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Abstract: The wide diversity of microbiota at the genera and species levels across sites and individuals
is related to various causes and the observed differences between individuals. Efforts are underway
to further understand and characterize the human-associated microbiota and its microbiome. Using
16S rDNA as a genetic marker for bacterial identification improved the detection and profiling of
qualitative and quantitative changes within a bacterial population. In this light, this review provides a
comprehensive overview of the basic concepts and clinical applications of the respiratory microbiome,
alongside an in-depth explanation of the molecular targets and the potential relationship between
the respiratory microbiome and respiratory disease pathogenesis. The paucity of robust evidence
supporting the correlation between the respiratory microbiome and disease pathogenesis is currently
the main challenge for not considering the microbiome as a novel druggable target for therapeutic
intervention. Therefore, further studies are needed, especially prospective studies, to identify other
drivers of microbiome diversity and to better understand the changes in the lung microbiome along
with the potential association with disease and medications. Thus, finding a therapeutic target and
unfolding its clinical significance would be crucial.

Keywords: diagnosis; lung; microbiome; molecular; personalized medicine; precision medicine;
pulmonary medicine; respiratory diseases; therapeutic targets; treatment

1. Introduction

The gut is not the only microbial ecosystem in the human body; the skin, urogenital
tract, and upper respiratory tract (URT) have essential and complex microbial communi-
ties. Efforts are underway to further understand and characterize the human-associated
microbiota and its microbiome. However, the human microbiome is not only comprised of
bacteria, but studies also investigate the metagenomics of both viruses and fungi (termed
virome(s) and mycobiome(s), respectively) in human hosts. The wide diversity of nor-
mal flora at genera and species levels across sites and among individuals is attributed to
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numerous factors, including (but not limited to) genetic background, diet, ethnicity, race,
geographical location, and age [1–6].

It is prominent that these microbial communities and their metabolites support nu-
merous critical biological processes in the host organism (immune regulation, metabolism,
brain function, medication response, and so forth), contributing either to health or illness
under eubiosis or dysbiosis, respectively. Dysbiosis is also known as the imbalance of
microbial diversity between beneficial and harmful pathogenic microbes or disrupting the
"normal" abundance of specific commensal microorganisms. Dysbiosis has been linked
to various human illnesses, including respiratory diseases. However, in most instances,
it remains debatable whether the observed dysbiosis is primary or subsequent to illness
development [7,8].

Molecular platforms have significantly prompted the investigations of the micro-
biome’s role in health and disease, particularly polymerase chain reaction (PCR) and
sequencing (both population and next-generation sequencing).

Real-time PCR is a highly sensitive method for numerous clinical and environmental
applications, including detecting and quantifying viruses, bacteria, fungi, and protozoa.
In addition, the high sensitivity confers an ability for researchers to interrogate disease
progression and the efficiency of antimicrobial treatment via monitoring changes in mi-
crobial load in active infections. Reverse-transcriptase quantitative PCR (RT-qPCR) is an
RNA-directed qPCR system used to determine gene expression levels. It has assisted in
expanding the knowledge base of pathogenesis and the role of microorganisms in chronic
health conditions, including chronic respiratory diseases.

PCR using different methods was utilized to amplify DNA and then to verify the
presence and determine (by sequencing) the nucleotide sequence of given DNA molecules
(DNA sequencing). For instance, the Sanger (population sequencing) technique dominated
DNA sequencing for many decades, offering overall higher efficiency after a series of
optimizations, in particular, switching from radioactive to dye labelling of nucleotides
and using capillary electrophoresis instead of slab gels. These original dye terminator
capillary gel electrophoresis-based sequencing methods suffered from labour-, reagent-,
and time-consuming challenges and, thus, involved major expenses. These challenges were
overcome by alternative, more efficient methods in the 2000s—the so-called next-generation
sequencing (NGS) or second-generation sequencing methods. The high-throughput ca-
pabilities and lower costs of NGS platforms facilitate a greater depth of coverage and
detection of low-level taxonomic groups and alleles, establishing them as the preferred
option for 16S-based community analysis, variant analysis, and whole-genome sequencing
(WGS) including complex microbial community studies.

Using 16S rDNA as a genetic marker for bacterial identification improved the detection
and profiling of the qualitative and quantitative changes within a bacterial population. It
is reported that the recognized bacterial species increased by fivefold over three decades
(1980–2007). This shows that the 16S gene fits the key requirements for conducing phyloge-
netic analysis in prokaryotes and is of great value in measuring and evaluating bacterial
diversity and characterizing the phylogenetic relationship in ecological studies. On the
other hand, the bacterial identification role of the 16S rDNA has some limitations, such
as the conserved regions of 16S rDNA do not have 100% bacterial coverage, and there is
considerable variation in their coverage range. The 16S rDNA and the advanced NGS
have facilitated billions of “unclassified” and “environmental” partial and fully sequenced
SSU-rRNA genes organized in databases and different programs [9–14].

The majority of the studies compare the microbial structure between groups of pa-
tients with different severity, clinical features, or inflammatory background versus healthy
controls using specific metrics, primarily alpha diversity (a measure of species richness
and evenness) and beta diversity (a measure of dissimilarity between different communi-
ties/samples). Typical examined variables include the total bacterial abundance (bacterial
burden in samples), the microbial richness (number of bacterial species in a community),
the microbial evenness (level at which the species within a studied community are evenly
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distributed), and the relative abundance and predominance of specific bacteria at the family,
genus, or species level.

Several studies showed that the lung microbiome is affected during both acute and
chronic respiratory diseases, resulting in dramatic changes in microbiome composition [15–18]
and bacterial load [19]. In addition, diseases, cigarette and pipe smoking, or exposure to to-
bacco have been shown to affect the respiratory microbiome [20,21], including viruses [22].

The respiratory microbiome will become of urgent relevance as a novel target for
therapeutic intervention once its role in the pathophysiology of illness is established. Probi-
otics (external microbes administered for health), prebiotics (nonabsorbed molecules that
promote specific bacterial growth), antibiotics, and quorum-sensing molecule inhibitors are
all examples of ways in which the microbiome of the lungs could be manipulated to correct
dysbiosis and restore “healthy” microbial communities. It is considered that variations
in the composition of the microbiota contribute to the vast spectrum of illness incidence
and manifestation, which may provide an opportunity for therapeutic manipulation and
precision medicine [23,24].

This review consists of two main sections: first, molecular accounting and the profiling
of microbial communities, and second, the microbial community characterization with
clinical applications. Each section is divided into different headings. Following these
two sections, challenges and future directions are included.

2. Molecular Accounting and Profiling of Microbial Communities
2.1. 16S rRNA Gene: Advantages and Disadvantages

Profiling bacteria involves keeping track of qualitative and quantitative changes in
a bacterial population, requiring a target molecule that is highly stable throughout the
bacterial kingdom and has enough variation to allow change detection. The 16S rDNA,
which codes for the small subunit (SSU) rRNA, fulfils the remit. It is the most used genetic
marker for bacterial identification, enabling significant (456%) growth from 1980 to 2007
in recognized bacterial species, growing the number of species from 1791 to 8168 [9]. The
16S rDNA gene has proven beneficial in measuring and evaluating bacterial diversity and
characterizing the phylogenetic relationship in ecological studies [10].

Fitting all of the key requirements for conducing phylogenetic analysis in prokaryotes,
the 16S gene, since it is a component of the cellular translational protein synthesis appa-
ratus, is ordinarily found in all bacteria [11]. Additionally, since the 16S gene codes for a
life-essential cellular function, as an informational gene, the majority of 16S regions are
likely resistant to horizontal gene transfer events, which may disrupt the structural and
functional integrity of the gene, as they may convey a disadvantage to the bacteria [12–14].
Furthermore, the slow evolutionary rate and functional restriction on 16S rRNA domains
result in large conserved stretches interspersed with variable regions, thus enabling com-
parative analysis due to the wide phylogenetic range [14]. Lastly, as a gene for PCR, cloning,
and sequence analysis, the 1540 base pair (bp) 16S rDNA is a suitable size [9].

Primers and hybridization probes are designed from the areas across the nine hyper-
variable (V1–V9) regions that show wide sequence variation across bacterial groups [25]
and, thus, enable the characterization of varying levels of taxonomic specificity [26–28].
The conserved regions, which border the hypervariable sequences, are useful for primer
design for monitoring and profiling mixed populations of bacteria [28–33].

Universal primers, which target the broad range of conserved regions of 16S rDNA,
do not have 100% bacterial coverage, and there is considerable variation in their coverage
range [34]. At the species level among bacterial groups, the copy number of the 16S gene
varies between 1 and 15, which is a potential major drawback [35–37]. Copy number
variation is present even at the strain level of many species of bacteria [10]. This results
in the potential over- or underestimation of the genetic content and provides a challenge
when enumerating bacteria, specifically in mixed populations. Similarly, this methodology
can favour a high copy number of bacteria in bacterial community studies by skewing the
results. Within this marker-gene-based study, the intragenomic heterogeneity in the 16S
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rDNA has added difficulties that have generated bias during bacterial group composition
and in phylogenetic resolution at both species and genus levels [9,10,36,38].

2.2. 16S Gene-Based Databases

Growing the SSU-rRNA sequence database and contributing to the on-going identifica-
tions of novel bacteria have been possible due to the culture-independent PCR amplification
and sequencing methodologies [39,40]. Next-generation sequencing (NGS) has facilitated
the addition of billions of “unclassified” and “environmental” partial and fully sequenced
SSU-rRNA genes to the most extensive databank of nucleotide sequences, GenBank [41].

In addition, there are various rRNA-sequence-based databases and programs that are
dedicated to designing ecological study solutions. Examples of these are:

• The “Ribosomal Database Project” (RDP; http://rdp.cme.msu.edu/ (accessed on
1 February 2021)), which holds 2,809,406 SSU rRNA gene sequences and descriptions
that are associated with bacterial and archaeal domain organisms [39];

• The SILVA SSU-rRNA database (http://www.arb-silva.de (accessed on 1 February
2021)) [42,43] which holds a collection of 3,194,778 SSU and 288,717 LSU rRNA
gene sequences;

• The Greengenes databank (http://greengenes.lbl.gov (accessed on 1 February 2021))
which holds an ordered, taxonomically classified list of 16S rRNA gene sequences [40],
accessible at http://rrndb.cme.msu.edu (accessed on 1 February 2021) [44]; the rrndb
database contains data on the number of rRNA operons in prokaryotic genomes.

This work has led to the growth of 11 bacterial phyla [14] to 52 phyla, with most of these
divisions being uncultured organisms [45]. It is clear, therefore, that SSU-rRNA is a critical
“ecological marker” in microbial studies as an adjunct to its role as a phylogenetic marker.

2.3. Quantification of Microbial Community
2.3.1. Difficulties of Quantitative Analysis in Traditional PCR

While polymerase chain reaction (PCR) is a highly sensitive detection method, it is
unreliable for determining differences in tested sample concentrations from varying time
points as the pathogen load increases due to its proliferation during an active infection. Due
to the specific methodology involving a plateau phase, standard PCR does not differentiate
between different quantities of starting templates and ultimately produces a similar ampli-
fied product [46,47]. Moreover, visualization of the product demands DNA electrophoresis
on agarose gel, which is a time-consuming methodology with poor resolution [48].

