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Abstract: Translocase of outer mitochondrial membrane 40 (TOMM40) is located in the outer mem-
brane of mitochondria. TOMM40 is essential for protein import into mitochondria. TOMM40 genetic
variants are believed to increase the risk of Alzheimer’s disease (AD) in different populations. In
this study, three exonic variants (rs772262361, rs157581, and rs11556505) and three intronic variants
(rs157582, rs184017, and rs2075650) of the TOMM40 gene were identified from Taiwanese AD patients
using next-generation sequencing. Associations between the three TOMM40 exonic variants and
AD susceptibility were further evaluated in another AD cohort. Our results showed that rs157581
(c.339T > C, p.Phe113Leu, F113L) and rs11556505 (c.393C > T, p.Phe131Leu, F131L) were associ-
ated with an increased risk of AD. We further utilized cell models to examine the role of TOMM40
variation in mitochondrial dysfunction that causes microglial activation and neuroinflammation.
When expressed in BV2 microglial cells, the AD-associated mutant (F113L) or (F131L) TOMM40
induced mitochondrial dysfunction and oxidative stress-induced activation of microglia and NLRP3
inflammasome. Pro-inflammatory TNF-α, IL-1β, and IL-6 released by mutant (F113L) or (F131L)
TOMM40-activated BV2 microglial cells caused cell death of hippocampal neurons. Taiwanese AD
patients carrying TOMM40 missense (F113L) or (F131L) variants displayed an increased plasma
level of inflammatory cytokines IL-6, IL-18, IL-33, and COX-2. Our results provide evidence that
TOMM40 exonic variants, including rs157581 (F113L) and rs11556505 (F131L), increase the AD risk of
the Taiwanese population. Further studies suggest that AD-associated mutant (F113L) or (F131L)
TOMM40 cause the neurotoxicity of hippocampal neurons by inducing the activation of microglia
and NLRP3 inflammasome and the release of pro-inflammatory cytokines.

Keywords: Alzheimer’s disease; TOMM40; SNP; microglia; neuroinflammation; NLRP3; NF-κB;
hippocampal neurons
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1. Introduction

Alzheimer’s disease (AD), characterized by selective neurodegeneration in brain
regions involved in emotional and cognitive function, is the most prevalent cause of
dementia among older people [1]. Genetic variants increase the risk of developing AD [2–4].
The Apolipoprotein E (APOE) gene located at chromosome 19q13.32 is the strongest risk
factor for AD and accounts for approximately 50% of the total risk contribution [5–10].
However, patients carrying APOE variants do not necessarily develop AD. Genome-wide
association studies revealed that genetic variants neighboring APOE loci also increase AD
risk [11,12]. Surrounding genes of the APOE loci, such as TOMM40 (Translocase of outer
mitochondrial membrane 40), PVRL2, and APOC1, display a strong linkage disequilibrium
in the APOE region and could also be involved in the pathogenesis of AD [13–15].

The TOMM40 gene is located adjacent to the 5′-upstream of the APOE gene and
is one of the APOE-surrounding genes. TOMM40 is a channel-forming subunit of the
mitochondrial TOMM complex that is required for protein import into mitochondria [16].
Many studies suggest that the TOMM40 gene may contribute to AD risk [17,18]. Single-
nucleotide polymorphisms (SNPs) within the TOMM40 gene are associated with amyloid
deposition and influence the metabolism of amyloid beta peptide (Aβ) [19–21]. Poly-T
repeats’ polymorphism within intron 6 (rs10524523) of the TOMM40 gene has been shown
to affect AD onset age and contribute to AD susceptibility by regulating the expression of
APOE and TOMM40 genes [22–24]. Differential transcription of TOMM40 RNA in the brain
has been shown to be an indicator of mitochondrial dysfunction in AD [17]. The majority
of TOMM40 genetic variants that were associated with AD susceptibility often reside in
noncoding regions with unclear functions [25]. In AD, the related quantitative traits of
functional genetic variants of TOMM40 are still unclear. The pathogenic mechanism by
which TOMM40 genetic variants increase the risk of AD remains unknown.

Microglial-mediated neuroinflammation, the inflammatory response of CNS, is in-
volved in the etiopathogenesis of AD [26,27]. Under physiological status, microglia, which
act as resident macrophages of CNS, mediate the development of CNS and regulate im-
mune responses in CNS [28]. In the presence of pathological or inflammatory stimuli,
microglia change from a resting state to an activated state and secrete pro-inflammatory cy-
tokines, including interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α
(TNF-α), which subsequently cause the degeneration of CNS neurons [26,27,29]. Under
pathological or inflammatory conditions, a crucial step for damage-associated molecular
pattern (DAMP)- or pathogen-associated molecular pattern (PAMP)-induced microglial
activation is the oligomerization and activation of the microglial NLRP3 inflammasome
complex, which is composed of nucleotide-binding oligomerization domain and leucine-
rich-repeat-and pyrin-domain-containing 3 (NLRP3), the apoptosis-associated speck-like
protein containing a CARD (ASC), and pro-caspase-1 [30–33]. The dysregulated overactiv-
ity of the microglial NLRP3 inflammasome resulting from microglial activation is involved
in the pathogenesis of AD [34–36].

