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Abstract: Clostridium perfringens (C. perfringens) is one of the foremost pathogens responsible for
diarrhea in foals. As antibiotic resistance increases, phages that specifically lyse bacteria are of great
interest to us with regard to C. perfringens. In this study, a novel C. perfringens phage DCp1 was
isolated from the sewage of a donkey farm. Phage DCp1 had a non-contractile short tail (40 nm in
length) and a regular icosahedral head (46 nm in diameter). Whole-genome sequencing indicated
that phage DCp1 had a linear double-stranded DNA genome with a total length of 18,555 bp and
a G + C content of 28.2%. A total of 25 ORFs were identified in the genome, 6 of which had been
assigned to functional genes, others were annotated to encode hypothetical proteins. The genome of
phage DCp1 lacked any tRNA, virulence gene, drug resistance gene, or lysogenic gene. Phylogenetic
analysis indicated that phage DCp1 belonged to the family Guelinviridae, Susfortunavirus. Biofilm
assay showed that phage DCp1 was effective in inhibiting the formation of C. perfringens D22 biofilms.
Phage DCp1 could completely degrade the biofilm after 5 h of interaction. The current study provides
some basic information for further research on phage DCp1 and its application.

Keywords: C. perfringens; phage DCp1; genomic characterization; biological characterization;
bacterial biofilm

1. Introduction

C. perfringens is a sporulated, toxin-producing Gram-positive anaerobe in the envi-
ronment, and it is an opportunistic pathogen that could cause an imbalance of intestinal
flora and induce the development of diseases (such as diarrhea) [1,2]. The C. perfringens
exotoxins are classified into two categories, major and minor toxins [3]. The major toxins
include alpha (CPA), beta (CPB), epsilon (ETX), and iota (ITX) toxins [4], based on which the
strains of C. perfringens are classified into five types (A–E). C. perfringens has been reported
to cause Clostridial enteritis in foals and adult horses in many countries [5–7]. In the early
stages of the disease, foals may have anorexia, diarrhea, depression, and dehydration.
Intestinal hypomotility or paralytic ileus may also be present. Clostridial enteritis may
also be associated with enterotoxemia, systemic inflammatory response syndrome (SIRS),
and sepsis, and it is considered a leading cause of death [3]. The onset and progression of
clostridial enteritis are rapid and can result in extremely high mortality in foals. Clostridial
enteritis has seriously affected the development of the donkey industry in the world. Al-
though C. perfringens can be controlled by antibiotics, there is an increasing pressure of
antibiotic resistance [8], and intestinal diseases caused by C. perfringens have become more
common in farms. In addition, bacterial biofilms act as a shield to protect the bacteria from
antibiotics by decreasing their susceptibility to antibiotics, leading to the low efficacy of
antibiotics against these biofilm-associated pathogens. These problems are becoming a new
and emerging threat to animal agriculture and the development of new antibacterial agents
against C. perfringens [9].

Bacteriophages (phages) are abundant in nature and they are specialized in infecting
and killing bacteria [10]. “Phage therapy” is an old idea that has recently come back into
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vogue [11]. In contrast to antibiotics that kill many types of bacteria, phages kill only
one species or strain [12]. Thus, phages can be used to precisely control harmful bacteria
and avoid the deleterious effects of broad-spectrum antibiotics on beneficial probiotic
bacteria [13,14]. In addition, phages can reduce bacterial populations in biofilms [15].

Lytic bacteriophages of C. perfringens have been reported previously [16,17]. Although
these phages show potential for the lysis of C. perfringens, studies relating to the disruption
of biofilms formed by this pathogen have not been reported. The current study isolated a
novel C. perfringens phage DCp1 from the sewage of a donkey farm, sequenced its whole
genome, characterized its biological properties, and evaluated its effect on the biofilm of
C. perfringens.

