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Abstract: Allogeneic cell therapies, defined by genetically mismatched transplantation, have the
potential to become a cost-effective solution for cell-based cancer immunotherapy. However, this
type of therapy is often accompanied by the development of graft-versus-host disease (GvHD),
induced by the mismatched major histocompatibility complex (MHC) between healthy donors
and recipients, leading to severe complications and death. To address this issue and increase the
potential for allogeneic cell therapies in clinical practice, minimizing GvHD is a crucial challenge.
Innate T cells, encompassing subsets of T lymphocytes including mucosal-associated invariant T
(MAIT) cells, invariant natural killer T (iNKT) cells, and gamma delta T (y3 T) cells, offer a promising
solution. These cells express MHC-independent T-cell receptors (TCRs), allowing them to avoid MHC
recognition and thus GvHD. This review examines the biology of these three innate T-cell populations,
evaluates research on their roles in GvHD modulation and allogeneic stem cell transplantation (allo
HSCT), and explores the potential futures for these therapies.

Keywords: graft-versus-host disease (GVHD); GvHD modulation; innate T cell; mucosal-associated
invariant T (MAIT) cell; invariant natural killer T (iNKT) cell; gamma delta T (yd T) cell; major
histocompatibility complex (MHC); T-cell receptor (TCR)

1. Introduction

Graft-versus-host disease (GvHD) is a common complication associated with allo-
geneic transplantation such as allogeneic hematopoietic stem cell transplantation (allo
HSCT) and chimeric antigen receptor T (CAR-T)-cell therapies. With their highly variable
o3 T-cell receptors (TCRs), donor T cells bind with major histocompatibility complex
(MHC) class I and II molecules widely expressed on recipient tissue cells [1]. When the
TCR recognizes the MHC as foreign, donor T cells initiate the immune response and attack
recipient cells, causing an alloreaction leading to GvHD. Moreover, in adoptive cell thera-
pies without preconditioning, recipient T cells can also recognize mismatched donor MHC
molecules and attack transplanted cells. However, even with MHC-matched donors such
as siblings, patients develop acute and chronic GvHD in 25-40% and 40-60% of the cases,
respectively [2]. Under these circumstances, GVHD is induced by the disparity between
donor and recipient minor histocompatibility antigens (miHAs), peptides bound to MHC
molecules that are capable of triggering a donor T cell immune response [3].

Mediators of GVHD include several populations of T cells, such as CD4" T cells, CD8*
T cells, and CD4/CD8 double-positive populations. These T-cell populations induce GvHD
via a perforin-dependent pathway [4] and secretion of interferons (IFNs) [5]. Different
memory T-cell subsets have varying abilities to mediate GvHD based on their phenotypes.
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For instance, whereas CD62L* naive T cells and CD44"CD62L" central memory T cells are
capable of inducing GvHD due to their high alloreactivity [6,7], CD62L" memory T cells do
not cause GVHD in general [8,9]. In the case of Th17 cells, studies have indicated that GvHD
progression is exacerbated after polarization [10] and that in vitro differentiation leads
to severe GvHD with pulmonary damage [11]. Furthermore, CD3*CD4*CD25" FoxP3*
regulatory T cells (Tregs) alleviate GVHD by directly regulating effector T cell function via
the secretion of inhibitory cytokines [12].

Current therapies against GVvHD work by manipulating mediators of the disease, the
most common mediator being T cells. To address this, the most common treatment for
GvHD is T-cell depletion (TCD), allowing accurate elimination of specific T-cell subsets,
usually via magnetic-associated cell sorting [13]. Studies on CD34* TCD in CAR-T-cell
transplantation indicate that alloreactive T cells from the graft are effectively depleted and
the incidence of GvHD and relapse is significantly decreased [14,15]. Manipulating other
mediators of alloreactivity can also be useful, such as expanding Tregs to alleviate GVHD
or recruiting NK and gamma delta T cells to restore immunity following depletion [16,17],
considering that TCD may lead to diminished reactivity and efficacy of the grafted effector
cells [13]. In addition, myeloid-derived suppressor cells (MDSCs), which are formed under
chronic inflammation or infection and stimulated by signals including macrophage (M-
)/ granulocyte (G-)/granulocyte-macrophage (GM-) colony-stimulating factors (CSFs) and
proinflammatory cytokines such as IFN-y, IL-4, IL-6, and IL-23 [18,19], play a significant role
in the treatment of GVHD with their immunosuppressive function, shielding grafted cells
from alloreactivity. MDSCs are also capable of assisting Treg expansion and inhibiting the
proliferation of T cells through cytokine secretion, suppressing the inflammation induced
by GvHD [19].