2.3.2. Real-Time Quantitative PCR

Quantitative PCR (qPCR) is a DNA-directed real-time PCR method that has enabled
the enumeration and classification of specific and diverse microbial communities. Reverse-
transcriptase qualitative PCR (RT-qPCR) is an RNA-directed qPCR system used to deter-
mine gene expression levels [49].

The amount of DNA that may be detected during the log phase of a polymerase
chain reaction is assumed to be proportional to the amount of DNA that was generated
at the beginning of the PCR amplification cycle [50]. Consequently, DNA is measured by
production and determination of a fluorescent signal that is directly proportional to the yield
of amplified PCR product in every cycle. Detection occurs by adding fluorescent dyes that
bind double-stranded DNA (dsDNA) or fluorescent oligonucleotide probe chemistry [51,52].
Real-time PCR facilitates the real-time monitoring of the amplified product, eradicating
the need for prolonged, intensive post-PCR analysis, and enabling rapid, high-throughput
assays [50,52]. Supplementary Figure S1 shows an example qPCR amplification curve. A
positive amplification reaction plotted on a linear fluorescence scale produces a three-phase
sigmoidal curve.

The curve phases are: (i) The linear-ground phase, where any amplification is un-
detectable against the fluorescent assay background noise, which is considered the assay
baseline [53,54]. (ii) The log-linear phase, where the fluorescent product is measurable and

http://rdp.cme.msu.edu/
http://www.arb-silva.de
http://greengenes.lbl.gov
http://rrndb.cme.msu.edu
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accrues exponentially with every PCR cycle. The fluorescence data produced in this phase are
critical for quantitative analysis [53–55]. Plotting these data on a log scale produces a linear
graph for the PCR product. (iii) The plateau phase, due to the depletion of assay components
and the consequent accumulation of PCR product, in this phase, the DNA concentration
reaches a plateau and no further increase is detected [54] (Supplementary data).

2.3.3. Mathematics of the Absolute Quantification

Equation (1A) defines the numerical basis for quantifying the PCR reaction, where
Nc is the number of amplicons, N0 is the starting number of target molecules, E is the
fractional amplification efficiency, and C is the number of thermos-cycles. Reorganizing
this equation to the form of Equation (1C) describes the mathematical basis of qPCR [55]. In
brief, amplicon molecule production per cycle depends on the number of starting molecules
and is directly proportional to the amplification efficiency.

Equation (1). Mathematical principle of PCR

Nc = N0 · (E + 1)C (1A)

E = Nc+1/Nc (1B)

N0 = Nc/(E + 1)c (1C)

Introducing a standard comparison point, the Cycle-threshold (Ct), for separate ampli-
fication reactions, Higuchi et al. delivered a consistent, streamlined method using DNA
fluorescence to calculate the ‘Nc’ of all samples in a reaction [52]. The starting sample
nucleic acid content, which is inversely related to the detection threshold (Ct), determines
the number of amplification cycles required to reach this point. Amplification efficiency
is almost constant when it reaches its maximal during the log-linear phase; thus, the Ct is
set during this stage [53]. Using the threshold method, “Nc” is a constant, and Equation
(1C) is modified and expressed as Equation (2), where Nt is the number of amplicons at the
defined threshold.

Equation (2). Quantification of the initial target molecule by the Ct method

N0 = Nt/(E + 1)Ct (2)

Two alternative quantification approaches are possible after defining the Ct value. The
first is absolute quantification (absolute qPCR), where a standard curve is produced from
serial dilutions prepared with known quantities of target genes or cells. Standards can
originate from various sources, including pure culture genomic DNA, purified PCR prod-
uct, or target gene inserts in the plasmid [54]. Equation (2) is logarithmically transformed
to Equation (3A), which can be rearranged to fit the standard equation of a straight line
(y = mx + c), as seen in Equation (3C), where constants m (slope) = −Log(E + 1) and c
(y-intercept) = log(Nt) [55]. It follows that the amplification efficiency of absolute quantifi-
cation is the mean efficiency derived from E = 10−Slope − 1. Unknown microbial samples
are quantified by extrapolation from the standard curve. The second quantitation method
is the relative method of quantification or expression.

Equation (3). Standard curve equation for absolute quantification

Log(N0) = Log(Nt) − Log[(E + 1)Ct] (3A)

Log(N0) = Log(Nt) − Log(E + 1) · Ct (3B)

Log(N0) = −Log[(E + 1)Ct] + Log(Nt) (3C)

2.3.4. Real-Time PCR Fluorescence Chemistry

Monitoring techniques for DNA amplification during each qPCR cycle may use specific
probes or nonspecific DNA binding fluorescent systems such as SYBR Green. Available
fluorescence probes include hydrolysis probes (TaqMan), hybridization probes (FRET), and
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hairpin probes (e.g., molecular beacons and scorpion primers) [54,56]. SYBR Green qPCR
and TaqMan qPCR are two of the most frequently used qPCR assays for microbial detection
and the accounting of microbial load [57–62].

TaqMan assays use short oligonucleotides labelled with a reporter dye at the 5′-end and
a quencher molecule at the 3′-end [50]. Due to the close proximity of the dye and quencher
in the native probe, very little fluorescence is emitted; however, during the PCR reaction,
the fluorescent reporter and the quencher are separated when the oligonucleotide anneals
to the target sequence, and it is degraded by the 5′ nuclease ability of DNA polymerase.
This separation of dye and quencher enables an increase in fluorescent signal [49,50].

While probe-based assays confer more specificity than DNA-binding dye approaches,
such as SYBR green, melt curve analysis cannot be performed due to the necessary de-
naturation of the probe during amplification. Table 1 compares the relative fluorescent
chemistries of these methods.

Table 1. Comparison of SYBR Green and TaqMan qPCR chemistry.

SYBR Green qPCR TaqMan qPCR

Nonspecific binding to any dsDNA Fluorescence is produced once the probe binds to a specific
target region

Cheaper and different assays can be performed by changing the
target region and target primers

Relatively expensive and time-consuming as each target region
would require the designing of a new probe

The reversible nature of this assay allows for performing melt
curve analysis Irreversible nature, so melt curve analysis cannot be performed

Cannot perform multiplex assays It can be used to design multiplex assays

qPCR: quantitative polymerase chain reaction; dsDNA: double-stranded deoxyribonucleic acid. Adapted from [57–59].

2.3.5. Real-Time PCR Applications

Real-time PCR is highly sensitive for numerous clinical and environmental applica-
tions, including detecting and quantifying viruses, bacteria, fungi, and protozoa [56,60–62].
In addition, the high sensitivity confers an ability for researchers to interrogate disease pro-
gression and the efficiency of antimicrobial treatment via monitoring changes in microbial
load in active infections [63]. As such, qPCR has assisted in expanding the knowledge base
of pathogenesis and the role of microorganisms in chronic health conditions, including
chronic respiratory diseases.

2.4. Sequencing Techniques

DNA sequencing is the process of determining the nucleotide sequence of given DNA
molecules—from a short segment of a single molecule, such as a regulatory region or a
gene, up to collections of entire genomes.

The first DNA sequences were produced using complex methods in the 1970s. Se-
quencing the lac operator bases is an example [64]. In the 1970s, Allan Maxam, Walter
Gilbert [65], and Frederick Sanger [66] published methods that revolutionized DNA se-
quencing. Both methods improved DNA sequencing throughput. Gilbert and Maxam’s
approach, however, used dangerous substances. The Sanger method was more efficient
following improvements, including switching from radioactive to dye-labelled nucleotides
and employing capillary electrophoresis instead of slab gels. For decades, this method
dominated DNA sequencing.

Sanger’s approach was labour-, reagent-, and time-intensive as well as expensive. This
prompted the development of next-generation sequencing (NGS) or second-generation
sequencing in the 2000s. Since their launch, their efficient design, especially regarding
labour, reagents, and supplier competition, has lowered sequencing prices.

2.4.1. Sanger Sequencing

The Sanger sequencing method, also known as the “chain termination sequencing
method”, synthesizes a strand complementary to the template strand. This sequencing
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method requires DNA polymerase, a primer, and all four deoxynucleotide triphosphates
(dNTPs): deoxy-adenosine triphosphate (dATP), deoxy-guanin triphosphate (dGTP), deoxy-
thymine triphosphate (dTTP), and deoxy-cytosine triphosphate (dCTP). During strand
synthesis, DNA polymerase binds the phosphate group of the subsequent nucleotide to
the hydroxyl group on the 3′ carbon of the ribose sugar of the pre-existing nucleotide
(Figure 1 The process). This hydroxyl group is absent in di-deoxy-nucleotide triphosphates
(ddNTPs), meaning that no further elongation can occur where a ddNTP is incorporated
into the nascent DNA, resulting in fragments of various lengths with different terminal
ddNTPs. Using ddNTPs with radioactive or fluorescent labels makes it possible to visualize
the sequence on a gel [66–69].

When Sanger and his colleagues initially conducted this technique, the reaction was
divided between four vials. Four sequencing reactions were performed by adding one
variety of labelled ddNTP to each vessel. It was possible to reconstruct the DNA sequence
by visualizing the DNA fragments on a gel in which each ddNTP was run in a separate
lane. The Sanger system has evolved so that instead of using four separate vessels, a single
vessel containing the different fluorescent labels is used [70]. After denaturation, cleaning
up free nucleotides, primers, and polymerase, the DNA fragments are isolated by their size
using capillary electrophoresis. For this method, the fluorophores at the terminal position
of the fragment are initially excited by a laser and then read with a detector; the read-out is
sequential based on the order identified in the sorting step. The results are visualized in a
chromatogram using four colours (Figure 1 The molecular basics) [68].

The current preferred method of sorting molecular weight is by capillary electrophore-
sis, which has replaced gel electrophoresis [71,72].

The Sanger sequencing method has been further improved by the semiautomation
advancements of Smith et al. in the 1980s who introduced optical detection through the use
of four different colours of fluorescent labels for the different ddNTPs [70]. The combination
of this advancement with capillary electrophoresis in 1986 enabled Applied Biosystems Inc.
(now Life Technologies) to develop the ABI 370, the first ever fully automated DNA sequenc-
ing system. Throughout the 1990s, the human genome project provided an impetus for
the technology behind the Sanger sequencing method to be honed and enhanced. In 1998,
superior sequencing systems that used 96 capillary array electrophoresis were available in
the form of the ABI 3700 from Applied Biosystems Inc. and the MegaBace from Amersham
Pharmacia Biotech (now GE Healthcare Life Sciences). Amongst the advancements of the
Sanger method is the ability to sequence up to 384 parallel fragments [73,74] of 600–1000 bp
long DNA [67,75] with an accuracy exceeding 99.99% [68]. However, these 384-capillary
systems are not common, and 96-capillary systems are the sequencing workhorses capable
of sequencing about 6 Mb of DNA a day.