2. Results
2.1. Morphology of Phage DCp1

A new C. perfringens phage DCp1 was isolated from the sewage of a donkey farm
using C. perfringens D22 as a host strain. Phage DCp1 formed a clear plaque (about 1 mm in
diameter) on the plate, with a halo of about 3 mm in diameter around the plaque (Figure 1A).
The TEM image revealed that phage DCp1 had a regular icosahedral head (about 46 nm in
diameter) and a short noncontractile tail (about 40 nm in length) (Figure 1B).
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Figure 1. Morphology of phage DCp1. (A) Plaques produced by phage DCp1 on the lawn of C.
perfringens. (B) TEM image of phage DCp1 with a regular icosahedral head (46 nm in diameter) and a
short tail (40 nm in length).

2.2. Host Range and EOP

A total of 54 strains were used to determine the host range of phage DCp1 (Table S1)
and C. perfringens D22 was used as an indicator bacterium to determine the EOP of phage
DCp1. As shown in Table S1, the lytic activity of DCp1 differed among the tested strains,
with a higher EOP indicating that DCp1 had stronger lytic activity in that host strain. Phage
DCp1 could only lyse 9.3% (5/54) of C. perfringens strains, indicating that phage DCp1 had
high host specificity.

2.3. The Optimal MOI and One-Step Growth Curve of Phage DCp1

At the MOIs of 0.01 and 0.1, the phage titer reached the highest value of ~1010 PFU/mL
(Figure 2A), indicating that the optimal MOI was 0.01~0.1. The one-step growth curve
showed that the latent period of phage DCp1 was 25 min, the burst period was 125 min,
and the burst size was 85 PFU/cell (Figure 2B).
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at different MOIs (0.001, 0.01, 0.1, 1, and 10). (B) The one-step growth curve of phage DCp1. Phage 
DCp1 was mixed with C. perfringens D22 at the MOI of 10. The titer of phage DCp1 was determined 
at different time points within 3 h.  
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was stable over a pH range of 5 to 10 within 3 h. After incubation at pH 4 for 3 h, however, 
the titers of phage DCp1 decreased by 7 orders of magnitude, and the phages were com-
pletely inactivated at pHs 3, 12, and 13. (Figure 3B). The results indicated that phage DCp1 
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Figure 3. Thermal and pH stability of phage DCp1. (A) The titers of phage DCp1 at different tem-
peratures (40 °C, 50 °C, 60 °C, 70 °C, and 80 °C) and different time points (20, 40, and 60 min). (B) 
The titers of phage DCp1 at different pHs (3~13) and different time points (1, 2, and 3 h). 

2.5. In Vitro Bactericidal Activity of Phage DCp1 
The in vitro bactericidal activity of phage DCp1 against C. perfringens D22 is shown 

in Figure 4. The OD600 values of the positive control increased continuously within 24 h, 
and the OD600 values of the negative control remained unchanged. The growth of C. 
perfringens D22 was completely inhibited at all MOIs after treatment with DCp1 during 2–

Figure 2. The optimal MOI and one-step growth curve of phage DCp1. (A) The titers of phage DCp1
at different MOIs (0.001, 0.01, 0.1, 1, and 10). (B) The one-step growth curve of phage DCp1. Phage
DCp1 was mixed with C. perfringens D22 at the MOI of 10. The titer of phage DCp1 was determined
at different time points within 3 h.