Mitochondria are a major source of intracellular ROS and are sensitive to oxidative
stress [37]. Mitochondrial malfunction is involved in the pathogenesis of AD [38]. TOMM40
is vital for maintaining mitochondrial function and is involved in the influx of proteins
and Aβ into mitochondria [16,39,40]. In the brains of AD patients, Aβ is accumulated in
the mitochondrial import channel and causes mitochondrial dysfunction [41]. Impaired
TOMM40-mediated protein transport of mitochondria could lead to the accumulation of Aβ
in mitochondrial cristae, which results in mitochondrial malfunction and the overproduc-
tion of ROS [42]. Increased formation of mitochondrial ROS activates the mitogen-activated
protein kinase (MAPK) cascade, resulting in microglial activation [43]. Moreover, the
overproduction of ROS activates the nuclear factor-κB (NF-κB) pathway, which causes acti-
vation of the NLRP3 inflammasome and neuroinflammation [44]. Therefore, it is possible
that mutations of TOMM40 could cause mitochondrial malfunction and oxidative stress,
resulting in microglial activation and increased risk of AD.
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In this study, we identified genetic variants of the TOMM40-APOE region and deter-
mined the significance of TOMM40 variants in Taiwanese AD patients. Missense variants
within the TOMM40 gene, rs157581 (c.339T > C, p.Phe113Leu) and rs11556505 (c.393C > T,
p.Phe131Leu), were associated with increased risk of AD. Our results also demonstrated
that mutant (F113L) or (F131L) TOMM40 caused activation of the NLRP3 inflammasome
and microglia, leading to the release of pro-inflammatory cytokines and resulting in the
cell death of hippocampal neurons.

2. Results
2.1. AD Patients Exhibit Genetic Variants within TOMM40 Gene

A high-density whole-genome association study showed strong associations between
SNPs neighboring the APOE loci and AD risk [11]. Although APOE is a strong risk factor for
AD, it is believed that additional factors with the APOE locus contribute to the pathogenesis
of AD [18,45,46]. The TOMM40 gene is within APOE-surrounding regions and is located
in proximity to the APOE gene [18,46]. DNA samples from 80 Taiwanese AD patients
were examined using a targeted panel of whole-genome sequencing. When compared
with the 1000 Genome Databases, genetic hotspots within the TOMM40-APOE region
were identified as AD susceptibility (Table 1). Exonic variants included rs772262361 (a
synonymous variant within TOMM40, c.198A > G, p.Ser66=), rs157581 (a missense variant
in TOMM40, c.339T > C, p.Phe113Leu), rs11556505 (a missense variant within TOMM40,
c.393C > T, p.Phe131Leu), and rs440446 (a missense variant in APOE, p.Asn14Lys) (Table 1).
SNP rs772262361, located in the CpG-rich loci, was a novel mutation (Supplementary
Figure S1). Intronic variants, including rs184017, rs2075650, and rs157582, were found
in Taiwanese AD patients (Table 1). We further replicated the association of the three
TOMM40 functional hotspots, including rs772262361, rs157581, and rs11556505, with AD
susceptibility using another set of AD patients and controls.

Table 1. Genetic variants within TOMM40-APOE region associated with risk of AD.

Gene SNP Position MAF
(Cases/NC)

MAF *
dbSNP OR (95% CI) p Value

PVRL2: Intron variant rs394221 45368424 0.51/0.38 0.45 1.7 (1.2~2.4) 0.001
TOMM40:Synonymous,

p.Ser66= rs772262361 45394870 0.013/0.0 0.00004 - -

TOMM40: Intron rs184017 45394969 0.34/0.16 0.20 2.8 (2.0~4.0) 4.2 × 10−8

TOMM40: Intron rs2075650 45395619 0.25/0.07 0.13 4.2 (2.8~6.1) 1.1 × 10−10

TOMM40: Missense,
p.Phe113Leu rs157581 * 45395714 0.38/0.23 0.23 2.1 (1.5~2.9) 4.4 × 10−5

TOMM40: Missense,
p.Phe131Leu rs11556505 * 45396144 0.26/0.10 0.11 3.3 (2.2~4.8) 2.5 × 10−8

TOMM40: Intron rs157582 45396219 0.34/0.18 0.22 2.4 (1.7~3.3) 3.3 × 10−6

APOE: Missense,
p.Asn14Lys rs440446 * 45409167 0.56/0.33 0.38 2.6 (1.9~3.6) 1.4 × 10−8

APOE: Intron rs769449 45412079 0.25/0.08 0.11 3.6 (2.4~5.3) 2.7 × 10−9

* SNPs are missense variants.