The most common problem for the Sanger method is sequencing errors arising from
sample contamination and natural variance introducing erroneous sequences in the ampli-
fication level (the incidence of errors in vivo is low). Amplification errors can also occur
where there are sequences that are of low complexity, such as simple repeats (variable
number tandem repeats) and homopolymers (stretches of the same nucleotide), where
polymerase is prone to slipping. At the end of long sequences, errors may often accumulate
due to lower intensities and missing termination variants. Where electrophoresis fails to
separate the fragments, base miscalls [75] occur and deletions increase with read length.
Despite these problems, following sequence end trimming, the error rate calculated as the
average over all bases of a sequence is generally very low, with an error occurring once per
10,000–100,000 nucleotides [76].
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Figure 1. Schematic representation of the Sanger sequencing process. The Sanger sequencing method uses a high-fidelity DNA-dependent polymerase to create a
single strand of DNA that is complementary to the DNA template [66,69]. The synthesis reaction commences at the 3′ end with a single primer that is complementary
to the template. Deoxynucleotide (or nucleotide) monomers, which are the building blocks of DNA, are sequentially added in a template-dependent manner. These
form phosphodiester bonds between the 3′ hydroxyl of the primer and the 5′ triphosphate of the next nucleotide to be added to the sequence. The reaction mixture
also includes A, C, G, and T di-deoxynucleotides, which mimic DNA monomers sufficiently to be incorporated into the sequence. Yet, unlike deoxynucleotides, the
absence of the critical 3′ hydroxyl means there is no binding facility for incoming nucleotides, preventing further elongation. Furthermore, a fluorescent tag is
incorporated into the di-deoxynucleotides enabling the DNA sequence to be automatically detected [66,67]. Each reaction is based on multiple copies of DNA
fragments of different lengths, but always terminating in a di-deoxynucleotide at the comparable nucleotide position of the template molecule. The automatic
process loads reaction mixtures onto sequencing machines with capillaries and uses electrophoresis to separate the DNA molecules based on their molecular
weight, which varies according to the point at which the fragments terminate. As the di-deoxynucleotides pass through the gel, the fluorescent emission is read to
determine the DNA sequence. As each of the four nucleotides fluoresces with a different colour, a four-colour chromatogram can be used to interpret the sequence.
Capillary-based automated electrophoresis forms the basis of modern-day Sanger sequencing, and the devices are able to simultaneously analyse 8–96 sequencing
reactions [67].
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In the first 50 or so bases, the sequence quality is low. This reflects the similarity of
the migration speed of unreacted primers and ddNTPs; however, the quality improves
in the following ~700 to ~900 bases. The cause for most of these sequencing errors is
the development of secondary structures that enhance the migration speed of a fragment
through the gel; this leads to insertion errors, where a nucleotide is incorporated early into
the sequence, and deletion errors, where the same nucleotide is deleted from the terminus.
Where very long sequence fragments occur, random diffusion through the gel matrix can
occur because the fragments take longer to migrate through the gel. Moreover, a difference
in the relative mass of subsequent fragments and fewer labelled fragments of a particular
size presents a challenge in differentiating between noise and signal [76]. To minimize
these problems, the read length in the Sanger method is typically 1000 b or less.

2.4.2. Next-Generation Sequencing (NGS) Technologies

Second/next-generation sequencing methods have rapidly overtaken the original dye
terminator capillary gel electrophoresis-based sequencing methods for complex microbial
community studies [77]. Replacing the conventional techniques, such as Sanger sequencing,
less than ten years after their initiation due to high-throughput capabilities and lower costs,
NGS platforms facilitate a greater depth of coverage and detection of low-level taxonomic
groups and alleles. NGS methods have been rapidly established as the preferred option for
16S-based community analysis, variant analysis, and whole-genome sequencing (WGS) [77].

Many of the major biotechnology companies have developed high-throughput se-
quencing platforms for metagenomics studies, which include 454 (Roche), Solexa (Illumina),
SOLiD (Applied Biosystems), and Ion Torrent PGM (Life Technologies). The read length
from NSG platforms is substantially shorter than those from Sanger sequencing, a con-
siderable limitation of high-throughput sequencing. The 454 partially overcomes this
issue. With its shorter run time of 10 h and higher read length (~500 bases) than many
other platforms, it has been the preferred option for many bacterial community analysis
projects [77]. However, recent improvements in the read length of the Illumina platform
(Miseq) up to 400 bp, combined with its lower cost and 10-fold higher coverage depth
compared with the 454, have seen a surge of usage for microbiome studies [78,79]. Both the
454 pyrosequencing and Illumina platforms are highly sensitive. Their use has provided an
in-depth assessment of the diversity of bacterial communities in a sample at a given time.
Indeed, sequencing samples from the lower airway of healthy individuals, a site previously
considered sterile, revealed varied microbial communities [3,33].

2.4.3. Nanopore Sequencing

Metagenomic sequencing has the potential to identify lower respiratory tract (LRT)
infections significantly more quickly than culture can; however, for this method to be
practical, methods are required to exclude the significant quantity of human DNA that is
present in these samples. This method can potentially identify LRI infections significantly
more quickly than culture can. Recently, a metagenomics method for diagnosing bacterial
LRI was introduced [80]. This novel method uses an efficient saponin-based host DNA
cleanup method and nanopore sequencing [80]. After validating the pilot method with
forty samples, the authors fine-tuned it with forty-one additional samples. In total, they
used one hundred and forty-one samples. This optimized method had a sensitivity of
96.6% and a specificity of 41.7% for identifying infections, and it could accurately detect
antibiotic-resistance genes. The levels of specificity and sensitivity have both attained
their maximal levels of 100% after the completion of pathobiont-specific gene research and
confirmatory qPCR [80]. It is possible for nanopore metagenomics to swiftly and accurately
characterize bacterial LRIs. This capability has the potential to contribute to a reduction in
the use of broad-spectrum antibiotics.

The accuracy, read length, and throughput of sequencing single-long DNA and RNA
molecules with nanopore technology have risen. These discoveries necessitated the devel-
opment of experimental and analytic methods for studying the genome, transcriptome,
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epigenome, and epi transcriptome using nanopore long reads [81]. Nanopore sequencing
is utilized for genome assembly, the detection of full-length transcripts and base modifi-
cations, as well as rapid clinical diagnostics and epidemiological surveillance [81]. Novel
nanopores, base-calling algorithms, and experimental protocols can improve data quality
and analytical procedures.

3. The Microbial Community Characterization
3.1. The Normal Human Microbiome Complexity

In a healthy human, resident microbial cells—the microbiota (the collection of microbes
that live inside and on the human body)—outnumber human cells by a factor of 10 and
together comprise the healthy human microbiome (the entire microorganisms and their
combined genetic materials exist in and on the human body). Nevertheless, both terms are
often used interchangeably [8,82–84]. The gut is not the only microbial ecosystem in the
human body; the skin, urogenital tract, and upper respiratory tract (URT) have essential
and complex microbial communities [83–85]. These groups of microorganisms and their
multiple interactions are essential for human health. So, disrupting the normal microbiota
should have substantial negative consequences for human health [82,85].

Efforts are underway to further understand and characterize the human-associated
microbiota and its microbiome. The Human Microbiome Project (HMP) of the National
Institutes of Health (NIH) was launched in 2007; this project is designed to understand
the microbial components of our genetic and metabolic landscape and their association
with our normal physiology and disease predisposition. HMP may combine medical and
environmental microbiology [84]. The lung was not included in the 2007 edition of HMP as
the scientists previously believed that the healthy human’s lung is sterile.

Most research is presently centred around bacterial diversity using culture-dependent
and -independent techniques. Several studies on bacterial diversity have been published
on the gastrointestinal tract (GIT) [1], skin [2], URT [3], and lungs [4] of individuals.

To control the microbiome heterogeneity, the NIH launched the HMP for the second
time in 2012 as a community resource program (http://commonfund.nih.gov/hmp/ (ac-
cessed on 1 March 2018)) with the aim of establishing an overview of the healthy human
microbiome at five major body sites (airways, skin, oral cavity, GIT, and vagina) [86].

Lung tissue samples of healthy individuals are estimated to contain about 103−105 bacteria
per gram of tissue [87] and about 1–10 bacterial cells per 100 human cells [88]. It has been
suggested that a healthy respiratory microbiome is determined by different factors, such as mi-
crobial immigration within the respiratory system and inhalation from the outside environment,
microbial elimination by the host immune defences and natural coughing, and finally the growth
conditions in the respiratory system, such as temperature, pH, and nutrient availability [89,90].

The human microbiome is not only comprised of bacteria. Other studies looking
at the metagenomics of virus and fungi (termed virome(s) and mycobiome(s), respec-
tively) in human hosts have also recently been published looking at both diseased and
nondiseased cohorts [5,6]. Their study is undoubtedly of great importance to better un-
derstand their effects on the host. Moreover, this knowledge is necessary to implement
personalized medicine.

Although more than 50 phyla are known, only 4 (Proteobacteria, Firmicutes, Acti-
nobacteria, and Bacteroidetes) dominate the human microbiota at various sites. At the
phylum level, the bacterial composition of the body sites tends to be consistent, but there
is wide diversity at genera and species levels across sites and among individuals [85,91].
Factors such as genetic background, diet, ethnicity, race, geographical location, and age
are considered some of the reasons for the observed interpersonal differences [92,93]. The
relative composition of microbiota found in the airways is thought to be determined by
the balance of three factors: microbial immigration into the airways; the elimination of
microbes from the airways; and its relative reproduction rates in the airways, which are
determined by the regional growth conditions [87].

http://commonfund.nih.gov/hmp/
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3.2. Polymicrobial Infections

Infection with a respiratory tract virus can make it much more likely that the host
will be colonized or infected by a second microorganism. This happens because the virus
destroys the respiratory tract’s epithelial lining, making it easier for bacteria to stick to
the lining and increasing the number of bacterial cell-surface receptors. This can lead to
bacterial super-infections. The success of antiviral treatments could affect whether or not
secondary bacterial infections happen [94,95].

Indeed, polymicrobial infections within human hosts are increasingly recognized both
in nosocomial and community settings as in the case of chronic LRT infections in cystic
fibrosis (CF) and chronic obstructive pulmonary disease (COPD). This polymicrobial nature
of the infection is supported by many studies [4,96–99]. Both in vitro and in vivo models
have shown that Streptococcus pneumoniae and Haemophilus influenzae cause an amplified
proinflammatory response in epithelial cells [100]. These bacteria are common pathogens
in COPD and may contribute to accelerated inflammation and tissue damage of heavily
colonized mucosal barriers [101,102].

The 1918–1919 Spanish flu pandemic is perhaps the best-known example of viral–
bacterial interactions in the respiratory tract. Millions of people died from secondary
bacterial pneumonia after being infected with the influenza A virus [103]. Epidemio-
logical studies reveal viral–bacterial interactions in the absence of illness. Bidirectional
interactions have been explored extensively, although mainly for respiratory viruses and
bacteria [104]. Respiratory viruses can modulate the host’s innate and adaptive immune
responses, promoting bacterial colonization and infection by different mechanisms [104].

On the other hand, respiratory bacteria can increase viral infection [104,105]. The
upregulation of adhesion receptors increases viruses’ binding to epithelial cells and am-
plifies pro-inflammatory responses [104,105]. A recent clinical investigation indicated
that nasopharyngeal colonization by S. pneumoniae and H. influenzae in newborns is re-
lated to an enhanced systemic respiratory syncytial virus (RSV)-induced host immune
response [106]. In contrast, certain bacterial species in the respiratory microbiome may
hinder viral infections [104].