2.4. Thermal and pH Stability of Phage DCp1

For thermal stability, the titers of phage DCp1 showed no significant changes after
incubation at 40 ◦C and 50 ◦C for 60 min and 60 ◦C for 40 min. However, the titers of
phage DCp1 decreased by 2 orders of magnitude after 60 min of incubation at 60 ◦C and
by 7.5 orders of magnitude after 20 min of incubation at 70 ◦C, and the phages were
completely inactivated after 20 min of incubation at 80 ◦C (Figure 3A). For pH stability,
phage DCp1 was stable over a pH range of 5 to 10 within 3 h. After incubation at pH 4 for
3 h, however, the titers of phage DCp1 decreased by 7 orders of magnitude, and the phages
were completely inactivated at pHs 3, 12, and 13. (Figure 3B). The results indicated that
phage DCp1 was stable below 60 ◦C for 1 h over the pH range of 5 to 10.
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Figure 3. Thermal and pH stability of phage DCp1. (A) The titers of phage DCp1 at different
temperatures (40 ◦C, 50 ◦C, 60 ◦C, 70 ◦C, and 80 ◦C) and different time points (20, 40, and 60 min).
(B) The titers of phage DCp1 at different pHs (3~13) and different time points (1, 2, and 3 h).

2.5. In Vitro Bactericidal Activity of Phage DCp1

The in vitro bactericidal activity of phage DCp1 against C. perfringens D22 is shown in
Figure 4. The OD600 values of the positive control increased continuously within 24 h, and
the OD600 values of the negative control remained unchanged. The growth of C. perfringens
D22 was completely inhibited at all MOIs after treatment with DCp1 during 2–10 h. At 24 h,
there was a significant difference in the OD600 values (p < 0.05) compared with the positive
control, and there was no significant difference at different MOIs (p > 0.05) (Figure 4A). The
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bacteria number of D22 remained unchanged during the first 10 hours and only increased
by 0.5~2.5 orders of magnitude at 24 h, which was much lower than that in the positive
control (Figure 4B). The results demonstrated that DCp1 could significantly inhibit bacterial
growth at suitable MOIs and the highest bactericidal activity was found at an MOI of 0.01.
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protein (ORF18). ORF10 encoded DNA polymerase, which was identified as B-type DNA 
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Figure 4. In vitro bactericidal activity of phage DCp1. (A) In vitro bactericidal activity of phage DCp1
against C. perfringens D22 strain at different MOIs (10, 1, 0.1, 0.01, and 0.001). (B) CFUs of phage
DCp1 against C. perfringens D22 at different MOIs (10, 1, 0.1, 0.01, and 0.001). The data are expressed
as means ± SD (n = 3).

2.6. Genomic Characteristics of Phage DCp1

Genomic analysis is an important method for identifying useful functional proteins
and the safety of phage applications [18]. Phage DCp1 had a linear double-stranded DNA,
with a genome size of 18,555 bp and a G + C content of 28.2%. A total of 25 ORFs were
identified in the genome, of which 13 were in the plus strand and 12 were in the minus
strand (Figure 5). Only eight ORFs were homologous to genes encoding proteins with
known functions, and the others were annotated to encode hypothetical proteins. Five
ORFs encoded structural proteins, including bppU family phage baseplate upper protein
(ORF7), morphogenesis protein C (ORF8), collar protein (ORF15, ORF16), and tail fibers
protein (ORF18). ORF10 encoded DNA polymerase, which was identified as B-type DNA
polymerase and involved in DNA replication and modification. It is consistent with the
fact that phages encode their own DNA polymerases [19]. ORF14 encoded endolysin,
which is related to the release of phage progeny and consists of two domains, the N-
acetylmuramoyl-L-alanine amidase catalytic domain (cd02696) and the peptidoglycan-
binding domain (pfam05036). Two ORFs showed no similarity in multiple databases.
No tRNA, virulence gene, drug resistance gene, and lysogenic gene were found in the
genome of phage DCp1. The detailed information on all predicted ORFs was shown in
Supplementary Table S3. Genomic sequence information and functional annotation of
phage DCp1 had been deposited in the GenBank database (accession number: OP256049,
submitted on 19 August 2022).
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2.7. Comparative Analysis

Whole-genome sequence alignment showed that phage DCp1 belonged to the Guelin-
viridae, Susfortunavirus, and it had the highest DNA sequence identity (96.95%) with phage
vB_CP_qdyz_P5 (accession number: OP894055.1) of the Susfortunavirus genus.

