), age range 18–65 years,
with good oral hygiene habits and high treatment compliance within 12 months from
implant placement [114]. A statistically significant increase in the levels of YKL-40, resistin,
aspartate aminotransferase (AST) and alkaline phosphatase concentrations was detected in
the gingival sulcus fluid [114]. The protein levels for all these biomarkers were statistically
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significantly lower in the zirconia crown (ZC) group compared to the cobalt–chromium
metal (MCC) [114].

Among the markers tested in this study, YKL-40 is of particular interest. YKL-40
(CHI3L1), or human cartilage glycoprotein 39 (HC gp-39), belongs to the family of chitinase-
like proteins that biochemically possess lectin properties but lack the hydrolytic activity
characteristic for true chitinases [148]. YKL40 can be secreted in high amounts by tis-
sue macrophages and is induced by IFN gamma; however, its biological activities can
be rather categorized as pro-healing (stimulation of cell proliferation, stimulation of an-
giogenesis [149,150]). Elevated levels of circulating YKL-40 were found in patients with
cancer, cardio-metabolic disorders, neurodegenerative disorders, and autoimmune disor-
ders, which are major pathologies that progress in the background of chronic low-grade
inflammation in various tissues [151–156]. Based on its mode or expression regulation and
biological effects, YKL-40 can be considered as a systemic biomarker for local, frequently
low-grade mixed-type inflammation, where pro-inflammatory and healing processes in-
terfere with each other. Therefore, elevated levels of YKL-40 in the circulation of patients
with ceramic implants indicate that the immune reaction to the implant is not silent and
develops in a detrimental inflammatory direction.

5. Prospects for Affecting Immune Response through Implant Modification

Several approaches are being elaborated and show the possibility to influence the acti-
vation of macrophages towards a specific functional phenotype (also named macrophage
polarization) by changing the structure (porosity, pore size, etc.), surface chemistry and
adding different agents to the implant (Figure 2). We can define three main directions for
modeling the implant to regulate the macrophage response: changing the surface chemistry
of the implant, changing the structure of the implant and adding bioactive molecules to
the implant. Thus, the hydrophilicity and anionic charge of the surface contribute to the
polarization of predominantly M2 macrophages. The large pore size, high porosity and
nanopattern of the implant also promote the proliferation of M2 macrophages.
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Physicochemical properties of biomaterials and the topography of their surface affect
the microenvironment of implants, thereby affecting the intensity and direction of the anti-
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or pro-inflammatory reaction [157,158]. Modifications to the implant surface, both physical
and chemical, are utilized to control the inflammatory response and tissue regeneration,
primarily by directing the polarization of macrophages [129,159–165] (Table 4).

Table 4. Biomaterial modification for modulating immune responses. ”+” applicable, “NA” not
analyzed.

Engineering
Parameters Modifications Outcome Applicable for

Ceramics

Surface
chemistry

Surface charge
(anionic) ↑IL-10, ↓IL-8 +

[158]
Surface charge

(cationic) ↓IL-10, ↓IL- 1RA +

Hydrophilicity
↑IL-4, ↑IL-10,
↑TGF-β, ↑BMP2

↓TNF-α, ↓IL-1β, ↓IL-6
+ [158,166,167]

Topography

Micro/
Nanopattern

↑IL-10, ↑IL-4, ↑IL-13,
↓TNF-α, ↓IFN-g + [158,166–172]

High porosity ↑Arginase + [158]

Large pore ↑Arginase,
↓iNOS, ↓IL-1R1 + [128,158,173]

Roughness ↑IL-4, ↑IL-10, ↑IL-11, ↑IL-13 + [166,167,172,174–176]
[177]

Bioactive
molecule

incorporation

Proteins ↑ (BMP-2), ↓iNOS, ↓IL-6,
↓IL-1β + [158]

Nucleic acids ↓ (MALAT1),↑IDO + [158]
Anti inflammatory

drugs ↑IL-10, ↓IL-1β + [158]

Cytokines (IL-4) ↓TNF-α + [158]
Cytokines (OSM) ↑STAT-3, ↑ALP [158]

highly sulfated hyaluronan
(HA)

↓IL-6-, ↓IFN-g↓, MCP-1
↑IL-10 + [127]

Hyaluronic acid (HA) ↓TNF-α, ↓IL-1, ↓IL-6. + [178]
fibrin hydrogels ↓TNF-α ↑ IL-10 + [136]

grafted unsaturated
polyurethane films ↑IL-10, ↑TGF-β N/A [179]

Brodbeck et al. found correlation between implant surface charge and proliferation of
different types of macrophages [180]. Human monocytes in vitro were cultured on a surface
modified to hydrophobic, hydrophilic, anionic and cationic surface properties. Semiquanti-
tative RT-PCR analysis on days 3, 7 and 10 of cell culture showed that Interleukin-10 (IL-10)
expression was significantly increased in cells adherent to the hydrophilic and anionic
surface, but significantly decreased in monocytes/macrophages adhering to the cationic
surface. Interleukin-8 (IL-8) expression was significantly decreased in cells adhering to
hydrophilic and anionic surfaces [180]. Bioceramic implants also have a surface charge.
The surface chemistry of HAs is mainly related to the rate of SO4

2− substitution at the
PO4

2− site [181]. A nanoscale element with a reduced negative surface potential affects
protein adsorption through weak repulsive or attractive forces. Adsorption studies of
bovine serum albumin (BSA) and lysozyme (LSZ) confirmed an increased affinity for active
binding sites on the HA surface [181]. Thus, the effect of surface charge in the direction
of macrophage polarization may also be true for ceramic implants, which needs further
investigation.