2.2. Exonic SNP of TOMM40 Are Linked to Increased AD Susceptibility

The frequency of rs772262361 in Taiwan was further examined in normal controls
(NC) of Taiwan Biobank (controls). All three functional variants (rs772262361, rs157581,
and rs11556505) were evaluated in 213 normal controls (NC) that were ascertained in this
study, 393 AD patients, and 1025 controls from Taiwan Biobank. The genotype and allele
frequency of TOMM40 among NC, AD patients, and controls were displayed in Table 2.
SNPs were considered in Hardy–Weinberg equilibrium at a significance level of 0.05. Two
TOMM40 SNPs, rs157581 and rs11556505, were significantly associated with AD.
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Table 2. Demographics of normal controls (NC), AD patients, and controls from Taiwan Biobank.

NC AD Patients Controls * p Value 1 p Value 2

Number 213 393 1025
Age (years) 67.4 ± 10.3 74.0 ± 8.7 58.7 ± 5.4 <0.0001 <0.0001
Men, N (%) 111 (52.1) 142 (36.1) 524 (51.1) 0.0001 <0.0001

Education (years) 8.1 ± 4.5 6.2 ± 4.7 5.3 ± 1.1 <0.0001 <0.0001
Hypertension, N (%) 99 (46.5) 191 (48.6) 207 (20.2) 0.62 <0.0001

Diabetes, N (%) 153 (71.8) 271 (69.0) 81 (7.9) 0.46 <0.0001
Global cognition,

MMSE 24.3 ± 5.4 16.5 ± 6.5 27.1 ± 2.6 <0.0001 <0.0001

APOE ε4 carrier, N (%) 12 (5.63) 201 (51.2) 166 (16.2) <0.0001 <0.0001
TOMM40

rs772262361, p.Ser66 =
AA/AG (%) 100/0 99.5/0.5 - 0.24 ** -

rs157581, p.Phe113Leu
TT/TC/CC (%) 67.3/30.3/2.4 40/49.9/10.1 59.9/35/5.1 <0.0001 <0.0001

rs11556505,
p.Phe131Leu

CC/CT/TT (%)
92.6/7.4/0 54.4/40/5.6 81.9/17.3/0.9 <0.0001 <0.0001

Data are expressed as percentages or mean ± S.D. * Controls from Taiwan Biobank were from the whole-genome
sequencing (WGS) database from Taiwan Biobank. Comparisons were analyzed using χ2-tests (** Fisher’s exact
test) or t-tests where appropriate. p-value 1: NC versus AD; p-value 2: Control from Taiwan Biobank versus AD.

2.3. AD-Associated TOMM40 Genetic Variants, but Not Wild-Type TOMM40, Causes
Mitochondrial Dysfunction and Oxidative Stress of Microglial Cells

In this study, we hypothesized that the AD-associated genetic mutation of TOMM40
causes mitochondrial malfunction and oxidative stress in microglia. To test this hypothesis,
WT TOMM40 and AD-associated TOMM40 genetic variants, (F113L) and (F131L) TOMM40,
were transiently expressed in BV2 microglial cells (Figure 1A). Compared to control cells
or cells expressing WT TOMM40, a reduction in the fluorescence intensity of TMRM,
which is a dye of mitochondrial membrane potential (∆Ψm), and ∆Ψm depolarization
was found in BV2 microglial cells transfected with cDNA of (F113L) or (F131L) TOMM40
(Figure 1B). Imaging analysis of MitoSox showed that the fluorescence level of MitoSox and
the mitochondrial level of superoxide, which is a major ROS, were significantly upregulated
in BV2 microglial cells expressing (F113L) or (F131L) TOMM40 (Figure 1C).

2.4. AD-Associated TOMM40 Genetic Variants Cause Microglial Activation

Mutant (F113L) or (F131L) TOMM40-induced mitochondrial malfunction and oxida-
tive stress (Figure 1B,C) could lead to the activation of microglial cells. In accordance with
this hypothesis, immunofluorescence imaging staining demonstrated that compared with
control cells or cells expressing WT TOMM40, upregulated protein expression of microglial
protein marker ionized calcium-binding adaptor molecule 1 (Iba-1) was observed in BV2
microglia cells transfected with cDNA of (F113L) or (F131L) TOMM40 (Figure 1D).

