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Abstract: Osteoarthritis (OA) is a chronic, progressive, severely debilitating, and multifactorial joint
disease that is recognized as the most common type of arthritis. During the last decade, it shows an
incremental global rise in prevalence and incidence. The interaction between etiologic factors that
mediate joint degradation has been explored in numerous studies. However, the underlying processes
that induce OA remain obscure, largely due to the variety and complexity of these mechanisms. Dur-
ing synovial joint dysfunction, the osteochondral unit undergoes cellular phenotypic and functional
alterations. At the cellular level, the synovial membrane is influenced by cartilage and subchondral
bone cleavage fragments and extracellular matrix (ECM) degradation products from apoptotic and
necrotic cells. These “foreign bodies” serve as danger-associated molecular patterns (DAMPs) that
trigger innate immunity, eliciting and sustaining low-grade inflammation in the synovium. In this
review, we explore the cellular and molecular communication networks established between the
major joint compartments—the synovial membrane, cartilage, and subchondral bone of normal and
OA-affected joints.

Keywords: osteoarthritis; synovial membrane; articular cartilage; subchondral bone; synoviocytes;
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1. Introduction

Osteoarthritis (OA) is a chronic, progressive, highly debilitating, and multifactorial
disease of a joint that is acknowledged as the most common form of arthritis, with an
incremental rise in prevalence and incidence globally for the past decades [1]. According to
the “Global Burden of Disease Study 2019” data, the burden of OA from 1990 to 2019 has
increased by 113.5% and could be estimated at more than 500 million individuals [2]. About
10% of people worldwide suffer from OA-induced symptoms, such as functional disability,
chronic pain, and mental health problems [3]. The prevalence of depressive symptoms
among OA patients is estimated to be around 20% [3,4]. According to Shuang Zheng et al.,
depression is found in 25.4% of symptomatic knee OA patients with an annual incidence
of 11.2% among them [5]. Han Lu et al. explored that there is a bidirectional association
between depression and knee OA [6]. The progression of OA is deleterious to the quality
of life, working capacity, health, and social welfare [7].

Multiple factors are reported to contribute to the development of OA, such as in-
creasing age, female sex, obesity and insulin resistance, joint mechanical overloading,
experienced musculoskeletal trauma, and genetic predisposition [8] (Figure 1).

Int. J. Mol. Sci. 2023, 24, 4120. https://doi.org/10.3390/ijms24054120 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24054120
https://doi.org/10.3390/ijms24054120
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-6324-0453
https://orcid.org/0000-0002-3589-9429
https://orcid.org/0000-0003-2616-2668
https://doi.org/10.3390/ijms24054120
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24044120?type=check_update&version=2


Int. J. Mol. Sci. 2023, 24, 4120 2 of 31

Int. J. Mol. Sci. 2023, 24, 4120 2 of 32 
 

 

 
Figure 1. Common sites (red circles) and risk factors for OA: age, gender, genetics, metabolic state 
(obesity, type 2 diabetes), joint overuse, trauma, and injury that contribute to changes in the main 
joint compartments, namely, the synovial membrane, cartilage, fibrocartilage of meniscus, as well 
as subchondral bone. 

Telomere length is a biomarker of aging that declines with advancing years, and its 
shortening is linked to the pathophysiology and development of OA [9]. In addition, se-
nescent cells secrete factors that induce the aging of other cells in a paracrine manner [10]. 
Gao et al. found that senescence-associated beta-galactosidase expression by articular 
chondrocytes correlates with the severity of OA [11]. Evidence of gender differences in 
joint morphometry, kinematics, pain severity, use of healthcare resources, and functional 
recovery after arthroplasty is reviewed by Tschon et al. [12]. Obesity, defined as a body 
mass index greater than 30 kg/m2, more than triples the risk of knee OA [8]. According to 
Joseph et al., weight loss of more than 5% over four years is associated with less pain and 
slower knee OA radiographic progression on the Kellgren/Lawrence scale [13]. Joseph 
and colleagues explain these findings as a higher load transferred on the weight-bearing 
joint such as the knee or hip [13]. Furthermore, adipose tissue is a major source of adipo-
cytokines, which modulate the immune response and inflammation both locally and sys-
temically, thus contributing to joint degeneration [14]. Belluzzi et al. explored that changes 
in the infrapatellar fat pad (IFP) can predispose patients to OA progression by producing 
pro-inflammatory cytokines, growth factors, and profibrotic factors [15]. These changes in 
IFP facilitate prolonged pain in OA patients [16]. Wu and colleagues found that serum 
levels of adiponectin and leptin are negatively associated with bone mineral density in 
OA [17]. Type 2 diabetes and insulin resistance have been reported to associate with OA 
as a multifactorial pathology [18]. Mechanical load and post-traumatic injury both have 
been identified as undisputed risk factors in the development of OA; the latter is more 
common at a younger age and is associated with faster progression [19,20]. Recent re-
search indicates that several OA genetic risk signals affect, or at least include, epigenetic 
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(obesity, type 2 diabetes), joint overuse, trauma, and injury that contribute to changes in the main
joint compartments, namely, the synovial membrane, cartilage, fibrocartilage of meniscus, as well as
subchondral bone.

Telomere length is a biomarker of aging that declines with advancing years, and its
shortening is linked to the pathophysiology and development of OA [9]. In addition,
senescent cells secrete factors that induce the aging of other cells in a paracrine manner [10].
Gao et al. found that senescence-associated beta-galactosidase expression by articular
chondrocytes correlates with the severity of OA [11]. Evidence of gender differences in
joint morphometry, kinematics, pain severity, use of healthcare resources, and functional
recovery after arthroplasty is reviewed by Tschon et al. [12]. Obesity, defined as a body
mass index greater than 30 kg/m2, more than triples the risk of knee OA [8]. According to
Joseph et al., weight loss of more than 5% over four years is associated with less pain and
slower knee OA radiographic progression on the Kellgren/Lawrence scale [13]. Joseph and
colleagues explain these findings as a higher load transferred on the weight-bearing joint
such as the knee or hip [13]. Furthermore, adipose tissue is a major source of adipocytokines,
which modulate the immune response and inflammation both locally and systemically,
thus contributing to joint degeneration [14]. Belluzzi et al. explored that changes in the
infrapatellar fat pad (IFP) can predispose patients to OA progression by producing pro-
inflammatory cytokines, growth factors, and profibrotic factors [15]. These changes in
IFP facilitate prolonged pain in OA patients [16]. Wu and colleagues found that serum
levels of adiponectin and leptin are negatively associated with bone mineral density in
OA [17]. Type 2 diabetes and insulin resistance have been reported to associate with OA as
a multifactorial pathology [18]. Mechanical load and post-traumatic injury both have been
identified as undisputed risk factors in the development of OA; the latter is more common
at a younger age and is associated with faster progression [19,20]. Recent research indicates
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that several OA genetic risk signals affect, or at least include, epigenetic regulators [21].
These risk factors create a beneficial background for a pathology. They are necessary, but
not sufficient, to develop OA.

The primary attention in OA research thus far has been devoted to investigating joint
cartilage [22]. The potential therapeutic approaches are oriented to stop or delay the progres-
sion of cartilage structural changes, thus reversing existing defects of the joint tissue [22].
At the same time, the latest available data about joint structural parts’ involvement in OA
progression disclose the importance of research that highlights the interplay between com-
ponents of a joint, respectively, subchondral bone, cartilage, and the synovial membrane.
OA begins with joint dysfunction, primarily affecting the articular cartilage, synovium,
and subchondral bone, all of which have close cellular and molecular interactions [23].
Moreover, in the case of a knee OA, the onset and progression of disease are strongly
associated with meniscal lesions, both, posttraumatic and age-related degenerative [24,25].

Furthermore, even though, it is acknowledged that changes within joint tissue during
OA are mainly degenerative, recent studies underline the importance of chronic inflamma-
tion [26–33]. The activation of the immune system, whether innate or adaptive, reflects local
changes in the tissue. In the joint, it is strongly associated with low-grade systemic inflam-
mation and the production of damage-associated molecular patterns (DAMPs) released
during cartilage degradation [34–40]. Inflamed synovium acts as a trigger for OA progres-
sion, recruiting cells for intra-articular changes. To date, various cells have been recognized
as potential contributors to synovial inflammation, mainly synoviocytes, macrophages,
fibroblasts, and lymphocytes being the most prominent of them [41–43]. Activated cells
trigger catabolic and pro-inflammatory cellular responses in the synovial membrane and
fluid [44]. Finally, synoviocytes, being exposed to intracellular and extracellular DAMPs,
activate chondrocytes and mediate the production of various matrix metalloproteinases
(MMPs), chemokines, cytokines, and neuropeptides, thus establishing a vicious cycle
between all joint tissue compartments [38].