A recent study found a large overlap between species-specific bacteriophages and
bacterial community diversity in the lungs, suggesting that microbiota and bacteriophages
interact in the healthy respiratory tract [107].

In health, mechanistic insight regarding fungi, bacteria, and the host is uncommon.
S. aureus, Streptococcus spp., and P. aeruginosa biofilms damage respiratory epithelia, allow-
ing fungal biofilms to form [108,109]. P. aeruginosa stimulates Aspergillus fumigatus by
detecting volatile metabolites [110]. The specific role and scope of how fungi contribute to
a healthy respiratory tract have not been researched [111].

Although studies highlight the importance of the respiratory virome and mycobiome
in respiratory health, their specific contributions to health are unknown compared to the
bacterial microbiome [104].

3.3. The Role of the Initial Human Microbial Colonization and Healthy Lung Microbiome

Foetal lungs, such as the foetal intestines, are presumed to be sterile, and an infant’s
lungs likely acquire microbial communities after birth. In the immediate postdelivery
period, infant mucosal surfaces are quickly populated by microbes derived from the mother
(vaginal and intestinal microbiota in cases of vaginal delivery, whereas skin microbiota
in cases of caesarean section) [112]. The infant microbiota is initially uniform across
various body sites, differentiating into site-specific communities in the subsequent days
and weeks [113].

Epidemiological studies indicate that a diverse microbial ecology in early life protects
against the development of several chronic inflammatory respiratory illnesses [114,115].
The 1990 “hygiene hypothesis” proposes that early-life contact with external bacteria is
important for the appropriate colonization of body habitats (primarily the gut, respiratory
tract, skin, genital tract, and so forth). This is critical for proper immune function, particu-
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larly tolerance and competitive protection against pathogens [116,117]. The time and style
of childbirth, maternal age, food, hospitalization, weight, smoking status, socioeconomic
level, breastfeeding, and antibiotic usage all impact the baby microbiome, stabilizing many
microbial species at two years old [118]. In asthma, the positive or negative interplay
between the external microbiome and mucosal respiratory tract microbiome influences the
airways’ physiological homeostasis. High microbial diversity is linked to decreased asthma
risk, especially in farm-exposed children [119]. During infancy, viral respiratory infections
with rhinovirus and respiratory syncytial virus drive life-long wheezing and bronchioli-
tis that commonly precedes full-blown asthma [120]. A recent study of the exogenous
mycobiome and bacteriome in severe asthmatic patients’ indoor dust found substantial
connections, with a more medically relevant microbiome and higher mycobiome diversity
linked with various inflammatory asthma subtypes [121].

Culture-independent techniques have shown that the lungs are not sterile in healthy
individuals. Hilty and coworkers’ study was the first to detect microbiome in the lung
by utilizing microbiome sequencing in 2010 [4]. Similarly, Erb-Downward and coworkers
confirmed the microbiome in bronchoalveolar lavage (BAL) specimens from healthy and
COPD individuals.

Active cigarette smoking appears to alter the microbial constitution of the upper
airways [122]; its effects on the lung microbiome are not entirely understood. Studies de-
scribing the lung microbiome of control patients have been limited by small size and lack of
longitudinal studies [3,4,88,96,123–125], and serial specimens from the same control subject
have not been reported. The Lung human immunodeficiency virus (HIV) Microbiome
Project (LHMP), an ongoing, multicentre NIH project intended to complement the HMP,
aims to address this issue by studying the lung microbiome of a large number of subjects,
with and without HIV, free of known lung pathology, and at multiple time points.

It was suggested that the healthy respiratory microbiome differs from that associated
with some respiratory diseases, including COPD [4] and CF [126]. Therefore, the relation-
ship between the lung microbiome and COPD pathogenesis is a crucial area currently being
investigated. Table 2 shows the most common phyla and genera detected in the human
lung microbiome studies.

Table 2. Taxonomy of the most common phyla and genera described in the human lung micro-
biome studies.

Phylum Genus

Actinobacteria Corynebacterium
Gardnerella

Bacteroidetes Prevotella

Firmicutes
Staphylococcus
Streptococcus

Veillonella

Fusobacteria Fusobacterium

Proteobacteria

Campylobacter
Haemophillus

Pasteurella
Pseudomonas

Moraxella
Neisseria

3.4. Respiratory Samples and Microbiome Analysis

Erb-Downward and coworkers confirmed the microbiome in BAL specimens from
healthy and COPD individuals. They have been shown that in the healthy lung, Pseudomonas,
Streptococcus, Prevotella, Fusobacteria, and Veillonella predominate, Haemophillus, and Moraxella
have also been detected [96]. Erb-Downward and coworkers have demonstrated that in the
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healthy smoker, the bacterial microbiome in the lung differs from that of the nasopharynx
and oral cavity. The two aforementioned studies did not concern with URT as a confounder
for contamination. In contrast, Charlson and coworkers performed a microbiome study
comparing the URT and LRT to limit the possible contamination. Similarly, they detected
microbiomes at the LRT but at a lower level than the URT and previous studies [3].

A similarity between the lung and oral microbiome in healthy individuals was ob-
served [127]. Additionally, a multicentre study showed a similarity of the lung and oral
microbiome in patients with and without HIV infection [128]. A similar finding was ob-
served between smokers and nonsmokers [129]. Moreover, the lung microbiome resembles
the oropharynx rather than the nose [89,95].

Numerous published studies have characterized the lung microbiome of healthy adult
subjects using BAL samples [3,4,88,96,123–125]. The most common phyla consistently
observed have been Bacteroides, Firmicutes, and Proteobacteria. Described phyla in BAL
samples are similar to those seen in concurrently collected upper airway (oropharynx and
nasal) samples but differ in relative abundance. Prominent genera among healthy controls,
using BAL samples, are Prevotella, Veillonella, Streptococcus, and Pseudomonas.

Because it is well documented that healthy or asymptomatic individuals microaspirate
pharyngeal contents [4,90,130,131], many molecular studies have found that the pulmonary
microbial communities are more similar to those of the oropharynx than the nasophar-
ynx [107,129,132]. Some studies have shown that the nasal microbiome does not affect
the pulmonary communities in healthy individuals and is more like the microbiome of
the skin [127,132]. Other research [133] found that sampling the lungs intranasally with a
bronchoscope did not affect the contamination of samples from the URT. Accordingly, it is
thought that in health status, the lung microbiome obtains most of its microbiome from the
oral cavity [87].

3.5. The Respiratory Microbiome in Asthma

Asthma is a chronic inflammatory illness characterized by a variety of phenotypes
that causes immunological and respiratory dysfunction. Numerous research published in
the previous decade has investigated the various levels of asthma complexity, emphasizing
that asthma is more of an umbrella word that encompasses multiple phenotypes and
pathophysiological pathways [134,135].

Precision medicine applies to the heterogeneous nature of asthma [136–139]. Research
utilizing modern systems biology approaches that combine individuals’ pathophysiological
traits with high throughput profiling of molecular biomarkers in large, well-characterized
cohorts of asthmatics has significantly increased our capacity to better comprehend asthma
complexity and develop more targeted strategies for disease diagnosis, therapy, and mon-
itoring [140,141]. Along the same line, much effort has been devoted to examining the
microbiota in the gut and upper/lower airways of patients and its potential association
with the different subtypes of asthma [7].

Asthmatics’ microbiome and its relationships to environmental stimuli, disease sub-
types, and medication are the subjects of a substantial amount of research, as all of these
factors are regarded as crucial for advancing our understanding of asthma in the context of
precision medicine [142–144].

Several consistent findings have generally acknowledged the crucial role of the micro-
biome in atopy and asthma [145,146].

In addition to environmental bacteria, research has highlighted the importance of vari-
ous host exposome characteristics (drugs, cigarette smoking, pollution, allergens, nutrition,
and so forth) in asthma [147]. Despite the lack of clear mechanistic evidence regarding
how exposome affects asthma, numerous studies have recently demonstrated either direct
or indirect contributions to airway microbiome restructuring by either harmful or benefi-
cial stimuli, with subsequent effects on lung functionality and host immune training and
modulation [144].
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3.6. Airway Microbiome Correlations with Asthma Subtypes

As shown in Table 3, several studies presenting specific clinical characteristics of
asthmatic patients have demonstrated unique relationships between airway microbial
variety and various asthma phenotypes and endotypes [15,148–159]. Most of these studies
compare the microbial structure between groups of patients with different severity, clinical
features, or inflammatory background versus healthy controls using specific metrics.

Table 3. Summary of the published studies related to the respiratory microbiome in asthma patients.

Year Study Population Phenotype/
Endotype Sample Type Main Findings Reference

2014 28 severe asthmatics Neutrophilic Sputum

Increase in the abundance of
pathogenic bacterial species

(Streptococcus sp.,
Haemophilus sp.,

Moraxella catarrhalis)

[148]

2015 40 severe asthmatics Eosinophils Bronchial
(Brushings)

Negative correlation with relative
abundance of Proteobacteria

(Moraxellaceae,
Helicobacteraceae families),

positive correlation with
Actinobacteria
(Streptomyces

and Propionicimonas species)

[15]

2016 30 asthmatics Neutrophilic vs.
non-neutrophilic Sputum

Decreased evenness and richness
of bacterial species, Increased

Proteobacteria
(Haemophilus influenzae).

Decreased Actinobacteria,
Firmicutes

[150]

Eosinophilic
Increased abundance of

Actinobacteria
(Tropheryma whipplei)

2016
26 severe asthmatics

18 nonsevere asthmatics
12 healthy controls

Eosinophils Sputum Increased Firmicutes
(Streptococcus sp.) [151]

2017 23 steroid-free asthmatics
10 healthy controls

Eosinophilic
asthmatics vs.

healthy controls
BAL

Increased Neisseria, Bacteroides,
and Rothia.

Decreased Sphingomonas,
Halomonas, and Aeribacillus

[152]

Neutrophilic
asthmatics vs.

healthy controls

Differences in Flavobacterium,
Phenylobacterium,

Brevundimonas, Bradyrhizobium,
Sediminibacterium,

and Gemella

2017
25 severe asthmatics

24 nonsevere asthmatics
15 healthy controls

Eosinophilic vs.
noneosinophilic Sputum

Increased Actinomycetaceae,
Enterobacteriaceae

family members
[153]

2017

42 atopic asthmatics
21 atopic nonasthmatics

21 nonatopic healthy
Controls

T2-high vs.
non-Th2

Bronchial
(Brushings)
Oral wash

Decreased bronchial bacterial
burden [149]

2018
20 neutrophilic asthmatics

34 non-neutrophilic
asthmatics

Neutrophilic
versus

non-neutrophilic
Sputum

Increased total bacterial burden,
decreased Firmicutes,

Actinobacteria, Saccharibacteria,
increased Bacteroidetes phyla

(Porphyromonas spp.,
Capnocytophaga spp.),

Proteobacteria
(Haemophilus spp., Moraxella spp.)

[154]
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Table 3. Cont.