2.5. Mutant (F113L) or (F131L) TOMM40 Activates NF-κB Cascade and NLRP3 Inflammasome
in Microglial Cells

In this study, it was hypothesized that (F113L) or (F131L) TOMM40-induced malfunc-
tion and oxidative stress of mitochondria leads to the activation of the NF-κB signaling
cascade and the NLPR3 inflammasome in microglial cells. Consistent with this hypothesis,
immunoblotting assays showed that the expression of (F113L) or (F131L) TOMM40 in
microglial cells increased the protein expression of phospho-IKKα/βSer176/180 and active
phospho-NF-κB p65 in BV2 microglial cells (Figure 2A). Immunoblotting assays demon-
strated that mutant (F113L) or (F131L) TOMM40 caused the activation of the NLRP3
inflammasome by upregulating protein levels of NLRP3 and ASC and cleaved active
caspase-1 in BV2 microglial cells (Figure 2B).
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lotting assay showed that WT or mutant TOMM40 was expressed in the mitochondrial fraction of 
BV2 microglial cells. Cytochrome c oxidase subunit IV (COX-IV) was used as an internal control for 
mitochondrial fraction. (B) Compared to control cells or cells expressing WT TOMM40, decreased 
TMRM fluorescence intensity and depolarization of mitochondrial membrane potential were BV2 
microglial cells expressing mutant (F113L) or (F131L) TOMM40. (C) Expression of mutant (F113L) 
or (F131L) TOMM40 significantly increased fluorescence intensity of MitoSox and mitochondrial 
superoxide level in BV2 microglial cells. (D) Immunofluorescence staining of microglial marker Iba-
1demonstrated that expression of (F113L) or (F131L) TOMM40 led to activation of BV2 microglial 
cells by upregulating protein expression of Iba-1. Scale bar is 100 μm. Each bar represents mean ± 
S.D. value of four experiments. Each experiment was performed in triplicate. ** p < 0.01, *** p < 0.001 
compared to control BV2 microglial cells. 
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Figure 1. Mutant (F113L) or (F131L) TOMM40 causes dysfunction and oxidative stress of mito-
chondria, leading to microglial activation. (A) BV2 microglial cells were transfected with empty
pcDNA3 vector (control), cDNA of FLAG-tagged wild-type (WT), (F113L), or (F131L) TOMM40.
Immunoblotting assay showed that WT or mutant TOMM40 was expressed in the mitochondrial
fraction of BV2 microglial cells. Cytochrome c oxidase subunit IV (COX-IV) was used as an internal
control for mitochondrial fraction. (B) Compared to control cells or cells expressing WT TOMM40,
decreased TMRM fluorescence intensity and depolarization of mitochondrial membrane potential
were BV2 microglial cells expressing mutant (F113L) or (F131L) TOMM40. (C) Expression of mutant
(F113L) or (F131L) TOMM40 significantly increased fluorescence intensity of MitoSox and mito-
chondrial superoxide level in BV2 microglial cells. (D) Immunofluorescence staining of microglial
marker Iba-1demonstrated that expression of (F113L) or (F131L) TOMM40 led to activation of BV2
microglial cells by upregulating protein expression of Iba-1. Scale bar is 100 µm. Each bar represents
mean ± S.D. value of four experiments. Each experiment was performed in triplicate. ** p < 0.01,
*** p < 0.001 compared to control BV2 microglial cells.

2.6. AD-Associated TOMM40 Genetic Variants Cause the Release of Pro-Inflammatory Cytokines
from Microglia Cells, Leading to Cell Death of Hippocampal Neurons

NLPR3 inflammasome activation in microglial cells results in the overproduction
and release of pro-inflammatory cytokines, leading to neuronal loss [40]. ELISA analysis
indicated that the levels of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α,
were significantly increased in the culture medium (CM) from BV2 microglial cells express-
ing (F113L) or (F131L) TOMM40 (Figure 3A). To provide evidence that pro-inflammatory
cytokines released from BV2 cells expressing (F113L) or (F131L) TOMM40 cause neuronal
death, the CM of HT22 hippocampal neuronal cells was replaced with the CM of BV
microglia transfected with cDNA of WT, (F113L), or (F131L) TOMM40. As shown in
Figure 3B, the CM of BV2 microglial cells expressing (F113L) or (F131L) TOMM40 signifi-
cantly decreased the cell viability of HT22 hippocampal neuronal cells.
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Figure 2. TOMM40 genetic variants induce activation of NF-κB signaling and NLRP3 inflammasome
in microglial cells. (A) Western blot analysis showed that expression of (F113L) or (F131L) TOMM40
induced activation of NF-κB cascade by increasing protein expression of phospho-IKKα/βSer176/180