Phage DCp1 has similar genomic features to the phages in Table 1, including short
genomes (between 18,000 and 20,000 bp), low GC contents of 28–30%, and no tRNA genes.
However, phage DCp1 had very low sequence similarity with these phages (except phage
vB_CP_qdyz_P5). In addition, the sequence coverage of phage DCp1 and all phages was
very low and there were many unknown genes in the genome of phage DCp1. These results
indicated that phage DCp1 might be a novel phage in comparison to the phages in the
NCBI database.

2.8. Phylogenetic Analysis

The phylogenetic tree based on the whole genome and DNA polymerases indicated
that DCp1 was closely related to phage vB_CP_qdzy_P5 and distantly related to the other
C. perfringens phages, which was consistent with BLASTp analysis (Figure 6A,B). This
showed that phage DCp1 was very different from other phages and its novelty was also
demonstrated by the taxonomic status. When we further compared the whole genome
sequence of DCp1 with six closely related phages, including vB_CP_qdzy_P5, susfortuna,
phi24R, LPCPA6, CPS1, and CPD7 using Mauve, we found that phage DCp1 had similar
gene module arrangements to most phages (Figure 7). However, the left end (2500–5000 bp)
of the DCp1 genome was highly divergent when compared with the other six C. perfringens
phage genomes and most of the genes in this region had an unknown function.
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Table 1. Comparison of general genomic features of phage DCp1 and other closely related phages.

Genome Characteristics

Phage

DCp1 vB_CP_
qdyz_P5 Susfortuna CPD7 phi24R CPS1 LPCPA6

Genome size (bp) 18,555 18,888 19,046 18,958 18,919 19,089 18,554
G + C (%) 28.20 28.80 29.22 29.12 27.80 28.26 30.56

Predicted ORFs 25 27 27 26 21 26 25
tRNAs 0 0 0 0 0 0 0

Similarity with DCp1 (%) 100 96.95 86.23 86.04 77.64 75.13 73.63
Coverage with DCp1 (%) 100 85 74 74 0 1 21

Accession no. OP256049 OP894055.1 NC_048712 MK017820 JN800508 NC_048661 OM638104

2.9. Effects of Phage DCp1 on the Biofilm of C. perfringens

The SEM image and crystal violet staining showed that C. perfringens D22 could
form a biofilm and the biofilm reached maturity in 36 h (Figure 8A). To determine the
ability of phage DCp1 to inhibit biofilm formation, phage DCp1 was co-cultured with C.
perfringens D22 at different MOIs. The result showed that phage DCp1 was effective in
inhibiting biofilm formation and there was no difference at different MOIs (Figure 8B).
Figures 8C and 9 showed that phage DCp1 could completely degrade the biofilm after 5 h
of co-cultivation.
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3. Discussion

C. perfringens is one of the most important pathogens in intestinal diseases in newborn
foals, causing huge economic losses to the donkey industry [20]. Although no relevant
reports have been published, C. perfringens has been frequently isolated from diarrheic
donkey foals, and diarrhea caused by Clostridial enteritis is becoming more prevalent in
donkeys. There are few strategies for preventing and controlling C. perfringens infections in
donkey farms due to antibiotic resistance. Recently, however, the use of phage therapy to
control pathogenic bacteria has been reported [21–23]. In this work, we isolated a novel
phage of C. perfringens and comprehensively analyzed its genomic and biological character-
istics. There is a correlation between the burst size and the latency of the phage, as well as
the proportion of protein synthesis machinery in the host bacteria [24]. Previous studies
have shown that a longer incubation period is associated with a larger burst size [25–27].
Compared with phages HN02 and BG3P, phage DCp1 had a slightly longer incubation
period and a larger burst size, which was consistent with previous reports [16,17]. Phage
DCp1 remained stable at pHs (5~10) for 3 h and temperatures (40 ◦C~60 ◦C) within 60 min,
indicating that it could survive under various environmental conditions. Although phage
DCp1 had a lytic effect on host strain D22, successive passages on the medium showed
that phage-resistant mutants still appeared. Based on previous studies, we speculated that
phage DCp1 produced phage-resistant mutants at a frequency of about 10−6–10−7 [28,29].