In this review, we explore the cellular and molecular crosstalk established between the
major joint compartments—the synovial membrane, cartilage, and subchondral bone of
normal and OA-affected joints.

2. Joint as an Organ in a Healthy State

The synovial joints represent the most common type of joint in the human body [45].
They are composed of subchondral bone, articular cartilage, and a two-layered synovial
membrane, which surrounds all the mentioned elements, thus making the joint cavity filled
with synovial fluid [45]. In physiological conditions, all joint-forming elements remain in
balance or homeostasis [46] (Figure 2).

2.1. Synovial Membrane

The synovial membrane is the innermost portion of the joint capsule, which lines all
non-articulating joint structures enclosing the cavity. It makes folded protrusions called
villi in the joint cavity that increase the surface of the synovium, thus contributing to the
joints’ adaptation during movements [47].
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Figure 2. Schematic overview of a synovial joint structure. (A) Macroscopic view on the compart-
ments of synovial joint. (B) The synovial membrane (upper part) in a healthy state. Composition of 
a healthy “osteochondral” unit (lower part), tidemark (red asterisk), and calcified cartilage (yellow 
asterisk). 
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Figure 2. Schematic overview of a synovial joint structure. (A) Macroscopic view on the compartments
of synovial joint. (B) The synovial membrane (upper part) in a healthy state. Composition of a healthy
“osteochondral” unit (lower part), tidemark (red asterisk), and calcified cartilage (yellow asterisk).

2.1.1. Synovial Fluid

The synovial fluid is a viscous, transparent, and relatively hypocellular liquid. It is
a blood plasma transudate that contains signaling factors (cytokines, enzymes, growth
factors) and biomolecules in response to synovial fluid redistribution-induced sheer stress
(hyaluronan, lubricin), which are synthesized by synovial membrane resident cells (mainly
fibroblasts) [48,49]. The synovial fluid is the only source of nutrients for avascular, alym-
phatic, and aneural cartilage. Moreover, it facilitates lubricating properties, regulating
biomechanical stress on the joint [49].

2.1.2. Cellularity of the Synovial Membrane

The synovial membrane is composed of two layers: the lining (intima) layer and the
sublining (subintima) layer. This delicate tissue represents a selectively porous barrier
with intercellular junctions between the lining layer cells. It lacks the basement membrane
that separates both layers [50]. On the one hand, it allows free passage for biomechanical,
molecular, and cellular signals between synovial tissue and synovial fluid [51]. On the other
hand, the synovial membrane has an immune regulatory function, providing homeostasis
and integrity of the synovial tissue, adjacent cartilage, and subchondral bone [50,52,53]. The
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lining layer consists of two distinct cell types: type A and type B synoviocytes, also known
as macrophage-like synoviocytes (MLSs) and fibroblast-like synoviocytes (FLSs). In healthy
individuals, the synovial lining is two-layered. Close physical and chemical association and
communication with synovial fluid are maintained by MLSs and FLSs [26]. The sublining
layer is a loose connective tissue, which can be more adipose, areolar, or fibrous in type.
This layer is supplied with blood vessels, lymphatic vessels, and nerves. The cellularity
of the sublining layer is low. The major cell population is represented by resident cells
such as fibroblasts and macrophages, and non-resident cells such as lymphocytes, and
plasmocytes [48,54].

2.1.3. Synovial Populations of Macrophages

The healthy synovial membrane niche contains several resident macrophage sub-
sets based on their localization and surface markers [55]. In physiologic conditions, res-
ident macrophages sense tissue damage, take part in the inflammatory response, and
support tissue homeostasis. According to parabiotic mouse experiments and single-cell
transcriptome sequencing, the healthy synovial membrane contains resident MLSs with
Trem2+CX3CR1+ surface markers (phenotypic marker of efferocytosis MerTK+CD206+,
subset Trem2, CX3CR1+ in humans) in the lining, accounting for 40% of the macrophage
pool, resident interstitial MHCII+CSF1R+ macrophages (MerTK+Folr2highID2+ in humans),
and resident Lyve1+Relma+ perivascular macrophages (MerTK+Folr2+Lyve1+ in humans)
in the sublining layer [55–57].

In the lining layer, MLSs are tissue-specific barrier-providing macrophages with
“apical-basal” polarity, that form tight junctions (zonula occludens) and desmosomes, which
thus determine the paracellular ion permeability. The main function of MLSs is to protect
the adjacent sublining layer from biochemical stress that could be caused by cartilage
degradation particles, cellular cleavage components, and pro-inflammatory cytokines, thus
preventing spontaneous inflammation within joint tissue [50,52,58]. Unlike the lining layer,
which has a single macrophage population (MLSs), the sublining layer is comprised of
diverse resident macrophage populations. There are up to four distinct subsets of resident
macrophages, classified according to the surface markers they express [50]. The origin of
synovial resident macrophages remains obscure. They are blood monocyte-independent
cells, and, theoretically, could appear prenatally [50,59]. Though, resident MLSs and
perivascular macrophage pools can be restored from “precursor interstitial macrophages”:
MHCII+CSF1R+ (MerTK+Folr2+ID2+ in humans) [59].

2.1.4. Synovial Populations of Fibroblasts

Fibroblasts are mesenchymal-derived cells that can execute their lineage functions,
such as accommodating the extracellular matrix (ECM) by synthesizing, assembling, and
remodeling various types of collagen, proteoglycan, and fibronectin, as well as expressing
MMPs and their inhibitors. Apart from coordinating remodeling processes, fibroblasts
have resident tissue-specific functions [60]. FLSs are in charge of maintaining internal
joint homeostasis. They do this by controlling the composition and turnover of synovial
fluid, which lubricates and feeds cells in the deepest joint compartments. This function
of FLSs is under the control of mechanical loading and inflammatory stressors [61]. An
interaction of FLSs and MLSs supports the immunological barrier in a healthy synovial
membrane [52]. Furthermore, all fibroblasts augment other cell functions in both healthy
and affected tissue [58].

2.1.5. Synovial Populations of Non-Resident Cells

Other cells that are found in the synovial membrane are vascular endotheliocytes,
as well as immune cells such as lymphocytes, neutrophils, mast cells, plasmocytes, and
dendritic cells. In healthy synovial membranes, most of them reside in small numbers in
the perivascular compartment [62].
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2.1.6. Extracellular Matrix of the Synovial Lining

Resident fibroblasts are the main source of ECM. It is composed of fibrillar components
such as collagens, fibronectins, elastin, and non-fibrillar components such as proteoglycans
and hyaluronan. Cell-to-matrix interactions strictly coordinate the balance between the
production, assembly, and degradation of ECM components [63].

2.2. Articular Cartilage

In synovial joints, articular cartilage is a highly specialized, load-bearing, friction-
reducing connective tissue that overlays the ends of opposing articulating bone surfaces,
providing smooth sliding for a joint during movements and executing properties of re-
siliency and deformability [46,57,64,65].

2.2.1. The Composition of Articular Cartilage

In the recesses of a joint cavity, articular cartilage is attached to the synovial membrane
that lines the joint. Cartilage is an aneural, alymphatic, and avascular tissue that receives
nourishment from synovial fluid and the underlying bone [49]. Wang et al. explored
that nutrition supplied by the synovial fluid is more significant for cartilage viability
than that from subchondral bone [66]. Articular cartilage is made of chondrocytes that
produce ECM, which is comprised of water (more than 70%), collagen, non-collagenous
proteins, and proteoglycans [49,65,67]. The specific architecture of joint cartilage explains
its limited ability to self-repair and its inherent limited healing potential. Unfortunately,
both natural and pathological changes in articular cartilage may cause damage to the whole
joint’s stability.

2.2.2. Chondrocytes and Their Metabolic State

In mature cartilage, the arrangement of chondrocytes and ECM is more zonal [64].
The chondrocyte distribution, activity, and cellular shape, as well as the orientation and
metabolism of the ECM structure within each zone, differ [64,68–70]. Histologically, there
are four distinct layers in articular cartilage: the superficial, the middle, the deep, and
the mineralized cartilage zones [69]. The latter zone is separated from non-mineralized
cartilage by a tidemark [71]. In physiological conditions, the tidemark varies in number
and thickness all along the cartilage. The tidemark plays a role in preventing the intrusion
of mineralized cartilage into the non-calcified cartilage [72–74].