and phospho-NF-κB p65Ser536 in BV2 microglial cells. (B) Compared with control or cDNA of WT
TOMM40-transfected cells, transfection of cDNA encoding (F113L) or (F131L) TOMM40 caused
activation of NLRP3 inflammasome by upregulating protein level of NLRP3 and ASC or cleaved
caspase-1 in BV2 microglial cells. Each bar shows mean ± S.D. of four experiments. * p < 0.05,
** p < 0.01, *** p < 0.001 compared to control BV2 microglial cells.
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Figure 3. TOMM40 genetic variants induce the secretion of pro-inflammatory cytokines in microglial
cells, leading to cell death of hippocampal neurons. (A) Compared to control cells or cells expressing
WT TOMM40, BV2 microglial cells’ expression of (F113L) or (F131L) TOMM40 significantly increased
secretion of pro-inflammatory IL-1β, IL-6, or TNF-α in culture medium of BV2 microglial cells.
(B) Culture medium (CM) of HT22 hippocampal neurons was replaced with CM from BV2 microglial
cells transfected with cDNA of WT, (F113L) or (F131L) TOMM40. One day after replacement, CM
of BV2 microglia cells expressing mutant (F113L) or (F131L) TOMM40 significantly reduced cell
viability of HT22 hippocampal neurons. Each bar represents mean ± S.D. of four experiments. Each
experiment was performed in triplicate. * p < 0.05 or ** p < 0.01 compared to control BV2 microglial
cells or HT22 hippocampal neurons.



Int. J. Mol. Sci. 2023, 24, 4085 7 of 15

2.7. Plasma Levels of IL-6, IL-18, IL-33, and COX-2 Are Upregulated in AD Patients Carrying
TOMM40 Genetic Variants

According to our hypothesis that AD-associated TOMM40 genetic variants cause
microglial activation, plasma levels of cytokines and COX-2 are expected to be upregulated
in AD patients carrying TOMM40 genetic variants. ELISA assays demonstrated that plasma
levels of IL-6, IL-18, IL-33, and COX-2 were significantly increased in AD patients carrying
TOMM40 genetic variants, including rs772262361, rs157581, and rs11556505 (Figure 4 and
Table 3).
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Figure 4. Plasma levels of IL-6, IL-18, IL-33, and COX-2 are significantly increased in AD patients
carrying TOMM40 genetic variants. (A–G) ELISA assay showed that, compared to NC or AD patients,
plasma levels of IL-6, IL-18, IL-33, and COX-2 were significantly upregulated in AD patients carrying
TOMM40 genetic variants, including rs772262361, rs157581, and rs11556505. ** p < 0.01 compared
with NC.

Table 3. The plasma level of cytokines or COX-2 between NC and AD.

NC (n = 45) AD (n = 37)
AD with

TOMM40 Genetic
Variants (n = 14)

p Value

Age (years) 72.1 ± 9.0 72.9 ± 6.0 71.29 ± 6.3 0.6740
Men/Female 21/24 14/23 4/10 0.4275

APOE ε4 carrier
(%) 0 32.4 85.7 <0.0001

IL-1β (pg/mL) 21.4 ± 8.4 23.1 ± 10.8 23.3 ± 8.6 0.3884
IL-6 (pg/mL) 0.8 ± 1.6 1.6 ± 1.5 2.3 ± 1.6 0.0237

IL-18 (pg/mL) 64.4 ± 53.0 193.5 ± 200.6 228.66 ± 164.7 <0.0001
IL-23 (pg/mL) 9.7 ± 3.2 10.5 ± 8.9 13.7 ± 13.9 0.5867
IL-33 (pg/mL) 4.4 ± 0.8 4.9 ± 0.3 5.0 ± 0.2 0.0005

TNF-α (pg/mL) 13.8 ± 8.1 14.5 ± 18.9 17.1 ± 28.8 0.9342
COX-2 (ng/mL) 0.5 ± 0.06 0.7 ± 0.7 0.9 ± 1.1 0.0453

Data are expressed as percentages or mean ± S.D.
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3. Discussion

The APOE gene located at chromosome 19q13.32 is a strong risk gene for AD and
accounts for approximately 50% of AD cases [5,6]. APOE is involved in the clearance and
aggregation of the amyloid-β peptide and tau neurofibrillary degeneration [8]. For AD
pathology, APOE has been shown to be co-localized with cholesterol and fibrillary Aβ
in neuritic plaques and neurofibrillary tangles [47]. APOE genotypes are linked to lipid
homeostasis and neuroinflammation [48]. APOE ε2/ε3/ε4 alleles are haplotypes constructed
by two missense variants, rs7412 and rs429358 [49]. The APOE ε4 allele is the strongest
risk factor for AD in African American and Caucasian populations [50]. Compared with
AD patients in western countries, the frequency of the APOE ε4 allele is lower in the Asian
population [51]. The incidence of AD is similar between Caucasian and Chinese popula-
tions [52]. Other genetic modifiers are likely to contribute to the pathogenesis of AD in
Asian patients [46,53]. Genetic variants in the TOMM40-APOE locus could increase the
susceptibility of AD [18,46,54–56]. The TOMM40 gene adjacent to the APOE gene is in
strong linkage disequilibrium with APOE [57]. Mutations within the TOMM40 gene are
implicated in the increased risk and pathogenesis of AD [58–61]. Several functional SNPs
within the TOMM40 gene are identified in late-onset AD (LOAD) [22]. In the Asian AD pop-
ulation, APOE and TOMM40 variants synergistically increase the risk of AD [46]. Therefore,
TOMM40 could be an important risk factor for AD in the Taiwanese AD population.