Year Study Population Phenotype/
Endotype Sample Type Main Findings Reference

2018

84 eosinophilic asthmatics
14 neutrophilic asthmatics

60 paucigranulocytic
Asthmatics

Nine mixed neutrophilic
and

eosinophilic asthmatics

Neutrophilic
asthmatics

vs. all other
endotypes

Sputum

Decreased diversity, richness, and
evenness,

increased high relative abundance
in pathogenic taxa

(Haemophilus and Moraxella),
decreased Streptococcus, Gemella,

and Porphyromonas

[155]

Eosinophilic vs.
other endotypes

Decreased Haemophilus, Gemella,
Rothia, and Porphyromonas

2018 32 asthmatics
73 COPD patients

Neutrophilic
asthmatics Sputum Increased Proteobacteria phyla [156]

Eosinophilic
asthmatics Increased Bacteroidetes

2019

10 eosinophilic asthmatics
14 noneosinophilic

asthmatics
12 healthy controls

Eosinophilic vs.
noneosinophilic

asthmatics
Sputum

Increased richness, evenness, and
diversity, and increased
Glaciecola, Helicobacter.

Decreased Scardovia,
Bifidobacterium, Desulfobulbus,

and Deinococcus

[157]

2020

32 atopic asthmatics
18 atopic nonasthmatics16

nonatopic healthy
controls

T2-high vs.
non-Th2

Sputum
BAL

Oral wash

Decreased Sputum bacterial
burden [158]

2021 100 severe asthmatics

High neutrophilic
vs. low

neutrophilic
asthmatics

Sputum

Decreased richness and diversity,
increased relative abundance of

pathogenic species
(Haemophilus influenzae,

Moraxella catarrhalis, and
Streptococcus pseudopneumoniae),

and decreased Veillonella,
Prevotella, and Neisseria

[159]

The dominance of Moraxella catarrhalis or species belonging to the Haemophilus and
Streptococcus genera was associated with neutrophilic airway inflammation in a study of
the microbiome of sputum samples from 28 individuals with severe asthma [148]. Upon
analysing the bronchial airway microbiome of 40 severe asthmatic patients, Huang et al. de-
termined that there was a negative correlation between bronchial eosinophil numbers and
the relative abundance of certain bacteria belonging to the Proteobacteria phyla (Moraxel-
laceae and Helicobacteraceae family members), as well as a positive correlation between
bronchial eosinophil numbers and proportions of Streptomyces [15]. Comparing the
lower airway microbiome of severe and nonsevere asthmatics with that of healthy con-
trols, Zhang et al. discovered that Firmicutes, specifically Streptococcus spp., were more
prevalent in severe asthmatics than in controls, correlated with recent asthma onset and
sputum eosinophilia [151].

Sverrild et al. investigated the BAL microbiota profile of 23 asthmatic patients.
This study’s primary finding was that the relative abundance of particular bacterial
genera (Aeribacillus, Halomonas, Neisseria, Nesterenkonia, Rothia, Shewanella, Sphingomonas,
Actinomyces, Bacteroides, and Virgibacillus) varied significantly between eosinophilic asth-
matics and healthy controls. The relative abundance of particular bacteria (Flavobacterium,
Phenylobacterium, Brevundimonas, Bradyrhizobium, Sediminibacterium, and Gemella)
also differed significantly between neutrophilic asthmatics and healthy controls [152]. In
another study involving patients with severe (n = 25) and nonsevere (n = 24) asthma,
Actinomycetaceae and Enterobacteriaceae family members were enriched in eosinophilic
versus noneosinophilic asthma patients [153].

In two independent investigations comparing the airway microbiome of neutrophilic
and non-neutrophilic asthmatic patients, the proportion of Actinobacteria and Firmicutes
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was much lower in neutrophilic asthmatics. In contrast, the fraction of Haemophilus influenzae
was significantly higher [150,154]. In the study by Taylor et al., among 167 asthma patients
with neutrophilic, eosinophilic, paucigranulocytic, or mixed granulocytic inflammatory en-
dotypes, the application of principal coordinates analysis (PCoA) distinguished neutrophilic
samples from the rest endotypes based on their microbiome composition. Between neu-
trophilic and eosinophilic asthma patients, the compositional changes were most pronounced.
Neutrophilic patients had the lowest variety, richness, and evenness levels in their sputum
microbial composition. Again, significant variations in the airway bacterial taxa between
endotypes were detected, with neutrophilic asthma demonstrating the enrichment of harm-
ful species. Neutrophilic patients were found to have an abundance of Haemophilus and
Moraxella, whereas a negative correlation was found between eosinophilic percentage and
Haemophilus genera. There was a strong association between Streptococcus, Neisseria, Gemella
genera, and eosinophilia. However, the abundance of Gemella, Rothia, and Porphyromonas
in neutrophilic decreased relative to the other investigated inflammatory endotypes [155].

Ghebre et al. analysed the microbiome profiles of asthma patients during exacerba-
tions, resulting in biological clusters containing patients with varied bacterial compositions
associated with various inflammatory endotypes. Asthma patients experiencing exacer-
bations with elevated blood and sputum neutrophils were classified into a cluster with a
high concentration of Proteobacteria. In contrast, asthma patients with elevated blood and
sputum eosinophils were associated with greater Bacteroidetes [156].

A Northeast China study involving patients with mild to moderate asthma revealed
a significant reduction in microbial diversity, richness, and evenness in the sputum of
noneosinophilic asthmatics compared to eosinophilic asthmatics. In addition, a different
microbial taxonomic profile distinguished the two patient groups. Specifically, Glaciecola
and Helicobacter were more prevalent than Deinococcus, Scardovia, Bifidobacterium, and
Desulfobulbus in eosinophilic asthmatics compared to noneosinophilic asthmatics [157].

Two more studies analysing asthmatic patients’ bronchial and sputum microbiome
revealed that patients with Th2-high asthma had a lower bronchial and sputum bacterial
burden than non-Th2 asthma patients [149,158]. In a recent longitudinal study, Abdel-Aziz
et al. determined, after evaluating the sputum microbiome profile of patients with a severe
asthma phenotype, that there are two unique microbiome-driven clusters that are, among
other factors, distinguished by differing neutrophilic content. In general, the cluster char-
acterized by a higher sputum neutrophilic percentage and greater asthma severity had a
lower microbial richness and diversity, as well as a trend toward an increased relative abun-
dance of some pathogenic species (including Haemophilus influenzae, Moraxella catarrhalis,
and Streptococcus pseudopneumoniae) and a decreased abundance of species belonging to
genera Veillonella, Prevotella, Rothia, and Haemophilus [159].

As a general observation, neutrophilic asthmatics have a less diverse airway micro-
biome than healthy controls and other disease endotypes. In fact, either in health or in
illness, a cross-talk between neutrophil control and microbiota structure has been demon-
strated [160]. It has been shown, for instance, that microbial metabolites can either promote
or inhibit neutrophilic functioning, and this interaction may contribute to the progression
of chronic inflammation-related disorders [161]. The involvement of microbial dysbiosis
in patients with severe non-Th2 asthma is also supported by studies demonstrating that
treatment with antibiotics, including macrolides such as azithromycin, may improve dis-
ease control, airway hyper-responsiveness, and inflammation, particularly in neutrophilic
asthmatics [153,162]. The microbiome profile in patients with other non-Th2 inflammatory
endotypes has not been extensively explored, but it is likely unique from the microbiome
associated with neutrophilic asthma.

In addition to the prior studies, which focused mainly on examining airway bacterial
communities, additional attempts were made to investigate the previously overlooked
correlations between airway mycobiome and asthma. Sharma et al. reported using discov-
ered fungus biomarkers in conjunction with other clinical characteristics to differentiate
asthma endotypes. In particular, fungal diversity was reduced in asthma patients with
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Th2-high inflammation compared to non-Th2 inflammation in bronchial brush samples.
Trichoderma species were shown to be enriched in Th2-high asthmatics, while a link
between Alternaria, Aspergillus, and Fusarium species and neutrophils was discovered.
Simultaneously, fungal enrichment (Aspergillus, Cladosporium, Fusarium, Penicillium,
Trichoderma, and Mycosphaerella) in BAL of asthmatics with T2-high inflammation was
found [163]. Recently, Huang et al. attempted to define the airway microbiome of untreated
and inhaled corticosteroid (ICS)-treated patients with an emphasis on both the mycobiome
and bacteriome. Comparing the two groups of asthmatic patients and healthy controls
revealed unique mycobiome composition and biodiversity; additionally, network analy-
sis revealed unbalanced relationships between bacteriome and mycobiome, suggesting
asthma-specific interkingdom changes [164].

Certain bacteria taxa could be regarded as prospective markers for asthma endotypes.
Pathogenic bacterial species belonging to the Proteobacteria phylum or Gammaproteobac-
teria class, including species from the Haemophilus and Moraxella genera, are more prevalent
in the airway microbiome of neutrophilically inflamed patients. On the other hand, inves-
tigations of asthmatics with Th2-high inflammation, notably the eosinophilic phenotype,
revealed more varied results regarding their microbiota makeup, despite an association be-
tween Actinobacteria-phylum bacteria and eosinophilic asthma. This lack of unambiguous
connections between individual bacteria and Th2-high inflammatory endotypes may be
attributable to the greater role of exogenous microorganisms or other exposome factors,
such as allergens, in the maintenance of Th2-high inflammation [165].

3.7. Relationships between Asthmatics Airway Microbiome and Treatment

The results now generate prospects for applying microbiome characterization in
selecting a precise asthma care approach. This strategy must account for any interactions
between the microbiome of the patient and the delivered drug [166,167].

Several researchers have attempted to elucidate the effect of medications on the
structure of the airway microbiota and vice versa. Denner et al. found that the increased
administration of ICS or a combination of OCS and ICS is related to modifications of
the bacterial microbiome in epithelial brushes, notably a rise in Proteobacteria and a fall
in Bacteroidetes and Fusobacteria at the phylum level. In addition, ICS was associated
with a decrease in the number of Veillonella species, while OCS treatment was associated
with a rise in the abundance of Pseudomonas species [168]. Taylor et al. showed a strong
relationship between bacterial diversity in induced sputum of moderate-to-severe asthma
patients and ICS dose [155]. In addition, Sharma et al. discovered a difference in the
number of Penicillium fungi in BAL and bronchial brushings between ICS-treated and
untreated asthmatics [163].

Studies that detected no phylum-level changes between healthy controls and steroid-
naive asthmatics highlighted the importance of medication in constructing asthmatics’
microbiomes [169]. However, McCauley et al. demonstrated that nasal Moraxella was
associated with increased exacerbations and eosinophil activity in asthmatic children.
Despite the fact that treatment with omalizumab reduced exacerbations, the pathogenic
nasal airway microbiota did not change significantly after treatment [170]. Furthermore,
no significant variations in sputum bacterial load or overall community composition were
found between low- and high-dose ICS treatment of asthmatic patients, according to Martin
et al. However, they discovered a link between high-dose fluticasone propionate and an
increase in the pathogen Haemophilus parainfluenzae [171].

On the other hand, several studies compared the composition of microbial communi-
ties between responders and nonresponders to investigate the role of airway microbiota
in the reported variability of asthmatic patients’ response to treatment. Goleva et al. dis-
covered that the bacterial composition in BAL changed considerably between asthmatic
patients who were susceptible or resistant to corticosteroids. Compared to healthy controls,
most nonresponders had higher proportions of microorganisms from the phyla Actinobac-
teria and Proteobacteria and significantly lower proportions of bacteria from the phylum
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Fusobacteria and the genera Prevotella and Veillonella. Compared to healthy controls, most
respondents had higher proportions of bacteria from the phylum Proteobacteria and signifi-
cantly lower proportions of bacteria from the genera Prevotella and Veillonella. Furthermore,
bacteria from the genera Neisseria, Haemophilus, Simonsiella, Campylobacter, Leptotrichia,
Tropheryma, Leuconostoc, and Megasphaera were found in a subset of nonresponders but not
in corticosteroid-responsive asthmatics.