Research links the hydrophilicity of the implant material to the direction of macrophage
polarization, affecting protein adsorption [158,166,167]. Titanium implants with micro-
and hydrophilic roughness (SLA) or hydrophilic-modified rough surfaces (modSLA) were
examined in vitro by rodent and human macrophages [182]. Non-adherent cells were
harvested and cultured.
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As a result of incubation, they were transformed into M1 or M2 macrophages. The
M1 and M2 phenotype was confirmed by cytokine secretion analysis of IL-1 and IL-10,
respectively, using ELISA. However, a significant titanium surface effect was observed,
in which significantly lower levels of these cytokines were secreted by M1 and M2 cells
cultured on the modSLA surface.

IL-10 levels were significantly elevated when M2 cells were cultured on the modSLA
surface compared to the same cells on the SLA surface [182]. We did not find studies
examining the effect of different ceramic hydrophilicity on macrophage proliferation, but
HA ceramics are used to increase the hydrophilicity of titanium implants and, therefore,
have the potential to influence macrophage polarization [182]

The nanostructure and rough surface of the material has a positive effect on the anti-
inflammatory development of the immune response, regardless of the material of the
placed implant [158,166–172]. On the rough surface of the implants (including ceramics),
macrophages have a tendency to develop the M1 phenotype, while smoother surfaces
guide macrophage towards M2 polarization [183].

HA bioceramic discs with different roughness and grain sizes were implanted into
rectus femoris muscle BALB/C mice. Seven days after the surgery, five samples were
harvested from each group [184]. The concentrations of inflammation-related cytokines
secreted from the macrophages, including TNF-α, IL-1β, IL-10, MIP-1α, MIP-1β and MCP-
1, were determined in the collected supernatants, following the manufacturer’s instructions
for the commercial ELISA kits. The nano-structured highest roughness and smallest grain-
size group had the highest secretion of anti-inflammatory cytokine IL-10 on day 3 and
the lowest secretion of pro-inflammatory cytokine TNF-α on days 3 and 5 (p < 0.05). The
immunomodulatory effect of the micro/nano-hierarchical structures was studied by the
flow cytometry detection of polarized RAW 264.7 surface markers CCR7 and CD206. The
ratio of CCR7-labeled M1 phenotype to CD206-labeled M2 phenotype was also calculated.
The nano-structured highest-roughness group induced the lowest proportion of CCR7-
positive M1 macrophages and the highest proportion of CD206-positive M2 macrophages
(p < 0.01) [184].

Studies have shown that pore size and high porosity also affect the polarization of
macrophages, regardless of the implant material [128,158,173]. Thus, 3D-printed poly-
caprolactone/polyethylene glycol/ HA scaffolds were, in vitro, tested on RAW 264.7 cells.
The cells adhering to the scaffolds were observed using SEM [173]. Further, implants
with different porous sizes (including 209.9 ± 77.1 µm (P200), 385.5 ± 28.6 µm (P400)
and 582.1 ± 27.2 µm) were placed on mandibular bone defects in 32 SD rats (four rats per
group). The left mandible implantation area of the rat was shaved and disinfected. Rats
were sacrificed at 4 and 8 weeks after implantation, and the mandibular specimens were
used for micro-computed tomography (micro-CT) examination and immunofluorescence
staining. In this study, decreased amounts of inflammatory cells were recruited in the large
pore group compared to in the small pore groups. Neutrophils and macrophages were
observed surrounding the surface of the scaffold and in pores [173]. On day 3, a significant
difference in the total number of inflammatory cells was not observed among the groups.
On days 7 and 28, in the largest pore size group, the number of inflammatory cells was
significantly lower than that in the other groups. The M2/M1 ratio of the largest pore size
scaffold group was obviously higher than that of the other groups on day 7 and day 28,
and the difference was more obvious on day 28 [173].

The hydrophilicity of different material-type implants also affects the polarization of
macrophages, and hydrophilic implants enhanced the expression of M2 [182,185,186].