In this study, we hypothesized that mutations of the TOMM40 gene contribute to
increased AD susceptibility in the Taiwanese population. To test this hypothesis, NGS
analysis was performed to identify the genetic variants with the TOMM40 locus of Tai-
wanese AD patients. In this study, exonic variants, including rs772262361, rs157581 (c.339T
> C, p.Phe113Leu), rs11556505 (c.393C > T, p.Phe131Leu), and intronic variants, includ-
ing rs184017, rs2075650, and rs157582, were identified in Taiwanese AD patients. Fur-
ther genetic association studies suggest that two exonic SNPs of TOMM40, rs157581 and
rs11556505, are linked to increased AD risk in the Taiwanese population. Previous studies
reported that TOMM40 poly-T repeats polymorphism within intron 6 (rs10524523) de-
creases the onset age of AD and contributes to increased AD susceptibility in Caucasian
populations by regulating the expression of TOMM40 and APOE transcription [23,62].
TOMM40 SNPs, including rs157580, rs2075650, and rs157581, increase the AD risk in
Canadian and Italian populations [59,61]. TOMM40 rs10524523 is associated with de-
creased volume of gray matter and impaired cognition in AD patients [63]. TOMM40 SNPs,
rs10524523 and rs2075650, are statistically related to cognitive function, brain integrity, and
the alternation of the inflammatory pathway [64,65].

Microglia, which are innate immune cells of CNS, play a vital role in clearing pathogenic
molecules and mediating the neuroinflammatory reaction [26,66]. Under pathological con-
ditions, PAMP or DAMP induces the activation of microglia and NLRP3 inflammasome
and resulting in neuroinflammation [34,67]. Activated microglia release pro-inflammatory
cytokines, including TNF-α, IL-1β, and IL-6, and cause neuronal death [68,69]. Microglial
activation-induced neuroinflammation is one of the important mechanisms underlying the
pathogenesis of AD [26,70,71]. Several lines of evidence suggest that mitochondrial malfunc-
tion of microglia induces microglial activation and is involved in AD pathogenesis [66]. The
accumulation of Aβwithin mitochondria causes mitochondrial dysfunction and oxidative
stress [70,72]. TOMM40 is essential for normal mitochondrial function by mediating the
import of proteins, including Aβ, into mitochondria [40,73]. In this study, it was hypothesized
that impaired function of AD-associated mutant TOMM40 including (F113L) and (F131L)
TOMM40 could cause the accumulation of mitochondrial Aβ and result in mitochondrial
malfunction and oxidative stress of microglia, leading to the activation of microglia and the
NLRP3 inflammasome, the release of neurotoxic pro-inflammatory cytokines, and the subse-
quent cell death of hippocampal neurons. In accordance with our hypothesis, the expression
of AD-associated TOMM40 genetic variants, (F113L) and (F131L) TOMM40, caused mito-
chondrial dysfunction by reducing mitochondrial membrane potential and oxidative stress by
increasing the mitochondrial level of superoxide in BV2 microglial cells. AD-associated (F113L)
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or (F131L) TOMM40-induced mitochondrial malfunction and oxidative stress lead to the ac-
tivation of the NLRP3 inflammasome and inflammatory NF-κB pathway in BV2 microglial
cells. Furthermore, pro-inflammatory TNF-α, IL-1β, and IL-6 released by mutant (F113L) or
(F131L) TOMM40-activated BV2 microglial cells cause the cell death of hippocampal neurons.
Consistent with our hypothesis that AD-associated mutant (F113L) or (F131L) TOMM40 cause
neurotoxicity and increase AD risk by inducing microglial activation, Taiwanese AD patients
carrying TOMM40 missense (F113L) or (F131L) variants exhibit an increased plasma level of
IL-6, IL-18, IL-33, and COX-2.

In summary, the results of this study provide evidence that TOMM40 exonic vari-
ants, including rs157581 (F113L) and rs11556505 (F131L), increase the AD risk in the Tai-
wanese population. Further studies suggest that AD-associated mutant (F113L) or (F131L)
TOMM40 cause the neurotoxicity of hippocampal neurons by inducing the activation of
microglia and NLRP3 inflammasome and the release of pro-inflammatory cytokines.