Up to 10% of cartilage tissue is occupied by chondrocytes, cells with phenotypic in-
stability and poor regenerative capacity [64,67,68,75]. Chondrocytes are mechanosensitive
cells whose cellular responses are influenced by their mechanical and chemical surround-
ings [61,76,77]. Normally, chondrocytes adapt their metabolic state to the environment
by transducing received mechanical signals into chemical responses, which manifest as
perturbations in gene expression responsible for remodeling processes, morphogenesis, the
ECM, and matrix-degrading enzyme synthesis [78]. The synthetic ability of chondrocytes
decreases with cartilage depth [79].

2.2.3. Extracellular Matrix of Articular Cartilage

ECM is a complex network composed primarily of collagen type II (90% of all col-
lagens), with minor pericellular collagens such as type IV, VI, and III, as well as fibril-
associated collagens with interrupted triple helices (FACIT) collagens IX, XII, XIV, XVI, and
XXI [67,80]. Collagen fibrils of articular cartilage ECM are arranged to resist the mechanical
forces: collagen fibril orientation is parallel to the surface in the superficial zone, more
randomly arranged in the middle zone, and vertically aligned in the deep zone [68,75]. That
alignment is paralleled by chondrocytes’ arrangements and cellular activity profiles within
each zone [81,82]. Thus, activated mature chondrocytes are mostly located in the superficial
layer and partly in the middle layer; the cells synthesize collagen types II (COL2B), IX,
and XI, whereas hypertrophic chondrocytes in the deep layer synthesize collagen type
X [64,68,75]. Chondroprogenitor cells produce procollagen type IIA (COL2A) [82]. The



Int. J. Mol. Sci. 2023, 24, 4120 7 of 31

pericellular matrix (PCM) buffers stress for chondrocytes and exhibits a different profile.
It is mainly made of collagen types IV and VI, fibromodulin, and matrilin-3 [61,65,83].
Taken together, collagens provide articular cartilage with flexibility, compressive resis-
tance, and tensile strength. Simultaneously, pericellular collagens anchor and maintain
the integrity of chondrocytes, as well as mediate cell-to-matrix interactions [67]. The ECM
collagen network is stabilized by proteoglycan aggregates, mainly aggrecan, with lesser
amounts of decorin, biglycan, and fibromodulin, which make collagen type II inaccessible
to proteinases and protect it from degradation, as well as non-collagenous proteins such as
cartilage oligomeric matrix protein (COMP), link protein and many others [22,46,84].

2.3. Microenvironment in the Subchondral Bone

Together with articular cartilage, subchondral bone forms a morphofunctional unit
called an “osteochondral unit” [85]. The osteochondral junction connects the calcified zone
of the hyaline cartilage with the cortical plate of the subchondral bone and creates a mechan-
ical and biochemical interplay between articular cartilage and subchondral bone [71,86].
The coupled mechanical interplay of both tissues increases the functionality of a joint,
dissipating energy transfer [87].

2.3.1. Architecture of the Subchondral Bone

Subchondral bone is separated from adjacent calcified cartilage by a cement line and
is divided into two entities: subchondral cortical bone plate and subchondral trabecular
bone [88]. The subchondral cortical bone plate contains channels with nerves and blood
vessels that run from the subchondral trabecular bone. These blood vessels and nerves
divide into smaller branches and reach into calcified cartilage. Subchondral trabecular
bone is a sponge-like supportive structure that absorbs energy and supplies nutrients for
remaining bone and cartilage [85].

Subchondral bone is a unique shock-absorbing tissue that dynamically adapts to the
mechanical strain, decreasing the transmitted loading to the overlaying articular carti-
lage [88]. The process of adjusting bone structure to local strain is called “modeling”.
The complex mechanism of bone resorption with subsequent formation is known as bone
remodeling [89,90]. In physiological conditions, it is activated by biomechanical factors [91].

The microenvironment of subchondral bone depends on resident cells—osteoblasts,
mature osteocytes, and osteoclasts—and their interaction with articular cartilage [71,85,92].
Lajeunesse and colleagues reported that prostaglandins, leukotrienes, and growth factors
produced by subchondral osteoblasts could reach the calcified layer of articular carti-
lage [93]. Wu and his team found exosomes that osteoblasts release and thus facilitate
intercellular communication between cartilage and bone [94].

2.3.2. Osteoblast Lineage Cells

Osteocytes comprise 42 billion cells in the adult human skeleton with a cellular den-
sity of 19,000–28,500 cells/mm3 [95]. Their processes are embedded in the mineralized
bone matrix and together with the lacunar–canalicular network, they make a connected
system that links the vasculature with the mineralized surface, supplying the bone with
nutrients [96]. Bone metabolism is mainly regulated through the wingless (Wnt) signaling
pathway and the receptor activator of nuclear factor kappa B (NF-κB)/receptor activator of
NF-κB ligand-osteoprotegerin (RANK/RANKL-OPG) pathway [97].

Osteoblast lineage cells release bone metabolic activity regulator proteins such as
sclerostin, RANKL, and OPG [98]. RANKL and OPG are mainly expressed by osteoblasts.
Osteocytes are the major source of skeletal sclerostin, an inhibitor of the wingless-related
MMTV integration site’s (Wnt) canonical signaling pathway. The Wnt signaling pathway
induces mesenchymal stem cell differentiation into osteoblasts [99]. Song et al. explored that
forced Wnt7b expression in mice results in high bone formation [100]. Sclerostin synthesis
is mainly amplified by immobilization [101,102]. Skeletal sclerostin gene knockout mice
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demonstrate high bone mass [103]. The induction of sclerostin synthesis is a major factor in
stopping osteoblast-associated bone remodeling [104].

Osteoblasts are responsible for extracellular bone matrix synthesis, as well as for
osteoclastogenesis by RANKL and OPG expression as well as the canonical Wnt signaling
pathway [105].

2.3.3. Macrophage Lineage Cells

Osteoclasts are macrophage lineage cells that are responsible for bone resorption.
RANKL is a positive regulator of osteoclastogenesis [106]. OPG is a soluble decoy receptor
that possesses an antagonizing effect, neutralizing RANKL and maintaining the bone [107].

2.4. Cellular and Molecular Interactions in the Healthy Joints

The cross-tissue interaction in subchondral bone and cartilage and a network-based molec-
ular regulation by the synovium are responsible for healthy environments in joints [24,108].
In Table 1, we collected and represented data focusing on a given healthy condition—
molecular activity in each resident or non-resident cell type.

Table 1. The overview of signaling molecules produced by cells in the context of compartments in
the healthy joint.

Chemical
Messenger

Signaling
Factor Cells Effect References

Transcription
factor SOX-9 1

Synoviocytes,
chondrocytes,

osteoblast lineage
cells

Maintains the chondrogenic phenotype and
functions of the chondrocyte, prevents
hypertrophy, antagonizing with RUNX2
Inhibits IL-1β-induced inflammatory
response and chondrocyte apoptosis
Inhibits the production of ADAMTS in
cartilage tissue

[97,109,110]

Growth
factor IGF-1 2

Synoviocytes,
chondrocytes,

osteoblast lineage
cells

Exhibits anti-inflammatory and anti-catabolic
effects in chondrocytes
Maintains articular cartilage anabolism,
stimulating ECM production and
chondrogenesis

[111,112]

Growth
factor TGF-β 3

Chondrocytes,
synovial fibroblasts,
and macrophages

Inhibits chondrocytes phenotype switch to
hypertrophic chondrocytes and collagen type
X production
Induces proteoglycan synthesis by
chondrocytes
Inhibits IL-1β effects

[113]

1 SOX-9—SRY-box transcription factor 9; 2 IGF-1—insulin-like growth factor-1; 3 TGF-β—transforming growth
factor-beta; ECM—extracellular matrix.

3. Pathological Changes in OA-Affected Joint Tissues

OA has been described for a long time as a mechanically induced degenerative process
of the joint [78,114]. OA starts gradually when the disturbance in the joint microenvi-
ronment appears with an imbalance between synthesis and destruction processes, pro-
inflammatory and anti-inflammatory effects [115]. The pathological processes result in
cartilage loss, subchondral bone remodeling, and synovial inflammation (Figure 3). The
main joint components—synovial membrane, articular cartilage, and subchondral bone—
contribute to the development of OA to varying degrees, thus reflecting various OA
subgroups and phenotypes in patients [116].
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Figure 3. Schematic overview of the OA-affected synovial joint with involvement of both “chon-
drosynovial” and “osteochondral units”. (A) Synovial joint depicting common changes, such as
degradation of the articular cartilage, formation of subchondral bone cysts, and osteophytes (red
arrows). (B) The synovial membrane (upper part) reveals hyperplasia of the lining layer, immune
cell infiltration, angiogenesis, and fibrosis in the sublining layer. Alterations of the articular cartilage
(lower part) include degradation of the non-calcified zone and thickening of the calcified zone (yellow
asterisks), formation of free cartilage fragments, duplication of tidemark (red asterisk), alterations in
the composition of cellular and extracellular matrix. Remodeling of the subchondral bone (lower
part) reveals the thickening of the cortical bone plate, formation of cysts, and angiogenesis.