The halo around the plaque of phage DCp1 may be related to depolymerase [30].
However, no gene that encoded depolymerase was annotated in the genome of DCp1,
which requires further analysis. Though phage DCp1 and phage CPS1 were similar in
morphology and size, phage DCp1 had relatively low sequence coverage (1%) and sequence
similarity (75.13%) with phage CPS1. In addition, the highest sequence coverage of phage
DCp1 with known phages in the NCBI database was only 85%. These results indicated that
phage DCp1 might be a new phage.

Generally, the phage genome has a modular structure, with each module containing
a cluster of genes with a specific function [31]. ORF7 and ORF18 encoded the upper
baseplate protein (BppU) and tail fiber protein of phage DCp1, respectively. BppU is
composed of six asymmetric trimers which link to the Dit central core and the receptor
binding proteins (RBPs) [32]. The location of RBPs varies among phages. For example,
phage T4 is attached to host bacteria by tail fibers, while phage TP901-1 has RBPs in the
baseplate [33,34]. Therefore, further studies are necessary to confirm the RBPs of phage
DCp1. ORF14 encoded endolysin, which can degrade peptidoglycan in host cell walls
to inhibit or kill bacteria [35]. Endolysin of DCp1 consists of two domains, including N-
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acetylmuramoyl-L-alanine amidase catalytic domain and peptidoglycan-binding domain.
N-acetylmuramoyl-L-alanine amidase (also known as peptidoglycan aminohydrolase) is
an autolysin. Enzymes containing this domain can degrade the peptidoglycan by cleaving
the amide bond between N-acetylmuramoyl and L-amino acids [36,37]. The phages that
infect Gram-positive bacteria are usually host-specific, but their endolysins have a broad
host spectrum [38,39]. Further research is needed to determine if this is the case for phage
DCp1. In general, endolysins have to pass through the pores in the cell membrane created
by holin [40]. However, the holin gene was not identified in the DCp1 genome and holin
may also be among the hypothetical proteins or the unannotated proteins. The B-type DNA
polymerase encoded by ORF10 had both an obligatory 5′→3′ DNA synthesis activity
and an optional exonuclease activity [41]. However, most B-type DNA polymerases
lack the domain that is required for 3′→5′ exonuclease [42]. ORF16 was predicted to
encode a hypothetical protein that contained a phage connector domain and served as
an interface for tail attachment and binding [43]. Notably, holin was not identified in the
genome of phage DCp1. The holin gene is most likely downstream of the lysin gene. This
placement is unique to the other clostridial bacteriophages [44]. Based on publicly available
genomic information at NCBI, there are only four phages in the genus Susfortunavirus.
Therefore, the characterization of phage DCp1 is important in expanding our knowledge of
C. perfringens phages.

Biofilm is a dominant organizational form of bacterial life in nature. Due to the
presence of biofilms, bacteria can increase antibiotic resistance, protect themselves from
phagocytosis, and resist physical and environmental stresses [45,46]. Previous studies have
confirmed that phages have a scavenging effect on bacterial biofilms. For example, phages
vB_SauM-A, vB_SauM-C, and vB_SauM-D can eradicate the biofilm of Staphylococcus
aureus [47]. Phage MJ2 is effective against the biofilm of Enterobacter cloacae [48]. Phage
AB7-IBB1 has a scavenging effect on Acinetobacter baumannii biofilm [49]. C. perfringens
can form biofilms; however, no studies have been reported on the effects of phages on C.
perfringens biofilms. In this study, the results demonstrated that phage DCp1 had high
antibacterial efficacy against C. perfringens biofilms and most of the biofilms were removed
after treatment with DCp1 for 5 h, indicating that phage DCp1 could be used as an effective
antibacterial agent against C. perfringens biofilms.