4. Materials and Methods
4.1. Patients and Control Subjects

The Institutional Review Board of Chang Gung Memorial Hospital governed this
study (IRB No.201700444B0C602, 201802324B0, and 202002551B0). Ethical approval for
this study was granted by the IRB of Taiwan Biobank (approval number: 201506095RINC
and TWBR10801-01). All participants submitted informed consent. Probable AD patients
and age-matched control participants were recruited from the Department of Neurology,
Chang Gung Memorial Hospital, Linkou Medical Center. AD was diagnosed according
to the criteria of the recommendations from the National Institute on Aging- Alzheimer’s
Association workgroups on diagnostic guidelines for Alzheimer’s disease [74]. Patients
who had a Modified Hachinski ischemic score of >4 or met the NINDS-AIREN criteria
for vascular dementia were excluded [75]. This study included two control groups. One
of the control groups was enrolled subjects who visited CGMH for a health exam or
treatment for diseases other than neurodegenerative diseases or cerebrovascular diseases.
The other control group was from whole-genome sequencing (WGS) from Taiwan Biobank.
Taiwan Biobank has officially developed data from community volunteers (URL: https:
//tai-wanview.twbiobank.org.tw/browse3, accessed on 14 February 2023).

4.2. DNA Extraction, WGS and Data Processing

Genomic DNA was obtained from blood samples with Gentra Puregene Blood Kit (Qi-
agen). After library amplification, DNA was analyzed for deep-targeted sequencing on the
Ion Torrent PGM system. The panel covering PVRL2 (GRCh38: 19:44,846,135-44,889,227),
TOMM40 (GRCh38: 19:44,891,219-44,903,688, and APOE (GRCh38: 19:44,905,748-44,909,394)
was used to examine the genetic variants in 80 AD patients. In total, 98.5% of target bases
were read more than 20 times for the depth of coverage. Sequencing data were aligned
to the hg38 human reference genome and analyzed using Torrent Suite Software. Vari-
ants were filtered by Bam-Utils v1.0.2. Filtered variants were annotated using SnpEff
v4.2. The in-house genetic database was used to exclude variants in 250 healthy subjects.
Integrative Genome Viewer (IGV) software (http://software.broadinstitute.org/igv/, ac-
cessed on 14 February 2023) was used for mutation analysis. Allele frequency <1% in
1000 Genomes were defined as rare genetic variants. The joint variant calling file (VCF) was
annotated with refGene gene regions, single-nucleotide polymorphism (SNP) effects, func-
tional effect prediction tools, and the Exome Variant Server (EVS) and 1000 Genomes minor
allele frequencies (MAFs) using Annovar (http://www.openbioinformatics.org/annovar/,
accessed on 14 February 2023). Annotated VCF was analyzed as follows: Variants in
exons and splice sites of PVRL2, TOMM40, and APOE genes were extracted with MAF of
<1% in genetic databases, including the dbSNP database and the 1000 Genomes project.
The variants were further interpreted and then manually annotated using the Human
Gene Mutation Database (HGMD, www.hgmd.cf.ac.uk, accessed on 14 February 2023),
AD&FTD (www.molgen.ua.ac.be/admutations/, accessed on 14 February 2023), AlzForum

https://tai-wanview.twbiobank.org.tw/browse3
https://tai-wanview.twbiobank.org.tw/browse3
http://software.broadinstitute.org/igv/
http://www.openbioinformatics.org/annovar/
www.hgmd.cf.ac.uk
www.molgen.ua.ac.be/admutations/
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(www.alzforum.org/mutations, accessed on 14 February 2023) databases, and literature
searches. Genetic variants in target genes were confirmed using Sanger sequencing.

4.3. Sequencing and Genotyping of TOMM40 Genetic Variants

Genetic variants and SNPs of TOMM40 identified from the cohort were further
confirmed by performing TaqMan analysis or Sanger DNA sequencing (Applied Biosys-
tems, Framingham, MA, USA). SNP rs157581, rs11556505, and rs440446 were examined
using TaqMan genotyping probes (C_3084827_10/rs157581, C_2769404_10/rs11556505,
C_905012_20/rs440446, Thermo Fisher Scientific, Waltham, MA, USA).

4.4. Cell Culture

BV2 mouse microglial cells and HT22 mouse hippocampal neuronal cells were pur-
chased from Elabscience (Cat. EP-ML-0697 and EP-CL-0493) and maintained in a DMEM
medium containing 10% FBS. Cells were grown at 37 ◦C in humidified air with 5% CO2
and then sub-cultured into different culture plates.