3.1. OA-Affected Synovial Membrane Triggers and Perpetuates the Pathological Process

There is increasing evidence that the synovial membrane plays the role of “a cor-
nerstone” in the progression of OA. OA presents with pain, joint swelling, and morning
stiffness, which are mostly linked to synovial inflammation (synovitis) [40,117]. In com-
bination with mechanical factors, synovitis could be the first trigger for the activation of
the immune system and the further perpetrator of the pathologic cycle in OA pathogene-
sis [118]. The importance of synovitis in OA progression, joint destruction, and associated
manifestations has been highlighted over the last decades [119,120].

3.1.1. Changes in the Biochemical Profile of Synovial Fluid in OA

Despite the low number of immune cells found in joint tissues, serum, and synovial
fluid in OA patients, the alterations in synovial fluid’s biochemical profile reflect changes
in cell metabolism in the joint. Under the influence of joint disease, many cytokines
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and collagen turnover biomarkers accumulate in synovial fluid, including COMP, CC-
chemokine ligand 5 (CCL5), matrix metalloproteinase-1 (MMP-1), MMP-3 and MMP-18, as
well as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and IL-8 [121]. Elevated
IL-6 level in synovial fluid may be a predictor of severe OA, and its level correlates with
severe pain and is associated with chronic inflammation, while the concentration of COMP
found in the serum correlates with the number of OA-affected joints [7].

3.1.2. Alterations in of the Synovial Membrane Reflecting Inflammatory and
Fibrotic Changes

The microenvironment of the synovial membrane undergoes substantial changes in the
case of joint inflammation. Hyperplasia of the lining layer and increased cellular density
of the sublining layer, inflammatory cell infiltration (macrophages, T and B cells), and
angiogenesis are all common features of OA-related synovitis [122]. Krenn et al. proposed
a histopathological grading system to evaluate the damage to the synovial membrane and
define the synovitis grade in inflammatory and non-inflammatory arthritides by using
light microscopy [54]. Patients with OA-related synovitis may have different levels of
inflammation, but in most cases, it is a low-grade [26,27].

Synovitis occurs in more than 50% of early OA patients [33,48]. It is linked to a
higher risk of cartilage damage, thus worsening the disease, and correlates with an increase
in pain sensation [120,123–127]. According to arthroscopic and soft tissue ultrasound
(US) examination data, synovitis, confirmed by these imaging methods, is seen before
OA is revealed in conventional radiographs and cartilage damage is present in magnetic
resonance imaging (MRI) [120,128]. Thus, it could be concluded that synovitis could
precede cartilage damage or the development of radiographic OA. Riis et al. found a
positive correlation between MRI data, cartilage histopathological data, and the severity of
synovitis, whereas Abbasi and colleagues revealed a correlation between the severity of
ultrasonographic synovitis and pain [129,130]. Synovitis increases the risk of presenting
with painful knee OA ninefold [124]. Zhang and colleagues explored that pain in OA
patients is positively associated with synovitis and bone marrow lesions (BMLs). The
diminution of BMLs and synovitis frequently results in pain resolution [131]. However,
Bacon et al. found that a 0.1 mm decrease in cartilage thickness over 2 years increases the
Western Ontario and McMaster Universities osteoarthritis index (WOMAC) pain score by
only 0.32 points, implying that cartilage loss does not significantly worsen the pain and
that the cartilage loss associated with pain is mainly mediated by synovitis [132].

Synovial membrane cells produce mediators with proteolytic and pro-inflammatory
activity [33,65]. Approximately 55% of OA-related cytokines are produced by synovio-
cytes; 38% of them are produced exclusively by synoviocytes [33]. Elevated levels of
pro-inflammatory mediators are found in the synovial fluid, synovial tissue, and serum
of OA patients [133–135]. Nonetheless, all findings from controlled randomized trials
on the potential use of biological agents in OA treatment remain controversial, with no
significant differences in OA alleviation compared to a placebo [136]. Unfortunately, as
the grade of synovitis differs between OA subjects, the synovial membrane’s cellular com-
partment is highly heterogeneous between patients, thus the dominant effector cell type in
OA pathogenesis remains unknown [33,57]. Chou and colleagues performed single-cell
RNA sequencing, revealing 12 distinct cell subpopulations in the OA synovium, more
than 77% of them being FLSs, and sublining fibroblasts and about 12% being HLA-DRA+

cells, including macrophages, dendritic cells, proinflammatory fibroblasts, and B cells [33].
Macrophages, fibroblasts, and other cellular players can impact each other’s transcrip-
tomes, propagating synovial inflammation, cartilage breakdown, and subchondral bone
sclerosis [33].

Synovial fibrosis is another OA manifestation related to joint pain and stiffness [137].
It is a consequence of chronic inflammation and angiogenesis. Synovial fibrosis is caused
by an imbalance between collagen synthetic and proteolytic processes as a response to
pro-inflammatory factors such as IL-6, IL-1β and pro-fibrotic factors such as transforming
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growth factor-beta (TGF-β) and connective tissue growth factor (CTGF). MLSs and FLSs
are both implicated in synovial fibrosis [138,139]. Interestingly, IFP has been acknowledged
as a source of pro-inflammatory factors and adipokines, thus potentially contributing to
synovial inflammation and fibrosis [140]. Furthermore, the IFP function is thought to be
linked to the synovial membrane [141]. Both can contribute to fibrosis, hypervascularity,
and vascular remodeling, resulting in a pro-inflammatory microenvironment, as well as
pain sensitization [141,142]. Moreover, Belluzzi et al. highlighted an elevated expression
of Piezo1/2 mechanosensitive ion channels in IFP and synovial membrane vasculature
that suggests the aforementioned contribution of this anatomo-functional unit to pain
in OA [143].

3.1.3. Insights into Synovial Macrophage Diversity Confirmed in OA Patients

Resident and non-resident synovial lining and sublining macrophages are the most
prominent cellular component of innate immunity in OA [42]. One of the classical ways to
distinguish macrophages is by their state of polarization. The cells are classified as M1 (pro-
inflammatory) or M2 (anti-inflammatory) depending on the surface markers. This concept
of M1 and M2 macrophage polarization exists since Mills et al. defined two activation
poles as M1 and M2 in 2000 [144]. However, a recent study suggests that there are at least
three subsets of M2 macrophages: M2a, M2b, and M2c [59]. M2 macrophages contribute to
tissue repair and remodeling by releasing IL-10, TGF-β, IL-1 receptor antagonists, and a
variety of other mediators [49,57,115]. The transition from M2 to the M1 state accelerates
joint destruction via TNF-α, IL-1β, IL-6, and IL-17 [57]. As macrophages have even greater
phenotypic heterogeneity and plasticity, characterized by the presence of immunoregulatory
and cartilage remodeling proliferative functions, this conception is now considered extreme
and imprecise [33].

Upon the onset of synovitis, blood-derived macrophages (MerTK−) infiltrate the
sublining layer, leading to the formation of a variety of pro-inflammatory non-resident
macrophage subtypes [58]. Sublining inflammatory macrophages produce more pro-
inflammatory mediators than lining MLSs [33]. Activated macrophages are associated with
cartilage breakdown directly and indirectly via the secretion of cytokines and the dynamic
interplay between fibroblasts and chondrocytes. They produce MMP-1, MMP-3, MMP-
9, MMP-13, and aggrecanase and downregulate anabolic processes within cartilage [57].
Blom et al. identified that macrophage depletion from the synovial membrane causes a
significant decrease in MMP-3 and MMP-9 [145]. The abundance of activated macrophages
in the sublining layer correlates with knee OA radiographic severity and symptoms [146].
Huo et al. found elevated levels of the macrophage chemoattractant fractalkine (CX3CL1)
and CCL2 in OA patients’ synovial fluid and serum as well as their positive association with
pain and poor clinical outcome [147]. Interaction with CX3CL1 induces pro-inflammatory
and degrading enzyme production by macrophages [148]. In animal models, CCL2/CCR2
blockade results in macrophage number reduction, diminished synovitis, and cartilage
damage [149]. According to Daghestani et al., soluble macrophage-associated molecules
sCD163 and sCD14 shed from activated macrophages, are found in OA synovial fluid
and serum, and reflect OA symptomatic severity, osteophyte formation, and joint space
narrowing [150]. In another study, macrophage depletion from the synovial membrane was
associated with a reduction in osteophyte formation during experimental OA. Downregu-
lation of both TGF-β and bone morphogenetic protein-2 (BMP-2) plays a role in osteophyte
formation in this case [151].