One limitation associated with the depletion-based therapies for GvHD described
above is that they focus on eradicating reactive T cells rather than addressing MHC recog-
nition, severely limiting the efficacy of the initial adoptive cell transfer. A potential solution
being explored is harnessing the MHC-independent properties of innate lymphocytes to
limit GvHD responses in patients. Mucosal-associated invariant T (MAIT) cells, invariant
natural killer T (iNKT) cells, and gamma delta T (yd T) cells are three populations of innate
T lymphocytes being explored for their potential in mediating GvHD responses (Table 1).
With their semi-invariant chains and restricted number of /3 /7y chains [20], innate T cells
induce cytotoxicity through MHC-independent mechanisms, enabling the transplantation
of allogeneic effector cells without the risk of GVHD. In addition to their MHC-independent
TCR activation, each of these innate T cells also has a unique mechanism to minimize
GvHD (Figure 1). In this review, we elaborate on these innovative approaches to treat
GvHD using innate T cell modulation.

Table 1. GvHD modulation by three innate T cells, including MAIT, iNKT, and v T cells.

Innate T Cell Types  Clinical or Preclinical GvHD Modulation
Clinical An increased number of MAIT cells is associated with improved overall survival
and less GVHD [21-25].
MAIT - : .
Preclinical MAIT cells suppressed conventional CD4+ T-cell proliferation [25].
MAIT cells regulate GVHD in part by the generation of IL17A [26].
) . A higher number of iNKT cells is correlated with better GvHD-free
iNKT Clinical

survival [27-30].




Int. . Mol. Sci. 2023, 24, 4084

3of 14

Table 1. Cont.

Innate T Cell Types

Clinical or Preclinical GvHD Modulation

Host iNKT cells trigger the expansion of donor Tregs through an
interleukin-4-dependent pathway [31].

CD4* iNKT cells protect mice from GvHD [32-34].

CD4" iNKT cell subset controls GVHD better than its CD4" counterpart by
inducing apoptosis of dendritic cells [35].

iNKT cells induced selective apoptosis of conventional dendritic cells but not
beneficial plasmacytoid dendritic cells [36].

Allogeneic iNKT cells could target tumor cells without GvHD risk [37].

Donor iNKT cells could prevent and reverse chronic GvHD in murine

models [38].

Host/allogeneic iNKT cells could ameliorate GvHD while preserving antitumor
effects [32,39-41].

iNKT2 and iNKT17 cells are responsible for the immune regulatory properties
instead of iNKT1 cells [42].

Preclinical

v6 T

An increased number of yd T cells is associated with less acute GVHD [22,43].

Patients receiving higher concentrations of donor v T cells have a more
Clinical frequent incidence of acute GvHD [44,45].

The v5 Treg proportion has a negative correlation with acute GvHD

incidence [46].

G-CSF-induced v T cells suppress CD4* T-cell proliferation and regulates acute
Preclinical GvHD [47].
CAR-engineered gdT cells lead to a lower incidence of GvH response [48].
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Figure 1. Targeting tumor and host cells by conventional «f3 T (A), iNKT (B), MAIT (C), and y5 T
cells (D). MHC-antigen-TCR interactions allow T cells to recognize target cells. MHC molecules on
host cells could be recognized by conventional T cell TCRs after allogeneic cell infusion, resulting
in GvHD. However, innate T cell TCRs do not recognize mismatched MHCs and protein antigens,
therefore, these cells have no GVHD risk. MR1, major histocompatibility complex, class I-related
protein; 5-OP-RU, 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil.

2. MAIT Cell Modulation of GvHD

MAIT cells are a subset of innate T cells found in the blood, liver, and the epithelial
layers of the lung and the respiratory and GI tracts [49,50]. These cells are quiescent
until activated by microbial infections. MAIT cells exhibit a CD161" phenotype and have
a semi-invariant TCR composed of an invariant « chain and a 3 chain from a variant
[ repertoire [26]. MAIT cells have several mechanisms for activation, including TCR-
dependent and -independent pathways. The TCR-dependent pathway involves TCR
recognition of riboflavin-derived antigens presented by MR1, an MHC class I-like molecule
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for MAIT cell activation [51]. The primary ligand for MR1 is 5-(2-oxopropylideneamino)-6-
d-ribitylaminouracil (5-OP-RU), an intermediate of riboflavin biosynthesis by microbial
pathogens [52]. Studies have demonstrated the effector activity of MAIT cells in vitro
is significantly enhanced with the administration of synthetic 5-OP-RU, indicating its
potential role in mediating MAIT populations [48]. The TCR-independent mechanism
involves inflammatory cytokines including IL-7, IL-12, and IL 18 [50]. Upon activation,
MAIT cells proliferate, accumulate in vivo, initiate cytotoxic function via perforin and
granzymes, and secrete pro-inflammatory cytokines (e.g., IFN-y, TNF-«, IL-15, IL-17, and
GM-CSF) to recruit circulating effector cells in vivo [53].