The application of hyaluronic acid to the implant surface can have a different effect on
inflammation. High-molecular hyaluronic acid has anti-inflammatory and immunosup-
pressive effects; low-molecular hyaluronic acid can act as a powerful pro-inflammatory
molecule [127]. Hyaluronic acid has an anti-inflammatory effect by decreasing TNF-α and
reducing the infiltration of activated neutrophils (in vivo study in rats), suppressing MMPs
and ADAMTS, interacting with CD44, COX-2 and PGE2 (in vitro study) [187].
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Adding bioactive molecules with known properties regarding macrophage proliferation
to the implant seems to be an obvious way to modify the implant [136,178,188,189]. However,
the example of hyaluronic acid proves that the same substance can have different effects
on the properties of the implant. Hyaluronic acid binds to ECM molecules and cell surface
receptors, thereby regulating cell behavior through the control of the tissue macro- and
microenvironment. Hyaluronic acid can bind to three major classes of cell surface receptors:
CD44 (membrane glycoprotein), receptor for hyaluronate-mediated motility (RHAMM) and
intercellular adhesion molecule 1 (ICAM-1). CD44 interacts with a number of other ligands,
including osteopontin, collagens and matrix metalloproteinases (MMPs). High- and low-
molecular-weight HAs have different molecular and cellular mechanisms and a variety of
biological effects through interaction with CD44 receptors, which explains the opposite effects
of hyaluronic acid as an implant surface modifier. In addition to these receptors, two other
receptors have been identified for HA binding: lymphatic endothelial hyaluronan receptor
(LYVE-1) and hyaluronic acid receptor for endocytosis (HARE), also known as Stabilin-
2 [187,190]. The use of fibrin hydrogels on the surface of HA ceramic implants has a strong
stimulating effect on the recruitment of anti-inflammatory macrophages M2 [136]

Thus, there are many prospects for implant modification, but the large number of
variants and their combinations require experimental testing of the effect on the immune
response. Perhaps the use of mathematical models will reduce the number of perspective
variants for research.

6. Mathematical Models for Data Integration

The most common mathematical models consider the processes of bone tissue remod-
eling and implant osseointegration. They represent differential equations, in which the
unknown functions are populations of various cells (mesenchymal stem cells, osteoblasts,
fibroblasts, chondrocytes, osteoclasts, etc.), concentrations of various biochemical factors
(osteogenic, chondrogenic, vascular, etc.) as well as tissue density (fibrous, cartilage, bone,
etc.) near the fracture area or the implant [191–195]. In most scientific works, the results of
numerical solutions of mathematical model equations and computer modeling show good
qualitative and quantitative coincidence with the results of laboratory and clinical studies.
For example, the mathematical model describes the dynamics of osteoblasts and osteoclasts
during bone remodeling and takes into account the effect of various drugs (teriparatide,
denosumab and romosozumab), demonstrating good agreement between the results of
numerical simulation and clinical data for patients with osteoporosis [196]. Another work
used mathematical modeling to predict the effect of Wnt-10b protein administration on
bone tissue metabolism and to validate the results with data from laboratory experiments
on mice [197].

Less work is devoted to the mathematical modeling of the complex of immune and
inflammatory reactions that start in the organism immediately after the implant placement.
Using a mathematical model, we were able to qualitatively describe some features of the
body’s reaction to a foreign body and confirm the important role of macrophages in this
process [198]. Two-dimensional numerical modeling allows one to obtain quantitative
estimates of collagen deposition on bioimplants. Another mathematical model is devoted
to a detailed description of the behavior of macrophages, fibroblasts and their interaction
during fibrous tissue formation [199]. The authors note that the model they propose does
not include all types of reactions arising in the immune response and, therefore, can be
considered only as an approximation. Various mathematical models of macrophage and
cytokine dynamics during bone healing and after implant placement have been proposed in
recent works [200,201]. Thus, we can conclude that mathematical models that describe the
complex dynamics of the body’s immune response to implants made of different materials
are currently underdeveloped.
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7. Conclusions

In summary, ceramic implants provide one of the best therapeutic solutions for multi-
ple clinical applications due to their extremely high compatibility with the regenerative
processes. However, inflammatory and tissue-destructive processes cause complications
and restrict the probability of application of these implant materials.

In contrast to other types of materials (metals or polymers), insufficient experimental
attention was given to the examination of specific immune reactions to ceramic materials,
which, in hand, significantly limits further research and the development of improved
ceramic implants with life-long integration potential. Recent advances in the application of
the cellular ex vivo test systems, in particular the model systems based on human primary
cells, as well as significant progress in the analytics of immune cell activation (single-cell
transcriptome, metabolome and epigenome analysis) offer the possibility of addressing the
specificity of immune reactions on ceramic effects on the most precise level. The data that
will be obtained will be complex, and their integration needs the involvement of complex
mathematic modelling.

Mathematical models that describe the complex dynamics of the body’s immune
response to implants made of different materials also have to be upgraded and further
developed, since currently available models consider extremely limited numbers of immune
parameters. Development of new mathematical models that would adequately describe the
specific immune responses of the body to bioceramic implants, taking into consideration the
cross-talk between physical characteristics, surface architectures, chemical modifications of
the ceramic material and activation of multiple immune cell types that interact with the
biomaterials by direct contact and by the release of cytokines, growth factors, chitinase-like
proteins, ECM structural components and ECM-modifying enzymes, is an urgent task in
the field of biomedical mathematical modelling.
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