Over time, mechanical and biochemical factors reduce the abundance of MLSs (MerTK+

CX3CR1+Trem2+ lining macrophages) from 40% to 10% of all synovial macrophage pools.
This results in tight junction disruption between MLSs and the breakdown of the lining
layer’s barrier-like structure. According to MRI data, the breakdown of the MLS barrier-like
structure is associated with increased intra-articular accumulation of the infused contrast
agent [50]. In the arthritic mouse models, the depletion of these cells leads to increased
inflammatory cell infiltration into the synovial membrane and a pro-inflammatory microen-
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vironment [50,52,57]. Of note, in inflammatory arthritis, MerTK+ macrophage number
inversely correlates with disease activity, angiogenesis, and hyperplasia of the synovial
membrane [55].

3.1.4. Distinct Subsets of Synovial Fibroblasts Confirmed in OA Patients

Inflammatory and mechanical factors influence the phenotype and function of FLSs
and sublining fibroblasts [152]. The amount of FLS-synthesized lubricin and hyaluronan
is decreased in the OA joint under the influence of excessive stress and pro-inflammatory
cytokines [152]. This accounts for the diminished volume and viscosity of synovial fluid
that is associated with OA-related pain. Interestingly, intra-articular lubricin injections into
OA mouse models downregulated the inflammatory environment and alleviated pain [153].
Intra-articular hyaluronan injections may also provide pain relief and improve joint func-
tion [154]. Noteworthily, the diminished hyaluronan synthesis by FLSs is attributable to the
pro-inflammatory microenvironment in OA, which induces the depolymerization of high
molecular weight hyaluronan into small oligosaccharides [155]. FLSs and sublining fibrob-
lasts’ phenotypes switch to destructive and pro-inflammatory, respectively. However, there
is no clear evidence for a phenotype switch in OA when compared to typical inflammatory
arthritis [156,157]. Nevertheless, some studies describe the activation of synovial fibrob-
lasts with upregulation of the NF-κB pathway under the influence of pro-inflammatory
factors [158]. A switch from FLSs to myofibroblast-like cells is associated with synovial
fibrosis [159]. Moreover, elevated levels of fractalkine CX3CL1 in the synovium induce
FLSs and sublining fibroblasts to synthesize MMP through the NF-κB pathway, particularly
MMP-3, MMP-9, MMP-2, which degrade aggrecan and collagen [148,160,161]. Studies
on transcriptomics reveal that all synovial fibroblasts demonstrate positional diversity,
which makes them respond differently to the same pro-inflammatory signals. As a result,
the TNF-α response may result in matrix degradation or an increase in pro-inflammatory
responses [162].

3.1.5. Non-Resident Cell Role in the Progression of OA

Trajerova and colleagues identified several immune cell phenotypes of knee OA based
on synovial fluid-derived immune cell composition. They found increased infiltration
of T cells, monocyte–macrophage lineage cells, NK cells, and neutrophils [163]. A flow
cytometry analysis showed the higher infiltration of synovial fluid and synovial tissue by
CD4+ T cells with an increased CD4+ to CD8+ ratio, particularly Th1-polarized cells, in
early stage and end-stage OA [43,164]. In addition, the abundance of Treg cells is usually
reduced [118].

3.1.6. Danger-Associated Molecular Associated Patterns Characteristic of
OA-Caused Damage

The immune system is an active player during synovitis. Immune cells react to
mechanical and biochemical stimuli that accumulate within joints over time [165]. Schedel
and colleagues found that cartilage and subchondral bone cleavage fragments, and ECM
degradation products stimulate the synovial membrane. This stimulation results in FLSs
and MLSs binding to debris with further absorption of them, producing detritus synovitis.
These changes do not lead to an invasion, as it is in RA [166]. The formation of detritus
synovitis may have a further aggravating effect on the inflammation process as well as on
cartilage loss [166]. Thus, it can be speculated that cartilage and subchondral bone ECM
components could stimulate the innate immune system [7]. In that case, ECM components
and intracellular proteins from apoptotic or necrotic cells, which occur after prolonged
mechanical overuse or during the physiological aging process, are considered foreign
bodies. As foreign bodies, they serve as DAMPs that trigger innate immunity, eliciting and
sustaining sterile low-grade inflammation [57,117,167,168].

DAMPs or alarmins are endogenous molecules produced during tissue remodeling
that link inflammation with immune responses in OA [169]. Physiologically, they induce im-
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mune responses to trigger the repair of damaged tissue and the clearance of debris [117]. In
OA, this response is altered [117]. ECM cleavage remnants from proteoglycans, fibronectin,
low-molecular-weight hyaluronan, tenascin C, intracellular cleavage products from apop-
totic or necrotic cells, uric acid, and other crystals, as well as plasma proteins, serve as
DAMPs [170,171]. DAMPs, S100A8 and S100A9 proteins, and uric acid are closely related
to the age-related OA phenotype [171]. Depolymerized hyaluronan fragments accumulate
within the synovial membrane and upregulate membrane-associated Toll-like receptor
4 (TLR4) and CD44 receptors’ expression [172]. Interestingly, cell migration-inducing
hyaluronidase-1 (CEMIP), which plays a role in hyaluronan catabolism, is increased in
inflamed synovial membranes and overexpressed by FLS [173]. Moreover, the DAMP-like
action of hyaluronan is molecular weight-dependent [172]. Low-molecular-weight hyaluro-
nan and small oligosaccharides propagate further degradation of the ECM and amplify
the inflammation responses through the NF-kB pathway, thus stimulating the release of
pro-inflammatory mediators and destructive enzymes [172].

Calcium-containing crystals, both basic calcium phosphate (BCP) and calcium py-
rophosphate dihydrate (CPP), are potential DAMPs that are found in the synovial fluid
of OA patients, induce pro-inflammatory responses in synovial tissue, and exacerbate
articular cartilage calcification [174,175].

DAMPs are recognized by pattern recognition receptors (PRR), which include TLRs
on the surface of immune cells, cytoplasmic PRRs such as nod-like receptors (NLRs), or
secreted receptors such as complement receptors [49,176]. TLRs are found on the cell
surface (TLR-1, TLR-2, TLR-4, TLR-5, TLR-6) and on the surface of endosomes (TLR-3,
TLR-4, TLR-7, TLR-8, TLR-9). Although in smaller numbers than in RA, TLR-2 and TLR-4
are found to be overexpressed in the OA synovial membrane [165]. Stolberg-Stolberg and
colleagues studied the contribution of TLR-3 activation to cartilage degeneration. In vitro,
it was revealed that TLR-3 is upregulated in chondrocytes of OA cartilage and reacts to
apoptotic chondrocytes. The TLR-3 knockout mice were protected from OA-like cartilage
breakdown [177]. It is also worth mentioning, that satellite glial cells of the dorsal root
ganglia (DRG) express many TLRs. Miller et al. revealed that TLR-2 in the DRG is activated
by aggrecan cleavage fragments, promoting OA-associated pain [178]. TLRs activation
triggers the production of pro-inflammatory cytokines, chemokines, proteolytic enzymes,
and growth factors such as TNF-α, IL-1β, IL-6, IL-8, IL-15, IL-17, IL-18, IL-21, CCL-5, MMP-
1, MMP-3, MMP-9, MMP-13, TGF-β, fibroblast growth factors (FGF), vascular endothelial
growth factor (VEGF), nerve growth factor (NGF), and many others by activation of NF-κB,
activator protein-1 (AP-1), and mitogen-activated protein kinase (MAPK) [117,165,170]. In
addition, the complement system may be implicated in endogenous molecules that induce
chronic inflammation in OA [117].

3.2. Degradation of the Articular Cartilage in OA

The changes to articular cartilage include alterations to the cartilage matrix and cellular
components. Disturbed matrix cellular organization leads to tissue fibrillation, vertical
fissures, degradation of the cartilage, and endochondral ossification. On a molecular level,
the loss of aggrecan, decreased quantity and quality of collagen type II, collagen type I
accumulation, and perturbations of chondrocytes are observed [114]. Overall, it results in
decreased tensile strength and energy-storing capacity, limiting joints’ functional abilities.

3.2.1. Chondrocyte Phenotypes in Cartilage Affected by OA

Compositional and organizational changes in ECM and pericellular matrix (PCM)
affect chondrocytes’ behavior [67,179,180]. Normally quiescent chondrocytes start clus-
tering to form multicellular chondrons to satisfy anabolic demands [167]. Unfortunately,
the composition of newly produced collagen is switched from type II to type I, which
weakens cartilage durability and turns hyaline cartilage into a tensile-incompetent fibrotic
cartilage-like structure [75,181]. Even though with time, actively proliferating, swollen
chondrocytes become more susceptible to hypertrophy and dedifferentiation, it inevitably
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results in cellular damage and death [182]. In the late stages of OA, chondrocyte anabolic
activity cannot compensate for catabolic changes within cartilage, leading to a thin, cal-
cified, and functionally incompetent structure that propagates into the non-mineralized
cartilage, reducing its thickness [45,82].