4.5. Transfection of TOMM40 Genetic Variants

The cDNA of WT, (F113L), or (F131L) TOMM40 was subcloned into the pcDNA3
expression vector (Invitrogen, Carlsbad, CA, USA) containing the FLAG (DYKDDDDK)-
tag sequence. WT or mutant TOMM40 plasmids were transfected into BV2 microglial
cells using the Lipofectamine 2000 transfection reagent (Thermo Fisher Scientific). After
transfection for 2 or 3 days, transfected cells were used for the experiments described below.

4.6. Determination of Mitochondrial Membrane Potential (∆Ψm) and Mitochondrial Superoxide

To analyze ∆Ψm, control or transfected BV2 microglial cells interacted with 100 nM of
∆Ψm-sensitive dye tetramethylrhodamine methyl ester (TMRM; Thermo Fisher Scientific)
for 30 min at 37 ◦C. The mitochondrial level of superoxide was measured by incubating BV2
microglial cells for 30 min at 37 ◦C with 5 µM MitoSox Red dye (Thermo Fisher Scientific),
which is oxidized by superoxide and produces red fluorescence. TMRM or MitoSox Red
images of 36 fields per well were obtained with the aid of the LionHeart FX automatic
microscope (BioTek, Winooski, VT, USA). Fluorescent signals of TMRM or MitoSox Red
were quantified and analyzed using Gen5 software (BioTek).

4.7. Immunofluorescence Staining of Iba-1

BV2 microglial cells were fixed with 4% paraformaldehyde and permeabilized with
0.5% Triton X-100. Fixed cells interacted with the anti-Iba-1 primary antibody (iReal,
Hsinchu, Taiwan). Cells then interacted with the Alexa Fluor 488-conjugated secondary an-
tibody (Invitrogen). For each imaging experiment, thirty-six images of control or transfected
BV2 microglial cells were taken using the LionHeart FX automatic microscope (BioTek),
and fluorescence intensity was then analyzed using Gen5 software (BioTek).

4.8. Immunoblotting Assays

Proteins were extracted from control or transfected BV2 microglial cells using the RIPA
lysis buffer. Proteins were separated using SDS-polyacrylamide gel electrophoresis and
transferred to PVDF membranes. Membranes interacted overnight at 4 ◦C with diluted
primary antibodies (Supplemental Table S1). After washing, membranes interacted with
HRP-conjugated anti-rabbit or anti-mouse secondary antibodies. Subsequently, immunore-
active proteins were detected using the ECL kit. The relative protein level was quantified
by using Image J software and normalized to β-actin.

4.9. Measurement of Pro-Inflammatory Cytokines in Culture Medium

The level of IL-1β, IL-6, or TNF-αwas measured using an ELISA kit (Abcam, Waltham,
MA, USA). Briefly, 100 µL of the culture medium of control or transfected BV2 microglial
cells and cytokine standards were added to 96-well pales coated with the primary antiserum.

www.alzforum.org/mutations
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Then, the biotinylated antibody was loaded into the wells. Following 1 h incubation, the
HRP-streptavidin reagent was added to the 96 wells, and OD450 was measured using a
microplate reader.

4.10. Determination of Cell Viability of HT22 Hippocampal Neurons

The culture medium (CM) of HT22 hippocampal neuronal cells was replaced with CM
of control or transfected BV2 microglial cells. Following 24-h incubation, the cell viability
of HT22 hippocampal neurons was assessed using the CCK-8 assay kit (Sigma-Aldrich).
Briefly, WST-8 was applied to culture wells for 1 h, and then OD at 450 nm was measured
with a spectrophotometer.

4.11. Measurement of Plasma Levels of Cytokines or COX-2

Plasma levels of IL-1β, IL-6, IL18, IL-23, IL-33, TNF-α, and COX-2 were determined
using an ELISA kit (Abcam). Briefly, 10 µL of the plasma sample was loaded into 96-well
pales coated with the primary antibody at 25 ◦C for 150 min. Subsequently, the biotinylated
secondary antiserum was added to the wells. After 1 h incubation, the HRP-streptavidin
reagent was loaded into the 96 wells, and then OD450 was detected on a microplate reader.

4.12. Statistics

All results were expressed as the mean ± S.D. value. Demographic data for clinical
subjects and the frequencies of genotypes between AD patients and control subjects were
compared using an χ2-test (Fisher’s exact test) or t-test, where appropriate. All results
were analyzed by using the GraphPad Prism Program and SAS software version 9.1.3. For
cells’ experimental results, statistical significance was evaluated by a one-way ANOVA
with Tukey’s post-hoc test (multiple groups) or unpaired two-tailed Student’s t-test (two
groups). Statistical differences were considered significant at a p-value of <0.05.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24044085/s1.
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