4. Materials and Methods
4.1. Strains and Conditions

A total of 54 C. perfringens strains were used in this work (Supplementary Table S1),
which were previously identified and stored in the Veterinary Microbiology Laboratory of
Qingdao Agricultural University. C. perfringens strains were cultured anaerobically at 37 ◦C
in the TSC Agar and Anaerobic Meat Liver (AML) broth (Qingdao Haibo Biotechnology Co.,
Ltd., Qindgao, China) in an anaerobic incubator (Shanghai Jiehan Laboratory Equipment
Co., Ltd., Shanghai, China). Antibiotic susceptibility of the strains was determined by the
disk diffusion method (Table S2) [50].

4.2. Sample Enrichment and Bacteriophage Isolation

Sewage samples were collected from donkey farms in Shandong, China. Phages were
isolated from samples by the double-layer agar method using C. perfringens D22 as the host
bacterium [24]. After samples were centrifuged at 12,000 r/min for 5 min, the supernatant
was filtered through a 0.22 µm filter, mixed with fresh AML broth (109 CFU/mL, 100 µL)
and incubated overnight at 37 ◦C. The enrichment process was repeated three times to
obtain the final filtrate. A volume (100 µL) of the filtrate was mixed with 100 µL of
C. perfringens suspension (109 CFU/mL) and incubated at 37 ◦C for 5 min. The mixture
was added to 5 mL of 0.7% molten agar and poured onto the prepared Nutrient Agar (NA)
plate. Plates were incubated anaerobically overnight at 37 ◦C and single plaques were
selected and purified several times until the shape and size of plaques were uniform, and
the titer of purified phage was determined by the double-layer agar method.
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4.3. Electron Microscopy

Transmission electron microscopy (TEM) was used to observe the morphology of
phage DCp1 [51]. In brief, 20 µL of phage suspension (109 PFU/mL) was placed on a
carbon-coated grid and allowed to be adsorbed for 15 min, followed by staining with
1% phosphotungstic acid for 5 min. The grid was air-dried at 70 ◦C in the dark. The
morphology of phage DCp1 was examined using a transmission electron microscope (TEM,
Hitachi, Tokyo, Japan) at an accelerated voltage of 80 kV.

4.4. Host Range and Efficiency of Plating (EOP) Measurement

The host range of phage DCp1 was determined by a spot test [52]. The lytic activity
of phage DCp1 against different strains of C. perfringens was determined using a spot test
(Supplementary Table S1). Briefly, C. perfringens suspension (109 CFU/mL, 100 µL) was
mixed with 0.7% molten agar (5 mL) and poured onto the prepared nutrient agar (NA)
plates. After solidification, 5 µL of phage suspension (109 PFU/mL) was dropped on the
top of the NA plate. After complete absorption, the plate was cultured overnight at 37 ◦C
to observe the formation of plaques. The titer of phage DCp1 against the spotted strain
was determined by the double-layer agar method. The EOP was determined by the ratio
of PFUs of phage DCp1 from each susceptible strain to CFUs from the indicator strain of
C. perfringens D22 [53]. Each experiment was repeated three times.

4.5. Optimal Multiplicity of Infection (MOI)

The optimal MOI of phage DCp1 was determined as described previously [54]. Firstly,
phage suspension was mixed with fresh C. perfringens D22 suspension (108 CFU/mL) at
different ratios of 10, 1, 0.1, 0.01, and 0.001. Then, the mixture was incubated at 37 ◦C for
3 h, followed by centrifugation at 12,000 r/min for 30 s. The supernatant was collected for
the determination of the phage titers using the double-layer agar method. The ratio with
the highest phage titer was considered the optimal MOI.