Chondrocytes undergo phenotypic changes in response to mechanical stress, various
self-produced cytokines, and growth factors, accompanied by the synovial membrane and
subchondral bone cell-produced pro-inflammatory factors. Chou and colleagues explored
the phenotypic and functional heterogeneity of articular chondrocytes and their potential
upstream regulators during OA by genotyping [33]. They identified seven distinct cell
phenotypes such as homeostatic chondrocytes (HomC), prehypertrophic chondrocytes
(preHTC), hypertrophic chondrocytes (HTC), regulatory chondrocytes (RegC), prefibro-
chondrocytes (preFC), fibrochondrocytes (FC) and reparative chondrocytes (RepC). PreFC,
FC, preHTC, RepC, and RegC are predominantly seen in the arthritic part of the cartilage.
HomC regulates cell metabolism, development, and homeostasis [33,183]. PreHTC ex-
presses genes to control hypertrophic differentiation [183]. HTC expresses genes to control
ECM mineralization but also induces angiogenesis and osteoblast invasion into cartilage
tissue [183]. RegC expresses genes for antigen-presenting function, as well as modulates
different signaling pathways [183]. RepC expresses genes for ECM remodeling, while
PreFC and FC express genes for fibroblast-like activity [33].

However, there are studies suggesting the presence of more chondrocyte pheno-
types [68,184]. A dedifferentiated chondrocyte is another phenotype of a cartilage cell.
In physiological conditions, the microenvironment and other factors such as the master
regulator SRY-box transcription factor 9 (SOX-9) restrain chondrocytes from losing their
physiological chondrogenic phenotype or dedifferentiation [185]. Morphologically and
functionally, dedifferentiated chondrocytes become fibroblast-like cells, which despite their
high synthetic ability, produce collagen with reduced mechanical properties (collagen type
I, type III, type V), thus contributing to articular cartilage disturbance, remodeling, and
fibrosis [64,82]. Synoviocytes also release pro-inflammatory cytokines, such as IL-1α, IL-1β,
and TNF-α, which aid in dedifferentiation. Moreover, dedifferentiation also leads to a
hypertrophic osteoblast-like phenotype with increased MMP-13 expression in chondrocytes
and collagen type X secretion. Nidogen-2 is one of the chondrocyte pericellular matrix com-
ponents, that regulates the antagonizing action of RUNX2 and SOX-9. Nidogen-2 depletion
also contributes to the hypertrophy of chondrocytes and cartilage calcification [186]. As
mentioned above, IFP is a major intra-articular source of pro-inflammatory cytokines or
adipokines. Gomez and the team reported that adiponectin induces the expression of IL-8
in chondrocytes more potently than IL-1β, thus contributing to the degradation of articular
cartilage [187].

Furthermore, available data suggest that chondrocytes express a resistant-to-apoptosis
senescent cell phenotype with a proinflammatory secretome in damaged cartilage [188–190].
Moreover, senescent chondrocytes are present in osteoarthritic lesions with an increased
tendency to accumulate with age but are absent in intact cartilage [189,191]. Jacob and
colleagues explored that chondroprogenitor cells obtained from OA cartilage display
morphological features of senescent cells, expressing a senescence-associated secretory
phenotype with increased levels of reactive oxygen species (ROS), IL-6, and IL-8 [192].
In addition to that, the authors report the main stress-inducers, metabolic changes with
impaired mitochondrial function, oxidative stress, and genomic damage with upregulated
p16INK4a expression [167,192,193].

3.2.2. Remodeling of Extracellular Matrix during the OA

Cartilage swelling is the first sign of the ECM degradation process, which appears
when the osmotic properties of cartilage are changed [194]. It is detected by MRI as
cartilage “thickening” and positively correlates with proteoglycan loss in early experimental
arthritis [195]. Bank et al. first explored that swelling of the cartilage appears due to
the loss of the collagen network [196]. Other studies have highlighted that increased
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catabolism of proteoglycans, particularly aggrecan, is the main contributor to the increase
in water content in cartilage tissue with no significant differences in collagen composition
in early stage OA [197,198]. On the molecular level, cartilage hyperhydration is driven
by the loss of aggrecan’s G1 domain, which normally binds this proteoglycan to the link
protein, hyaluronan, and matrix itself [49,199]. Interestingly, the loss of hyaluronan from
cartilage and its depolymerization is also associated with pro-inflammatory conditions
and enhanced production of IL-1β and TNF-α that lead to CEMIP overexpression by
chondrocytes correlated with OA activity [173]. The perturbations in the composition of the
proteoglycan network typically begin in the superficial zone of the cartilage extending to
the deep zone as the OA evolves [200]. It is worth mentioning that aggrecan degradation by
itself does not lead to OA progression. Major proteoglycan degradation proceeds with the
loss of minor ECM components, an irreversible breakdown of microfibrillar collagen, and
the depletion of collagen type II, resulting in disruption of the collagen network, known as
fibrillations and fissures [46,199].

The changes in ECM influence the composition of PCM [61]. PCM is a part of ECM,
which surrounds the groups of chondrocytes, making a common entity called the chondron.
Disturbed integrity of PCM is associated with the loss of microfibrillar collagen type VI, the
main component of the PCM, as well as collagen type IV, percelan, fibronectin 1, nidogens,
and laminins [201]. Schminke et al. found that chondroprogenitor cell stimulation by
nidogen-2 stimulation decreases Runt-related transcription factor 2 (RUNX2) and increases
both SOX-9 mRNA and aggrecan, whereas stimulation by laminin upregulates type II
collagen synthesis and downregulates type I collagen synthesis, thereby supporting chon-
drogenesis. Thus, the authors conclude that the decrease in PCM components, as it is
observed in OA, contributes to the increase in collagen type I and cartilage endochondral
ossification [186].

It is reported that the loss of microfibrillar collagen type VI alters the mechanotrans-
duction through the chondrocytes’ primary cilium [202]. Furthermore, PCM collagen type
IV depletion aids to change the viability and phenotype of chondrocytes [67,78,203].

Overall, PCM alterations decrease chondrocyte abilities to sense mechanical signals,
exposing the cell to swelling, and making them susceptible to phenotypical perturbations.

3.2.3. Cartilage Destruction-Associated Proteases Activated in OA

All catabolic changes within articular cartilage are managed by excessive produc-
tion of matrix-degrading enzymes, such as matrixins or zinc-dependent endopeptidases,
MMPs, and a disintegrin and MMP with thrombospondin motifs (ADAMTS), as well as a
diminished synthesis of their inhibitors [204,205]. The key aggrecan-degrading enzymes
are ADAMTS-4, ADAMTS-5 and ADAMTS-9, to a lesser extent MMP-1, MMP-3, MMP-9,
MMP-13 [206]. The major structural macromolecule in the ECM, collagen type II, is cleaved
mainly by MMP-13, MMP-1, and MMP-3. These matrix-degrading enzymes, which act in
an autocrine and paracrine fashion, are synthesized by both chondrocytes and synovial
FLS [31,45]. MMP hyperproduction and hyperactivity, particularly ADAMTS, are caused by
altered post-translational endocytosis of these enzymes [207,208]. Genetic polymorphism in
the enzyme that regulates ADAMTS activity, as well as in the enzyme structure, is positively
associated with the occurrence of OA [208,209]. OA-related proinflammatory cytokines,
which are derived from synovial membrane cells, also contribute to the hyperproduction of
matrix enzymes [207].

3.2.4. Cartilage Destruction-Associated Cytokines Contributing to OA Development

A major part of the OA key cytokines that regulate chondrocyte transcription and func-
tion originate from synovial membrane resident cells; 38% of OA-related key cytokines are
exclusively produced by synoviocytes and none of the cytokines are exclusively produced
by chondrocytes [33]. According to recent studies, resident macrophages and non-resident
dendritic cells, but not chondrocytes, express interleukin-1 beta (IL-1β), interleukin-6 (IL-6),
and TNF-α, all of which are mostly expressed in synovial membranes [33]. ADAMTS-5
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expression is mainly activated by IL-1β, TNF-α, and TGF-β [210]. Notably, MMP-13, the
main collagen type II cleaving enzyme, is expressed not only by chondrocytes but also by
FLSs and osteocytes, thus pointing to a relationship between joint cells and their increased
impact on cartilage [7]. Anabolic changes are stimulated by TGF-β and insulin-like growth
factor-1 (IGF-1). Catabolic changes are mostly controlled by IL-1α and IL-1β [33,211]. Cai
and the team have studied that chondrocyte stimulation with IL-1β elicits an immune
responsive gene 1 (IRG1) associated pro-inflammatory response [212].