On the other hand, many bacteria from the genera Bradyrhizobium, Aquabacterium,
Limnobacter, Pasteurella, Fusobacterium, and Streptophyta were only found in a subset of
responders but not in nonresponders [172]. These findings reflect prior research that found
a link between FKBP5 gene expression (a steroid response biomarker) and lung microbiota
makeup [15]. Durack et al. demonstrated that ICS responsiveness is associated with
unique aspects of the bronchial bacterial microbiota before therapy in initially ICS-naive
asthmatics, with the responders’ microbiome being more comparable to that of healthy
controls. Nonresponders had more Microbacteriaceae and Pasteurellaceae, but responders
had more Streptococcaceae, Fusobacteriaceae, and Sphingomonodaceae [149]. A further
investigation analysing the sputum microbiota of asthmatics before and after ICS treatment
discovered that the composition of sputum microbiota differed more in ICS nonresponders
than in ICS responders [158]. Finally, Thorsen et al. found that in preschool children with
asthma-like symptoms, the airway microbiome influenced the efficacy of azithromycin
treatment during recurrent episodes [173].

Much of the aforementioned research indicates that the nature of the microbiome may
generate corticosteroid resistance or affect the efficacy of corticosteroid treatment. Among
the provided results, we could differentiate those showing a higher relative abundance
of Fusobacteria-bearing bacteria in corticosteroid responders and lower proportions of
the same bacteria phylum in nonresponders. To determine relevant and valid microbial
markers that could be used in the future as prognostic signatures for resistance or response
to asthma therapies, additional research must be undertaken in this specific field.

Current systems of biology-oriented asthma stratification led to deeper molecular
characterization and more customized therapy options for persistent Th2-high asthma.
Defining and managing severe non-Th2 endotypes such as neutrophilic asthma remain
a priority [165].

3.8. The Respiratory Bacterial Microbiome in COPD

The presence of bacteria in the LRT in stable COPD patients is usually termed “colo-
nization” rather than “infection”, implying that the bacteria present have no or minimal
pathological significance. However, studies have now established that there may be re-
lationships between the presence of bacteria and both airway inflammation and adverse
clinical outcomes in COPD patients. Therefore, the term “colonization” may be misleading,
and the presence of bacteria in COPD patients may not be as benign as previously thought.

3.8.1. Stable COPD

As a result of the impaired mucociliary clearance, COPD patients, even when a
clinically stable condition characterizes them, have lower airways displaying bacterial
colonization [4,174]. However, this is more prevalent among patients with severe COPD
cases. In addition, a reverse correlation has been observed between the bacterial load
and the forced expiratory volume in one second (FEV1) [175]. Some researchers observed
that sputum microbiome diversity reduces when the severity of COPD increases [176,177].
Furthermore, the literature indicates that correlations may exist between bacterial presences
and airway inflammation, “the vicious Circle hypothesis” [178], lung damage, and poor
clinical outcomes associated with COPD patients [97,178,179]. In view of this, referring to
bacterial colonization could fail to reflect the potentially hazardous effect of the bacteria on
COPD patients.

Nevertheless, since almost all the research projects in this domain have been cross-
sectional, it has not been possible to identify the nature of the relationship between the
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assessed outcomes and bacterial colonization. Infection may result in elevated airway
inflammation, but the plausibility of a reversed causal relationship must also be entertained
(namely, that individuals who suffer from elevated airway inflammation could be more
likely to sustain bacterial infections).

There were also significant micro-anatomic differences in bacterial communities in the
lung of an individual with advanced COPD. Those patients with decreased lung function
were also found to have reduced microbial diversity and a strong presence of Pseudomonas
spp [96]. Furthermore, two studies have found a reduced sputum microbiome diversity
with increasing COPD severity [176,177].

Bacterial colonization, using culture techniques, was more frequently observed in
patients with severe-to-very-severe COPD, suggesting that bacterial colonization induces
inflammation and contributes to the progression of COPD [97,179]. Moreover, there seems
to be a reverse relationship between the bacterial load and FEV1 [175].

3.8.2. Acute Exacerbation of COPD

Perhaps equally controversial to the role of bacteria in the pathogenesis of stable COPD
is the contribution of bacteria to acute exacerbation of COPD (AECOPD) [180]. Bacteria
are often detected in AECOPD, but the high isolation rates of bacteria in stable COPD
(34–48% of stable COPD patients are reported to be colonized with bacteria) mean the
presence of bacteria does not prove a causative role. According to studies, about 50–78% of
AECOPD are associated with respiratory infections [97,101,181,182]. Patients with acute
exacerbation of confirmed infectious trigger have a longer hospital stay and a higher
decrease in FEV1 during the exacerbation than patients with noninfective AECOPD [181].

Using culture techniques, bacteria associated with AECOPD are reported from 30%
to 55% [181,183,184]. The most common bacterial pathogens associated with AECOPD
are Streptococcus pneumoniae, Haemophillus influenzae, Moraxella catarrhalis, and in advanced
COPD patients, Pseudomonas aeruginosa [101,184,185]. From one exacerbation to another,
bacterial presence in the airways is regarded as a form of colonization, where the bacterial
load is limited by the host’s immune response, which facilitates the maintenance of an
equilibrium state. Noteworthily, exacerbation episodes may be considered events when the
equilibrium state is impaired, thereby increasing the load of bacterial pathogens, and stim-
ulating greater immune reaction [186]. Molecular typing of bacteria during exacerbations
showed that the acquisition of new strains may cause exacerbations [187], but not every
acquisition of a new strain is linked to an exacerbation.

COPD patients, even when a clinically stable condition characterizes them, have lower
airways displaying bacterial colonization; it is difficult to determine the role of bacteria in
AECOPD [174,181,188,189]. There are inadequate studies evaluating infection frequencies
in stable versus AECOPD. Two studies from the COPD cohort in London stated infec-
tion frequencies of 48% and 43% in the sputa of stable states compared with 70% and
76% in exacerbation states [188,190] (the p-value has not been specified for the first study,
and p < 0.005 for the second study). Another earlier study detected bacterial infection
using protected brush samples in 54% at AECOPD compared with 29% at stable states
(p < 0.005) [191]. Nevertheless, another study indicated a nonsignificant difference be-
tween bacterial infection in AECOPD and stable conditions (54.7% vs. 37.5%, respectively,
p = 0.08) [181], and a more recent study reported bacterial infection in 35% versus 28% in
AECOPD and stable conditions, respectively (p-value not stated) [183]. Therefore, not all
research studies have conclusively revealed that infection frequencies are higher in patients
with AECOPD. The disparity between these findings is likely due to a combination of
factors, including the differing sensitivity of the techniques used, differences in severity of
COPD patients included, or differences in the populations studied.

Through culture-based assays, it is recognized that bacteria play a role in the progres-
sion of COPD and are associated with exacerbation stages. However, limitations in the
sensitivity and scope of plate techniques have not allowed the precise role of bacteria to be
characterized for different COPD grades [186].
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The first study to investigate the AECOPD consequences on the airway microbiome
was performed in 2010 by Huang et al. [192]. However, this study has some limitations.
Another longitudinal prospective study by the same research group [193] showed a minimal
or no difference in the microbiome during COPD stability, whereas a difference in the
taxonomic constituent during AECOPD was observed, suggesting a complex infection
nature of AECOPD and a contribution to the pathogenesis [33]. The later study utilized
the microarray technique to identify the lung microbiome (mainly phylum levels up to
families). Such approaches, however, have failed to address any comparison of the genus
level. At phylum level, the bacterial composition tends to be consistent, but there is a wide
diversity at the genera and species level across sites and among individuals [85,91].

Nevertheless, recent developments in sequencing have heightened the need to use the
Illumina MiSeq, which allow for a deeper microbiome investigation (genera levels). Table 4
summarizes the published studies on COPD patients’ lung microbiomes.

Even in clinically stable patients, bacterial infection was associated with adverse
clinical outcomes with an increased frequency of exacerbations [194], impaired health
status [179,195], and airways and systemic inflammation [179,195]. One study found no
association between bacterial infection and exacerbation frequency [196]. However, as
these studies were cross-sectional, they could not determine the direction of the association
between bacterial colonization and the outcomes measured. Bacterial infection may cause
increased airway inflammation, but the reverse relationship may be equally plausible, i.e.,
patients with greater airway inflammation may be more susceptible to developing bacterial
infection due to the possibility of immune system disturbances.

Despite the inadequate nature of the literature surrounding the microbiome of the
lower airways for COPD patients, studies have confirmed that many of the bacteria present
in COPD patients are those which are present in the healthy population [4,96,192]. In
view of this, it was suggested that a core respiratory microbiome existed, comprised of
Streptococcus, Pseudomonas, Prevotella, Fusobacteria, Haemophillus, and Veillonella, where the
scale of the bacterial community differs depending on whether one is infected or not [197].

Noteworthily, Haemophillus species were highly linked to the presence of COPD [4].
In contrast, it was reported that the predominance of Pseudomonas, along with reduced
microbiome diversity, was a feature of those with moderate-to-severe COPD (and not mild
COPD) [96].
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Table 4. Summary of the published studies related to the respiratory microbiome in COPD patients.

Year Study Population, Location Sample Size (COPD) Study Objectives Method Outcomes Reference

2010

Patients with AECOPD
admitted to the ICU and who

required mechanical
ventilation, California.

8 To determine bacterial
communities in BAL.

16S rRNA gene-based
PhyloChip microarray analysis.

The qPCR was used as a
validation tool.

A total of 140 families were identified, most of them
previously undetected in lung diseases. A core of 75 taxa,

mainly pathogenic, was identified in all patients. The
increase in the number of intubation days was associated

with a decreased richness of the bacterial community.

[192]

2010 COPD, asthma and healthy
control, France. 5 To characterize the bacteria

community.

16S rRNA gene-based
sequencing (V3 to V5) from

swabs of the nose and
oropharynx and brushings of
the left upper lobe. The qPCR

was used to determine the
bacterial load.

They identified 5054 16S rRNA bacterial sequences.
Bacteroidetes, particularly Prevotella, were shown to be

predominant in healthy white Proteobacteria, particularly
Haemophillus, and more frequent in COPD and asthmatics.

Nasal microbiota clustered together for all three
phenotypes and was most distant from the other two
respiratory location samples. The oropharynx and left

upper lobe microbiota of COPD clustered together. The
bronchial tree was not sterile.

[4]

2011 Healthy smokers, nonsmokers,
and COPD subjects, USA. 4

To explore the differences in the
lung microbiome of the three

groups.

16S rRNA pyrosequencing
(v1-V3 region). Taxonomic and
phylogenetic-based analysis l6s
rDNA. The qPCR was used to

quantify the total bacterial load.