4.6. One-Step Growth Curve

The one-step growth curve of phage DCp1 was determined as described previ-
ously [55]. Briefly, phage suspension (109 PFU/mL) was mixed with fresh D22 suspension at
an MOI of 10 and incubated at 37 ◦C for 5 min. The mixture was centrifuged at 12,000 r/min
for 3 min and the pellet was washed twice with AML broth to remove unabsorbed phages,
resuspended in AML broth, and incubated at 37 ◦C with gentle shaking. Aliquots (200 µL)
of the culture were taken at 5-min intervals in the first hour, 20-min intervals in the second
hour, and 30-min intervals in the third hour. The aliquots were centrifuged at 12,000 r/min
for 5 min and the supernatants were collected for the determination of phage titers using
the double-layer plate method. The burst size was calculated as the ratio of the final count
of liberated phage particles to the initial phage particles.

4.7. Thermal and pH Stability

Thermal and pH stability of phage DCp1 were determined as described previously [56].
For thermal stability, the phage suspension was incubated at 40 ◦C, 50 ◦C, 60 ◦C, 70 ◦C, and
80 ◦C and aliquots were taken at 20 min, 40 min, and 60 min for titer determination. For
pH stability, the phage suspension was incubated over a range of pHs (3–13) at 37 ◦C for 1,
2, and 3 h. Phage titers were determined using the double-layer agar method.

4.8. In Vitro Bactericidal Activity

The bactericidal activity of DCp1 against the host strain C. perfringens D22 was assessed
using optical densitometry and bacterial colony counting [21]. Briefly, DCp1 was cultured
with C. perfringens D22 (108 CFU/mL) in AML broth at various MOIs (10, 1, 0.1, 0.01, and
0.001), followed by incubation at 37 ◦C. A UV-vis spectrophotometer was used to measure
the optical density (OD) at 600 nm in a 96-well plate at 1 h intervals during the first 10 h and
at 24 h. The bacterial growth was also monitored by measuring bacterial titers at two-hour
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intervals during the first 10 h and at 24 h. A bacterial culture without phages served as
a positive control and AML broth without bacteria and phages was used as a negative
control. Each aliquot was measured in triplicate.

4.9. Genome Extraction, Sequencing, and Bioinformatics Analysis

The genomic DNA of phage DCp1 was extracted using a viral genomic DNA/RNA
extraction kit (Tiangen Biochemical Technology Co., Ltd., Beijing, China). Sequencing was
performed by Huitong Biotechnology Co., Ltd. (Shenzhen, China). The purified genomic
DNA was sheared into c. 350 bp fragments to construct a paired-end (PE) library using
a Nextera XT sample preparation kit (Illumina, San Diego, CA, United States). The PE
reads of 150 bp were generated using a Novaseq 6000 sequencer (Illumina, San Diego, CA,
United States). High-quality reads were assembled into the phage genome using the de
novo assembler SPAdes v.3.11.0 [57]. The complete sequence of phage DCp1 was annotated
using RAST (http://rast.nmpdr.org) and GeneMark (http://opal.biology.gatech.edu/Gene
Mark/) (accessed on 10 August 2022) [58,59]. Predicted ORFs were verified using online
BLASTP (http://www.ncbi.nlm.nih.gov/BLAST) (accessed on 1 February 2023). Putative
transfer RNA (tRNA)-encoding genes were searched using tRNAscan-SE (http://trna.ucsc.
edu/tRNAscan-SE/)(accessed on 10 August 2022) [60]. SnAp Gene was used to construct
the whole genome map and MEGA5 was used to construct the phylogenetic tree based on
the whole-genome sequence and DNA polymerases [61]. Comparisons of complete genome
sequences between phage DCp1 and other phages were performed using Mauve [62].