3.3. Alterations in the Subchondral Bone Affected by OA

The microstructure of the subchondral bone changes during the OA progression.
Changes in cortical bone plates: volume, porosity, composition, and mineralization degree;
transformation of the trabecular bone compartment; the appearance of bone marrow lesions
(BMLs); neovascularization; cyst and osteophyte formation; and sclerosis are examples
of typical alterations [45,213]. When the bone’s adaptive capability to mechanical and
biological signals is exceeded, bone remodeling decouples [48,214].

3.3.1. Microstructure of Subchondral Bone during the Early Stage OA

In the early stages of OA, a high bone turnover with resorption dominates, result-
ing in cortical bone thinning, increased porosity, trabecular compartment widening, and
separation of trabeculae [22,88]. Findings of high bone turnover are supported by the
hyperexpression of bone resorption markers [46,91]. For example, Huebner et al. found
that the urinary alpha C-telopeptide of type I collagen (α-CTX) marker, which is a metabo-
lite of type I collagen, was elevated in regions with newly formed bone as confirmed by
scintigraphy, corresponding to the sites of high bone turnover in knee OA [215]. According
to Zhao et al., high bone turnover is reflected by increased rates of leukemia inhibitory
factor (LIF), a cytokine secreted by osteoclasts that upregulate the Wnt signaling pathway
by lowering sclerostin in osteocytes [91]. The intensity of LIF expression correlates with the
stage of OA evolution [216].

3.3.2. Microstructure of Subchondral Bone during the Late-Stage OA

In the late stages of OA, increased bone synthesis and hypomineralized bone volume
are more evident [85]. The relative hypomineralization of bones is explained by the
discordance of still high bone turnover and mineralization processes [46]. The cortical bone
plate becomes thicker and the rod-to-plate ratio in trabecular bone decreases [88,89,213].
The hallmarks of late OA are osteoid islets and sclerosis [85]. BMLs are one of the results of
abnormal reciprocity between cartilage and subchondral bone and are associated with pain
and disease progression [217,218]. BMLs occur before the development of radiographic
OA and are observed by MRI [218]. BMLs, as well as subchondral bone cysts, express a
positive correlation with synovitis severity. BMLs, once present, tend to increase [45,48].

3.3.3. Changes in the Cellular Composition of the Subchondral Bone

On the cellular level, the changes observed are orchestrated by the subchondral bone
resident cells, their interaction with chondrocytes and synoviocytes, and the supervision of
mechanical and biological signals [214].

In the early stages of OA, osteocytes increase the expression of RANKL and sclerostin and
decrease the expression of osteoprotegerin (OPG), thus increasing bone resorption [214,219].
Over the course of the disease, osteocytes shift their phenotype to OA-associated, meaning
round-like shape and disarrangement, which interferes with their ability to sense and
transduce mechanical stimuli [220].

Impaired osteocyte perilacunar remodeling (PLR) is both the initiator and consequence
of OA degenerative processes within the subchondral bone and articular cartilage [221].
Mazur and colleagues found that a deficiency of PLR in OA, particularly MMP-13, causes
disruption of subchondral bone homeostasis as well as accelerates articular cartilage le-
sions [222]. A defect in osteocyte PLR impacts the phenotype of osteocytes and the reg-
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ulation of osteoblasts and osteoclasts [221]. Fowler et al. explored the hypothesis that
glucocorticoid administration inhibits enzymes of the perilacunar matrix, suppressing
remodeling and causing the breakdown of the lacunar–canalicular network (LCN) early
in the disease [223]. The insult of LCN manifests as decreased lacunar area, which inter-
feres with mechanosensitive functions of osteocytes; a diminished number of osteocyte
processes and impaired canalicular flow, which causes undernourishment of subchondral
bone cells [97,224–226]. It results in osteocytes’ failure to perceive mechanical load and
their proneness to secondary necrosis in a state of nutritional deprivation. The death of
osteocytes causes new bone formation in both sclerostin-RANKL dependent and indepen-
dent ways, with the latter being associated with the release of DAMPs during necrosis,
which positively stimulates osteoblastogenesis and further bone sclerosis [227,228].

In the late stages of OA, osteocytes induce osteoblast mineralization and enhance
osteoblast-mediated collagen type I synthesis [89]. According to Couchourel et al. data,
during OA there is an increase in type I collagen α1 chain expression, while α2 chain
expression remains stable, thus producing type I collagen, which has a lower affinity
to calcium [229,230]. Moreover, the basal expression of impaired type I collagen is in-
creased [230]. TGF-β1 is one of the key cytokines that accelerate new bone formation
and angiogenesis, as well as plays an important role in mineralization, osteophyte, and
fibrosis formation [214,230]. TGF-β1 in inactivated form is mobilized from the ECM during
ongoing bone remodeling. While activated, it stimulates osteoblastogenesis as well as
bone–cartilage interaction [214].

4. OA-Affected Impaired Interaction between Joint Compartments

Disturbed cellular and molecular coupling between the synovial membrane, articular
cartilage, and subchondral bone promotes the progression of OA. The mutual modulation
of the transcriptomes of the cells and unwanted changes in the expression of various
mediators affect the stability of the whole joint.

4.1. Altered Interaction between the Synovium and Cartilage

Similarly, to the “osteochondal unit”, the “chondrosynovial unit” deserves just as
much attention. Structures interconnected by a synovial fluid are linked molecularly.
Together with the synovial membrane, synovial fluid contributes to inflammation and
cartilage degradation. Housmans and his group explored the hypothesis that alterations of
synovial fluid induce chondrocytes’ dedifferentiation and cartilage degeneration [231]. It is
possible to detect the difference between several types of OA based on the immune cells and
proteins in the synovial fluid of people with knee OA [163]. As mentioned above, synovial
fluid changes its biochemical profile, accumulating various signaling factors that can serve
as potential disease biomarkers. Yang and colleagues used antibody array technology
to determine the downregulation of 20 proteins and the upregulation of 30 proteins in
OA synovial fluid compared to healthy controls, as well as which proteins are involved
in OA pathogenesis [232]. Exposure to IL-1α and TNF-α in synovial fluid, for example,
modulates the collagen profile of FLSs and promotes the secretion of pro-inflammatory
factors such as IL-6, IL-8, prostaglandin E2 (PGE2) and nitric oxide (NO). The expression of
pro-inflammatory factors initiates the expression of MMPs and proinflammatory genes by
both fibroblasts and chondrocytes, leading to cartilage degeneration [233]. Furthermore,
extracellular vesicles derived from the synovial membrane activate chondrocytes through
the NF-κB signaling pathway. This leads to the release of proteases degrading cartilage
(MMP-9, MMP-13) and pro-inflammatory cytokines (IL-1β, IL-6, TNF-α), which are then
found in synovial fluid [234].

By reciprocity, cellular and ECM particle debris in cartilage, which is induced by
mechanical and biochemical stress, propagates DAMPs-associated low-grade inflammation
in synovial tissue. Common DAMPs such as S100A8, S100A9, and S100A12 upregulate
MMP-1, MMP-3, MMP-9, MMP-13, IL-6, ADAMTS-1, ADAMTS-4, ADAMTS-5, ADAMTS-
12, VEGF gene expression perpetuating cartilage degradation [235–237]. Moreover, synovial
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cells, particularly fibroblasts, can directly alternate the articular cartilage by releasing
proteases that degrade COMPs and other collagenous proteins via the Wnt/β -catenin and
RUNX pathways. Furthermore, M1-polarized synovial macrophages from an OA joint
negatively regulate cartilage regenerative capacity [238].

Together, altered cellular and molecular communications between the synovial mem-
brane and articular cartilage may serve as amplifiers for the development of OA.