Healthy smokers, nonsmokers, and mild COPD tend to
have a more diverse microbial community than moderate

and severe COPD microbiota. There was no significant
difference in the microbiota and the bacterial load between
the three study groups. A core microbiota was identified

and includes: “Pseudomonas, Streptococcus, Prevotella,
Fusobacterium, Haemophillus, Veillonella”. Significant

microanatomic changes in bacterial population were
observed within the same lung of advanced COPD patients.

[96]

2012
Nonsmokers, non-COPD

smokers, GOLD 4 COPD, and
CF (positive control), Canada.

8

To confirm the presence of a
microbiome in the lung and
characterize the difference
between the groups’ lung

microbiome.

Lung tissue samples were used
for quantifying the bacterial
load using qPCR: 165 rDNA
assay, T-RFLP, and Pyrotag

sequencing (VI-V3) to
characterize the microbiome.

They observed an increase in the Firmicutes phylum in
COPD patients compared with all other groups, associated

with an increase in the Lactobacillus genus.
[88]

2012
Subjects with moderate and
severe COPD versus healthy

subjects, USA.
22 To characterize the lung

microbiome.
16S rDNA 454 pyrosequencing

of BAL samples.

COPD was associated with a significant increase in
microbial diversity. Actinobacteria, Firmicutes, and

Proteobacteria were the main phyla in the overall samples.
Samples of control and COPD were clustered separately but
did not cluster based on disease severity. Samples clustered

based on the use of inhaled bronchodilators and
corticosteroids. A high abundance of the oral bacterial

microbiome was observed in COPD samples.

[125]

2012

Stable COPD subjects with
moderate disease and who had
not had any exacerbation and
no antibiotic treatment for a

year preceding the study, Spain.

6

To identify the unrecognised
lower-airway bacteria and to
examine the distribution and
complexity of microbiome.

16S rRNA pyrosequencing of
four types of samples (sputum,

BAL, bronchial aspirate, and
bronchial mucosa) obtained

from each participant.

Sputum samples showed significantly lower diversity than
the other three sample types.

The total number of genera per participant was >100, with
the most commonly detected genera being: “Streptococcus,

Prevotella, Moraxella, Haemophillus, Acinetobacter,
Fusobacterium, and Neisseria”. BAL and bronchial mucosa

revealed a similar bacterial composition in contrast to
sputum and bronchial aspirate samples.

[198]
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Table 4. Summary of the published studies related to the respiratory microbiome in COPD patients.

Year Study Population, Location Sample Size (COPD) Study Objectives Method Outcomes Reference

2013 COPO and healthy subjects,
Germany. 9

To examine the pulmonary
microbial communities in both

groups.

T-RFLP and clone sequencing
of bronchoscopy and BAL

samples.

T-RFLP results correlated partly with those obtained from
cloning sequencing. The genera “Prevotella, Sphingomonas,
Pseudomonas, Acinetobacter, Fusobacterium, Megasphaera,

Veillonella, Staphylococcus, and Streptococcus” represented the
major core microbiome in both groups. Pseudomonas sp.

was associated with reduced microbial diversity.

[199]

2014

COPD patients with mild or
moderate severity versus

COPD patients (severe or very
severe) in a stable state

(absence of exacerbation or
antibiotic use for a minimum of

3 months), Spain.

19 (9 versus 10,
respectively)

To compare the two groups’
sputum microbiota to detect

potential microbiological
markers.

454 sequencing (V1–V3) and
qPCR to determine the bacterial

load.

Firmicutes was the most abundant phylum, then
Proteobacteria, Actinobacteria, and Bacteroidetes. Alpha

diversity indices were significantly higher in
mild/moderate compared with severe/very severe COPD.
The prevalence of Actinomyces was significantly higher in

moderate group. Microbial composition among
mild/moderate samples was more stable compared with
microbial composition among severe/very severe COPO

samples.

[176]

2014
COPD patients: before, at the

onset, and after an
exacerbation, USA.

12 To compare the BAL microbiota
at different time points.

16S rRNA gene-based
PhyloChip microarray analysis.

The qPCR was used as a
validation tool.

The Proteobacteria phylum was increased at exacerbation.
A significant difference was observed in the phylum level at

exacerbation and after antibiotics treatment.
[193]

2014 Stable COPD subjects, Spain. 17
To identify the lung

microbiome changes associated
with the severity of COPD.

16S rRNA gene
pyrosequencing of sputum

samples.

Proteobacteria was the most prevalent phylum, followed by
Firmicutes and Actinobacteria. Moderate/severe COPD
showed a greater microbial diversity. In contrast, alpha

diversity showed a significant decrease in advanced COPD
and a loss of part of the microbiota replaced by a more

pathogenic one.

[177]

2017 COPO and healthy subjects,
Norway. 64

To identify the microbiota
using protected bronchoscopic
specimens in COPD patients

and healthy controls

Sequencing of the V3–V4
region of the 16S rRNA gene on

an Illumina MiSeq.

COPD patients had fewer Bacteriodetes (p < 0.01) than
controls. The relative abundance of OTUs varied between

COPD and control subjects, including an increased
abundance of Haemophillus influenzae in COPD patients (p <

0.001).

[200]

BAL: bronchoalveolar lavage; COPD: chronic obstructive pulmonary disease; qPCR: quantitative polymerase chain reaction; OTUs: operational taxonomic units; T-RFLP: terminal
restriction fragment length polymorphism; USA: the United States of America.
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3.9. The Respiratory Microbiome in CF

Chronic endobronchial infection is a cardinal feature of CF lung disease [201]. Con-
ventional culture-based microbiology has evolved to identify some so-called “typical
CF pathogens” believed to have the greatest clinical significance. Using this approach,
Staphylococcus aureus and Haemophillus influenzae are the predominant pathogens seen in
children with CF. The prevalence of Pseudomonas aeruginosa infection increases with age to
become the most prevalent pathogen in adults with CF. A diverse group of other oppor-
tunistic bacteria, mycobacteria, and fungi may also be found in CF patients’ respiratory
areas [202]. The acquisition of certain pathogens, particularly P. aeruginosa and Burkholderia
species, is associated with substantial clinical deterioration [203–207]. Increasingly, how-
ever, the culture-independent analysis of CF respiratory samples has identified that the
microbial communities within the CF lung are much more complex than is suggested by
standard culture alone. Recent research on individuals with cystic fibrosis suggests that the
metabolic capability of bacterial species can provide greater insight into changes between
clinical stages than the relative abundance of bacteria alone [208].

In CF, it has been shown that microbial diversity is influenced by the administration
of antibiotics [209–211] and age [209,212]. Further study, especially with longitudinal
sampling, promises to identify other diversity drivers and unfold their clinical significance.

3.10. The Respiratory Microbiome and COVID-19

Some studies have reported that COVID-19 had caused dysbiosis, an alteration in the
microbiome composition, in the human gut and respiratory microbiome [213–215].

The SARS-CoV-2 infection has been shown to disrupt the gut microbiome, leading
to dysbiosis and intestinal inflammation that lasts for months [216]. Interestingly, dys-
biosis in the gut microbiota due to SARS-CoV-2 infection has been shown to affect the
severity of COVID-19. This is due to the ability of the gut microbiota to modulate their
composition leading to preventive and therapeutic benefits, including the regulation of
immune responses [217–219]. Furthermore, a recent study reported that the dysbiosis of
the respiratory microbiome might be linked to the severe effects of COVID-19 diabetic
patients [220].

Reports of varying levels of microbial diversity in COVID-19 patients have led to
controversy. Some studies [221,222] reported low diversity, while other studies [223]
claimed significant diversity. These results could be explained by the patient’s COVID-19
severity, sampling location of the respiratory tract, disease stage, and treatment [224,225].

Low nasopharyngeal bacterial diversity was observed in COVID-19 symptomatic
patients, with high levels of Cutibacterium and Lentimonas and reduced abundance of
Prevotellaceae, Flectobacillus, Luminiphilus, Jannaschia, and Comamonas in comparison
with asymptomatic and COVID-19-negative patients [226]. BAL samples showed different
bacterial diversity patterns in the lung of critically ill COVID-19 patients (enriched with
Pseudomonas alcaligenes, Acinetobacter schindleri, Acinetobacter spp., Sphingobacterium spp.,
and Enterobacteriaceae) when compared to COVID-19-negative individuals (enriched
with Veillonella dispar, Haemophilus influenzae, Granulicatella spp., Streptococcus spp., and
Porphyromonas spp.) [227].

Oropharyngeal samples of severely affected COVID-19 patients showed a lower abun-
dance of Actinomyces, Hemophilus, and Neisseria when compared with normal ones [228].

The oral microbiota of COVID-19 patients was predominant with Veillonella infantium
and Prevotella salivae, while controls exhibited an abundance of Rothia mucilaginosa and
Neisseria perflava [229]. Oral microbiota dysbiosis has been demonstrated to be inversely
correlated with the severity of COVID-19 [230]. This study also reported that COVID-19
patients had a high abundance of the fungi Nakaseomyces, Aspergillus, and Malassezia spp.,
while control individuals had a high abundance of Saccharomyces spp. and Candida.

Coinfections with SARS-CoV-2 have been investigated [60,62]. Studies documented
between 3 and 68% respiratory viral coinfection in respiratory diseases and showed the
presence of viruses such as Tombusvirus, Partitivirus, Victorivirus, Totivirus, and Chrysovirus
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in addition to betacoronavirus [231–233]. The oral virome of COVID-19 patients showed an
increase in the bacteriophages infecting Lactobacillus (phage phiadh), Staphylococcus (phage
ROSA), Streptococcus (phage PH10 and phage EJ-1), in addition to the herpes simplex virus
type 1 (HSV-1) [230].

Coinfection with bacteria has contributed to the mortality of virus pandemics such
as 1918 H1N1, and 2009 H1N1 influenza, including COVID-19, examined by various
studies [234–236]. These studies showed that 7% and 14% of hospitalized and critically ill
patients suffering from bacterial coinfection. Enterobacteriaceae, H. influenza, and P. aeruginosa
were reported as the most common coinfections with COVID-19 patients [237]. An increase
in the abundance of carbapenem-resistant Acinetobacter baumannii during COVID-19 was
reported [227].

The human respiratory microbiome is a dynamic player in the immune response to
infections such as SARS-CoV-2. The microbiome composition differs from one person
to another and is highly affected by the sex, age, ethnicity, and race of the individual.
Thus, it is early to improvise a generalized respiratory microbiome fingerprint and, hence,
controversial to compare and distinguish the respiratory microbiome dysbiosis in different
individuals in response to COVID-19. Sampling respiratory microbiota is yet another
issue that needs specific attention and calls for a standardized methodology of sampling,
handling, processing, and analysis to minimize discrepancies and paradoxical results
reported from different research groups across the globe.

3.11. Significance of Medications in the Respiratory Microbiome

The results obtained now generate prospects for applying microbiome characterization
in selecting a precise asthma care approach. This strategy must account for any interactions
between the microbiome of the patient and the delivered drug [166,167].

Several researchers have attempted to elucidate the effect of medications on the
structure of the airway microbiota and vice versa. Denner et al. found that increased
administration of ICS or a combination of OCS and ICS is related to modifications of
the bacterial microbiome in epithelial brushes, notably a rise in Proteobacteria and a fall
in Bacteroidetes and Fusobacteria at the phylum level. In addition, ICS was associated
with a decrease in the number of Veillonella species, while OCS treatment was associated
with a rise in the abundance of Pseudomonas species [168]. Taylor et al. showed a strong
relationship between bacterial diversity in induced sputum of moderate-to-severe asthma
patients and ICS dose [155]. In addition, Sharma et al. discovered a difference in the
number of Penicillium fungi in BAL and bronchial brushings between ICS-treated and
untreated asthmatics [163].