4.10. Effects of Phage DCp1 on C. perfringens Biofilm
4.10.1. Biofilm Assay

The biofilm of C. perfringens D22 was prepared by previously described methods
with some modifications [49,63]. Briefly, C. perfringens cultures were diluted in fresh
Thioglycollate medium (Qingdao Haibo Biotechnology Co., Ltd., Qingdao, China) at a final
concentration of 106 CFU/mL, and 200 µL diluted bacteria was added to each well of the
24-well plates, followed by incubation at 37 ◦C for 24 h, 36 h, and 48 h. The blank control
was the medium without C. perfringens D22. After incubation, the wells were washed with
sterile phosphate-buffered saline (PBS) twice and fixed with methanol for 15 min. After
air-drying, the plates were stained with 2% crystal violet and kept at room temperature for
15 min. After the removal of excessive stain and washing with PBS, 33% glacial acetic acid
was added to dissolve the stain. Absorbance was recorded at OD570 nm.

4.10.2. Inhibitory Effect of Phage DCp1 on Biofilm Formation

The ability of phage DCp1 to inhibit biofilm formation was analyzed according to
the previously described method [64]. Overnight, C. perfringens cultures were diluted in
the fresh Thioglycollate medium up to 106 CFU/mL. The diluted C. perfringens culture
(200 µL) was mixed with 200 µL of phage suspension at different MOIs (1, 0.1, 0.01, and
0.001) and incubated in 24-well cell culture plates at 37 ◦C for 36 h. The blank control
was the medium without phages and C. perfringens. Biofilm formation was assessed using
crystal violet staining.

4.10.3. Eradication of C. perfringens Biofilms by Phage DCp1

The ability of phage DCp1 to eradicate the biofilms was assessed according to the
previous method [47]. Biofilms were grown in 24-well cell culture plates as described above
and rinsed with PBS. Phage suspension (109 PFU/mL, 200 µL) was added and incubated at
37 ◦C for 5 h. Biofilms were assessed using crystal violet staining.

The morphology of C. perfringens biofilms treated with phage DCp1 was observed
using scanning electron microscopy [65]. The biofilms were grown on coverslips and treated
as described above. After treatment, the biofilms were fixed with 3% glutaraldehyde for
4 h, washed gently with PBS (10 mM, pH 7.4), and fixed with 1% osmic acid for 1.5 h. The
biofilms were then washed gently with 10 mM PBS, dehydrated using a graded ethanol

http://rast.nmpdr.org
http://opal.biology.gatech.edu/Gene
http://www.ncbi.nlm.nih.gov/BLAST
http://trna.ucsc.edu/tRNAscan-SE/
http://trna.ucsc.edu/tRNAscan-SE/
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series (30%, 50%, 70%, and 80% once for 10 min, and 100% twice for 10 min each time), and
displaced by isoamyl acetate lipid (50% once, 100% twice). The biofilms were dried using a
critical point dryer, coated with gold, and photographed on a scanning electron microscope
(SEM, Hitachi, Tokyo, Japan).

4.11. Statistical Analysis

All experiments were performed at least three times and three biological repeats were
performed for each experiment. The results were statistically analyzed using GraphPad
Prism (version 6.02, GraphPad Software, La Jolla, CA, USA) and the data were analyzed by
one-way analysis of variance to compare significant differences. Statistical significance was
set at p < 0.05.

5. Conclusions

The current study described a novel C. perfringens phage DCp1 isolated from the
sewage of a donkey farm. Whole-genome sequencing showed that phage DCp1 had a
linear double-stranded DNA genome with a size of 18,555 bp and a G + C content of
28.2%. Phylogenetic analysis showed that phage DCp1 belonged to the family Guelinviridae,
Susfortunavirus and had a very low sequence identity with the known phage sequences in
the NCBI database. No tRNA, virulence gene, drug resistance gene, and lysogenic gene
were identified in the genome of phage DCp1. The high host specificity of phage DCp1
enabled it to be used for more precise sterilization. Moreover, the advantages, such as the
large burst size, high thermal and pH stability, and high efficacy of biofilm removal can
broaden the practical application of phage DCp1 in bacterial control.
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