4.2. Impaired Osteochondral Communication during the Development of OA

The deterioration of subchondral bone predisposes to an abnormal distribution of me-
chanical forces transferred to the joint and precedes the breakdown of cartilage [89,239–242].
Prior subchondral bone damage increases the risk for cartilage loss within the same anatom-
ical region of a knee joint by 7.5 times [243]. OA affects articular cartilage and subchondral
bone as functional units [242]. Alterations in the osteochondral junction occur early in
the disease course. They underline the bone–cartilage crosstalk and are pivotal in OA
establishment. Pan et al. established that fluorescent dyes are actively transported from
subchondral bone to calcified articular cartilage as diffusion capacity increases during the
development of OA [71,86]. This is explained by intensive neoangiogenesis in subchondral
bone with the later invasion of blood vessels into the osteochondral junction and carti-
lage [48]. In the pre- and early stages of OA, abnormal neoangiogenesis with type H vessel
formation begins. It is supported by IL-6, IL-8, PGE2, TGF-β1, MMP-13, platelet-derived
growth factor-BB (PDGF-BB), and vascular endothelial growth factor (VEGF) [229]. In the
early stage of OA, one of the main factors for aberrant neoangiogenesis is PDGF-BB, which
is secreted by mononuclear preosteoclasts in excessive amounts and acts on endothelial
cells and pericytes in a paracrine fashion, as well as stimulating VEGF. VEGF mainly
induces neoangiogenesis in late-stage OA [244]. The extent of type H vessels exhibits a
positive association with cartilage breakdown [245]. The newly formed vasculature allows
cartilage to access bone-released mediators such as TGF-β1, IGF-1, chondrolytic enzymes,
bone marrow mononuclear cells that alter chondrocyte metabolism, the evolving calcifi-
cation of hyaline cartilage, and osteoclast recruitment, which degrades the osteochondral
junction. In turn, chondrocytes release proinflammatory cytokines, such as IL-1, which
promote RANKL expression in osteoblasts and influence osteoclastogenesis. Furthermore,
the expression of IL-6 and TNF-α induces osteoclastogenesis, which destabilizes the bone
microenvironment [89]. New vasculature is accompanied by the novel ingrowth of nerve
fibers that invade aneural cartilage tissue, causing pain [246]. This crosstalk is primarily
mechanical in late-stage OA: cartilage cannot absorb excessive mechanical stress, which
promotes abnormal load on the subchondral bone, aggravating remodeling [48].

4.3. Molecular Signaling in OA-Affected Joints

In this subsection, we have presented signaling molecules and their possible actions
established between the major joint compartments—the synovial membrane, cartilage, and
subchondral bone in OA-affected joints (Table 2).
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Table 2. The overview of signaling molecules produced by cells in the major joint compartments of
OA-affected joint.

Chemical
Messenger

Signaling
Factor Cells Effect References

Cytokine IL-1β 1

Synovial
macrophages and

fibroblasts,
chondrocytes,

osteoblasts

Induces cartilage degradation and inhibits its repair abilities
Stimulates production of MMPs (MMP-1, 3, 9, 13),
ADAMTSs 4, 5 by chondrocytes
Suppresses the synthesis of collagen type II and aggrecan
Enhances chondrocytes’ pro-inflammatory response,
hypertrophy, dedifferentiation, and apoptosis, inhibits
chondrogenesis
Stimulates synovial inflammation and the production of
pro-inflammatory cytokines (TNF-α, IL-6, IL-8, IL-17,
CCL5), mediators (NO, COX-1), prostaglandins (PGE2)
Induces the formation of pannus-like tissue, fibrosis, and
production of pro-fibrotic factors (PDGF, TGF-β)

[126,133,212,247–249]

Cytokine IL-6

Synovial
macrophages and

fibroblasts,
chondrocytes,

osteoblasts

Promotes osteoclast formation and subchondral bone
resorption
Increases production of MMPs (MMP-1, 3, 13) and
ADAMTS (ADAMTS-4) by chondrocytes
Induces catabolic changes in chondrocytes, as well as
promotes cellular senescence
Shows synergic action with IL-1β and TNF-α, sustaining
articular cartilage degradation and synovial inflammation

[192,250]

Cytokine IL-17
CD4+ T cells,

macrophages, NK
cells, mast cells

Induces cartilage degradation by upregulating catabolic
factors (MMP-1, 3, 13; ADAMTS) and downregulating
anabolic factors (SOX-9, COL2A1) in chondrocytes
Promotes recruitment of inflammatory cells and release of
pro-inflammatory mediators, induces angiogenesis
Induces RANKL expression and osteoclastogenesis

[251,252]

Cytokine IL-18

Synovial
macrophages,

fibroblasts,
Chondrocytes, and

osteoblasts

Promotes articular cartilage degradation by upregulating
MMP-1, 3, 13 and suppressing aggrecan synthesis
Stimulates pro-inflammatory conditions by induction of
cytokines synthesis through NF-κB and MAPK signaling
pathways
Stimulates both bone resorption and osteophyte formation
Enhances gene expression for the synthesis of IL-6, TNF-α

[232,253,254]

Cytokine TNF-α 2

Synovial macrophages
and

fibroblasts,
chondrocytes,

osteoblasts

Levels of expression are associated with radiographic OA
cartilage loss
Shows action synergism with IL-1β
Stimulates MMP and ADAMTS production by
chondrocytes; inhibits synthesis of collagen type II and
aggrecan
Inhibits chondrocyte differentiation by suppressing the
expression of SOX-9, and induces apoptosis
Promotes pro-inflammatory signaling pathways in
synoviocytes and chondrocytes, stimulating the release of
IL-1β, IL-6, IL-8, IL-10
Leads to neuronal sensitization, predisposing to the
development of pain in OA
Promotes angiogenesis and aberrant bone formation in
subchondral bone by recruiting mesenchymal stem cells

[110,134,248,253,255–
257]

Enzyme MMPs 3

Chondrocytes,
synovial

macrophages, and
fibroblasts

MMP-1 degrades collagen types I, II, III, and aggrecan of
articular cartilage
MMP-3 cleaves collagen types II, IV, IX, X, XI, and aggrecan;
activates other MMPs (MMP-1, 7, 9)
MMP-9 cleaves non-collagenous matric components
MMP-13 levels correlate with hypertrophic chondrocytes in
early stage OA; with OA severity and articular cartilage
deterioration, as well as NF-κB expression; the enzyme
exhibits higher activity for collagen type II cleavage and
degrades aggrecan; it is associated with synovial membrane
hyperplasia and cellular senescence

[88,133,249]
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Table 2. Cont.

Chemical
Messenger

Signaling
Factor Cells Effect References

Enzyme ADAMTSs 4

Chondrocytes,
synovial fibroblasts,

and
macrophages

ADAMTS-4, 5 are induced by IL-1β, TNF-α in chondrocytes
and promote cleavage of aggrecan [206]

Transcription
factor NF-κB 5 All joint cells

Acts alone or in synergy with other signaling pathways
Inhibits anabolic functions of chondrocytes
Triggers chondrocyte hypertrophy, apoptosis, catabolic
functions (MMP, ADAMTS, NO, PGE2, COX2 production),
production of pro-inflammatory cytokines (IL-1β, TNF-α, IL-6,
IL-8) by chondrocytes, which augment the action of NF-κB
Augments activation of other transcription factors such as ELF3,
and RUNX2, that stimulate MMP13 and cartilage degradation
In synovial membrane promotes inflammation, angiogenesis,
production of cytokines (IL-1β, TNF-α, IL-6), enzymes (MMP-1,
MMP-13, ADAMTS-4, ADAMTS-5), VEGF
In subchondral bone promotes resorption

[258–260]

Transcription
factor SOX-9 6 All joint cells

Expression is downregulated in OA-affected joint
Downregulation results in calcified cartilage and osteophyte
formation

[110]

Growth
factor TGF-β 7

Chondrocytes,
osteoblasts,

osteoclasts, synovial
fibroblasts, and
macrophages

Leads to the osteoid formation and bone sclerosis
Leads to cartilage damage and angiogenesis [113]

1 IL—interleukin; 2 TNF-α—tumor necrosis factor-alpha; 3 MMP—matrix metalloproteinase; 4 ADAMTS—a
disintegrin and metalloproteinase with thrombospondin motifs; 5 NF-κB—nuclear factor kappa B; 6 SOX-9—SRY-
box transcription factor 9; 7 TGF-β—transforming growth factor-beta.

5. Conclusions and Future Directions

Evidence from many studies on OA shows that the exact causes and effects of the
disease are still not clear. Understanding the possible relationship between etiologic
factors and the phenotyping of OA based on a synergy of clinical, morphological, and
molecular detection methods remains one of the most challenging goals for future studies.
Both the “chondrosynovial unit” and the “osteochondral unit” are essentially linked by
synovial fluid; therefore, synovial fluid can be the source of important information that can
be provided to assist in the creation of a personalized treatment strategy for patients. In
addition, future work is needed to create a complex overview of all three joint compartments
by confirming the sub-phenotypes of cells and understanding the collaboration between
them at the microstructural and molecular levels. The creation of new therapeutics that
alter disease-associated joint remodeling before major degeneration takes place, as well as
the early identification of those who are at risk of developing OA, are two critical areas for
directing future research. By achieving these two goals, we might be able to reduce the cost
of OA in our society and improve the quality of life for our aging population.
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