Studies that detected no phylum-level changes between healthy controls and steroid-
naive asthmatics highlighted the importance of medication in constructing asthmatics’
microbiomes [169]. However, McCauley et al. demonstrated that nasal Moraxella was
associated with increased exacerbations and eosinophil activity in asthmatic children.

Despite the fact that treatment with omalizumab reduced exacerbations, the pathogenic
nasal airway microbiota did not change significantly after treatment [170]. Furthermore,
no significant variations in sputum bacterial load or overall community composition were
found between low- and high-dose ICS treatment of asthmatic patients, according to Martin
et al. However, they discovered a link between high-dose fluticasone propionate and an
increase in the pathogen Haemophilus parainfluenzae [171].

On the other hand, many bacteria from the genera Bradyrhizobium, Aquabacterium,
Limnobacter, Pasteurella, Fusobacterium, and Streptophyta were only found in a subset of
responders but not in nonresponders [172]. These findings reflect prior research that found
a link between FKBP5 gene expression (a steroid response biomarker) and lung microbiota
makeup [15]. Durack et al. demonstrated that ICS responsiveness is associated with
unique aspects of the bronchial bacterial microbiota prior to therapy in initially ICS-naive
asthmatics, with the responders’ microbiome being more comparable to that of healthy
controls. Nonresponders had more Microbacteriaceae and Pasteurellaceae, but responders
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had more Streptococcaceae, Fusobacteriaceae, and Sphingomonodaceae [149]. A further
investigation analysing the sputum microbiota of asthmatics before and after ICS treatment
discovered that the composition of sputum microbiota differed more in ICS nonresponders
than in ICS responders [158]. Finally, Thorsen et al. discovered that in preschool children
with asthma-like symptoms, the airway microbiome influenced the efficacy of azithromycin
treatment during recurrent episodes [173].

Much of the aforementioned research indicates that the nature of the microbiome may
generate corticosteroid resistance or affect the efficacy of corticosteroid treatment. Among
the provided results, we were able to differentiate those indicating a higher relative abun-
dance of Fusobacteria-bearing bacteria in corticosteroid responders and lower proportions
of the same bacteria phylum in nonresponders. To determine relevant and valid microbial
markers that could be used in the future as prognostic signatures for resistance or response
to asthma therapies, additional research must be undertaken in this specific field.

Recent systems of biology-oriented asthma stratification led to deeper molecular
characterization and more customized therapy options for persistent Th2-high asthma.
Defining and managing severe non-Th2 endotypes such as neutrophilic asthma remain a
priority [165].

The medications used in COPD could affect the lung microbiome [125]. Understanding
the changes in the lung microbiome along with COPD, antibiotics, and steroid use will
allow for novel therapeutic options [33,89,95,238–242]. Furthermore, novel medications
that control bacterial colonization could decrease COPD symptoms [243].

A recent trial demonstrating the benefit of chronic azithromycin in patients with
frequent exacerbations of COPD has generated an interest in the intersection of the lung
microbiome, inflammation, and the development of irreversible airway obstruction [244].

In a recent study [245], no significant link was discovered between the kind of asthma
medicine or the manner of drug administration (oral or inhalation) and the respiratory
microbiome. As a result, the observed disparities in respiratory microbiota are not caused
by the medications that asthmatic patients take; instead, these changes may be related to
the factors that contribute to the development of asthma. Because asthmatic patients had a
higher proportion of Haemophilus influenzae than healthy individuals, these organisms may
play a role in the pathogenesis of asthma.

Once the lung microbiome proves to be involved in the pathogenesis of the disease, it
will be of immediate interest as a novel target for therapeutic intervention. The lung micro-
biome, like that of other compartments, may be potentially manipulated with an aim to
correct dysbiosis and restore “healthy” microbial communities via the use of probiotics (ex-
trinsic microbes administered in the interest of health), prebiotics (nonabsorbed molecules
that promote specific bacterial growth), antibiotics, and quorum-sensing molecule in-
hibitors. In addition, a goal should be to target antibiotics to the narrowest element of the
microbial spectrum that is directly pathogenic without disturbing the residual members of
the microbial community.

Indeed, several studies of the pulmonary effects of enterically administered probi-
otics have already been published, with promising results [246]. Numerous studies have
examined the effect of oral probiotics in preventing URT infections, most (17/21) with
evidence of benefit [247]. As discussed above, two small randomized controlled trials have
demonstrated a decreased frequency of CF exacerbations among patients receiving probi-
otics [248,249]. In none of these studies was it known whether the benefit was conveyed via
the direct alteration of the lung microbiota or indirectly via gut-mucosa-mediated effects
on systemic immunity.

According to a recent case study, bovine colostrum effectively prevented URT infec-
tions and substantially impacted the nasal swab microbiome [61]. The therapeutic potential
of probiotics to modify the microbiota of the gut and airways may be promising [23].
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3.12. Clinical Applications of the Respiratory Microbiome

According to findings from earlier research and this review, the respiratory micro-
biome may contain diagnostic and prognostic information. It is anticipated that it will
become a relevant biomarker for respiratory disorders in clinical settings. The ultimate
objective of respiratory microbiome research is to identify crucial diagnostic or therapeutic
characteristics that influence clinical outcomes and to realize precision medicine. Although
the gut microbiome may be modified by nutrition to affect the gut–lung axis, it is still un-
known whether the lung microbiome can be of therapeutic value in respiratory disorders.
Although randomized, controlled trials have not demonstrated a reduction in the incidence
of asthma [250], there is a chance that probiotics that restore a healthy gut microbiome
could diminish Th2 cytokine responses in patients with allergic asthma [251].

The proper characterization of the lung microbiome of specific disease endotypes, the
clarification of endotype-related gene targets modulated by the lung microbiome, and the
development of novel methods to influence the pulmonary microbiome are necessary to
achieve a personalized therapeutic approach based on the respiratory microbiome, disease
phenotype, and comorbidities associated with the respiratory disease.

It is tempting to focus microbiome research on diseases whose cause or progression has
traditionally been attributed to microbial activity, such as bronchiectasis, pneumonia, and
CF. However, it is likely that a better understanding of the pathogenesis and progression of
other illnesses, such as fibrotic lung disease, asthma, and COPD, will result from a deeper
understanding of the lung microbiome. In addition, the application of lung metagenomic
research may help us identify the metagenome and potential function of the microbiota, as
well as how the microbiome, for instance, may influence the efficacy of immune checkpoint
inhibitors that provide primary resistance during immunotherapy.

The human microbiome is susceptible to the modification of dietary, environmental,
and pharmaceutical interventions. It is essential to explore the effects of various systemic
and inhaled drugs, as well as dietary and environmental inhalational exposures and
changes in other human microbiomes, on the pulmonary microbiome and the microbiota of
the gut and oral cavity. In addition, lung microbiome research must proceed from reporting
connections with disease states and characterising microbiome alterations in response to
varied stimuli to identifying therapies that affect its composition for therapeutic benefit.
Microbiome-targeted therapies exemplify precision medicine.

The lung microbiome is a complex and highly functional ecosystem that interacts
with other microbiomes and the human host but is not fully understood. To unleash the
potential to alter the microbiome for positive outcomes, it is essential to characterise it in
both healthy and diseased states.

4. Challenges

Despite the enormous progress made in the study of respiratory disorders, the ad-
vancement of precision medicine still faces many obstacles, mainly relating to difficulty in
unbiased diagnosis and the identification of precise therapeutic targets. Utilizing microbial
profiles as biomarkers for asthma classification and possible treatment intervention is a
promising but not yet clinically applicable strategy. Variation in the results of different mi-
crobiome research, driven by many factors, poses significant constraints [252]. Disparities
may cause inconsistencies in microbiome composition in patient enrolment in terms of
age, dietary and smoking habits, comorbidities, environmental exposures, or medications.
Furthermore, the microbiota of a single individual might change dynamically over time,
even within a day or across seasons, which further complicates data interpretation. Varia-
tions in the methodological pathways followed (from sample collection to DNA extraction,
sequencing, and data processing) can potentially bring potential disparities. Different
airway niches are inhabited by microbial communities that vary in density and structure.
As a result, the sampling source is a very influential element.

Due to the significant possibility of cross-contamination from the upper airways or
external sources, the sampling approach employed is, therefore, of utmost importance,
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particularly in the case of the low-mass lung microbiome. In addition, invasive sampling
increases the risk associated with lung microbiome research. A prudent study design,
well-defined patient cohorts, longitudinal follow-up, and the standardization of procedures
are required to ensure the results’ quality, reproducibility, and therapeutic relevance.

At the level of high-throughput systems biology techniques, it continues to be chal-
lenging to process, analyse, integrate, and interpret vast quantities of biological data.

Even at the most fundamental level of single-level microbiome data processing and
bioinformatic exploration, strong standardization and best-practice methods are required at
every analysis stage. However, they have not yet been fully realized [253]. Benchmarking
bioinformatics pipelines for 16S rRNA gene sequencing and shotgun metagenomics data
analysis might provide useful information on the limitations, benefits, performance, and
overlap of existing computational approaches [254,255]. Particularly in the case of low-
density lung microbiome study, it is naturally more susceptible to mistakes, biases, and
uncertainty [252]; as the field evolves, these problems will demand bioinformatic methods
of the highest quality.

5. Future Directions

Microbiome research in respiratory illnesses is still in its infancy; therefore, innova-
tive viewpoints could be pursued and added to strengthen comparative studies further.
These advancements presumably produce microbial signatures that can significantly pre-
dict or diagnose asthma phenotypes/endotypes. In COPD, for instance, the presence
of Staphylococcus in the sputum during exacerbations and the absence of Veillonella have
been demonstrated to predict future mortality risk [256]. Knowing how individual micro-
bial species affect human immunity and physiology would allow the devising of novel
microbiome-based tailored methods for asthma prevention, therapy, or enhanced response
to traditional treatments. Nutritional therapies, vaccinations, probiotics, bioactive chemi-
cals, or microbiota transplants may offer new research opportunities.

Reversing microbiome alterations with particular Lactobacillus and Bifidobacterium
species may protect against allergy and atopic disease exacerbations [257].

Developing diagnostic and predictive indicators for respiratory disorders in clinical
settings may be facilitated by expanding knowledge of the respiratory microbiome using
novel multimodal omics methods.

6. Conclusions

Extensive airway microbiome studies on clinically defined cohorts of patients with res-
piratory diseases have succeeded in identifying associations between microbial signatures
and specific disease phenotypes or health status, shedding light on microbiota–treatment
relationships. The integration of large-scale metagenomics and host multiomics big data is
now a goal to accelerate the generation of information about host–microbiota interactions,
new multivariate prognostic/diagnostic biomarkers, and prospective therapeutic targets.
Such a complete understanding would eventually lead to individualized medicines de-
signed to prevent or treat specific microbial dysbiosis and host immunological dysfunction,
resulting in better outcomes for patients suffering from uncontrolled respiratory disorders.
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