The unique biology of MAIT cells allows them to minimize the occurrence of GvHD
from MHC mismatch. MAIT cells have been shown to be crucial in both acute and chronic
GvHD, particularly when it comes to complications of the gut and skin, where MAIT
cells reside. In patients with allo HSCT, Gao et al. found that there was a higher risk of
acute GvHD in grafts with lower frequencies of MAIT cells [21,25]. Acute GvHD may also
be influenced by the intestinal microbiota: acute GvHD is more likely to develop when
there are more non-riboflavin pathways [22], further providing evidence that MAIT cell
activation plays a key role in GvHD modulation.

MAIT cells in allografts influence chronic GVHD as well. Although the long-term
reconstitution of MAIT cells after allograft transplantation may be affected by various
factors including the diversity of gut microbiota, different donor sources, and MAIT cell
number/type in the transplanted tissue [24], the early reconstitution is influenced by MAIT
cell proliferation after transplantation [26]. Higher MAIT cell counts in allografts reduce
the risk of poor MAIT reconstitution and, consequently, the incidence of GvHD [24]. Along
with clinical results, in vitro studies of CAR-MAIT cells showed that these cells exhibit high
efficacy and safety against tumors, minimizing GvHD in allogeneic cell-based therapy [48].
The CAR-MAIT cell TCR identifies high levels of MR1 molecules on myeloid-cell-derived
APCs, which have been found to exacerbate acute and chronic donor T-cell-induced GvHD;
hence, CAR-MAIT cells may remove these myeloid APCs and diminish GvHD [48,54,55].

3. iNKT Cells Modulation of GVHD

iNKT cells are a subset of T cells that play a role in bridging the adaptive and innate
immune systems with a variety of mechanisms [56,57]. As an innate lymphocyte population,
iNKT cells express the semi-invariant Va24Jx18 TCR in humans, paired with a limited V3
chain [42,58-60]. Similar to other innate immune cells, iNKT cells exhibit less specificity and
a quicker activation than adaptive lymphocytes [61]. iNKT cells recognize lipid antigens
presented on CD1d [57,59], a non-polymorphic MHC class I-like molecule [42,57,59,61].
Due to the degree of conservation in the canonical TCR and CD1d molecules, interspecies
cross-reactivity is possible [62]. For instance, mouse iNKT cells are capable of reacting with
human CD1d molecules and vice versa, demonstrating iNKT cells” potentially broad role
in the immune system [62].

As mentioned before, one distinguishing characteristic of iNKT cells is that they
recognize glycolipids presented on CD1d [60]. The majority of the known antigens are
composed of a similar structure of a lipid tail buried into the CD1d surface protein and
a sugar head group emerging to make contact with the iNKT TCR [62]. The glycol-
ipid «-galactosylceramide (x-GalCer) was the first discovered crucial activator for iNKT
cells [57,63]. Although iNKT cells possess both TCR « and {3 chains, evidence supports
that recognition of CD1d is carried out via the TCRw chain with four essential amino acids:
Asp94, Arg95, Gly96, and Ser97. The TCRf chain is shown to not be involved in the binding
process [64-67]. Although binding with cognate antigens, such as microbial glycolipids, can
directly stimulate iNKT cells, indirect activation of iNKT cells occurs through two primary
methods for pathogens that lack cognate antigens: partial CD1d-TCR-binding-dependent
activation combined with antigen presenting cell (APC) stimulation or CD1d-independent
activation [62].
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iNKT cells have been shown to play a role in modulating the GvHD response in
transplant patients [27,32-35,38,56,68]. With reduced intensity conditioning (RIC), total
lymphoid irradiation (TLI), and antithymocyte globulin (ATG), iNKT cells are able to
alleviate GvHD in transplant patients [27,41,69]. Moreover, host iNKT cells trigger the
expansion of Tregs, which play an essential role in the immunosuppression required to
avoid GvHD [31]. The severity of GvHD in humans has been found to be correlated
with the persistence of iNKT. [29,70-74]. The incidence of GVHD is also reduced in grafts
that include more donor iNKT cells [56]. For instance, one study has demonstrated that
the number of iNKT cells in the cryopreserved graft significantly increased GvHD-free
progression-free survival (GPFS) among patients undergoing peripheral blood stem cell
transplantation (PBSCT) by an average of two years [28].

Because of iNKT cells’ potential in reducing GvHD, the therapeutic potential of iNKT
cells is being increasingly studied. One method to enhance the therapeutic potential
of iNKT cells is through ex vivo expansion via single antigenic stimulation [40]. In the
study conducted by Trujjilo-Ocampo et. al., following enrichment from peripheral blood
mononuclear cells (PBMCs), iNKT cells are cultured with antigen-presenting dendritic cells
for two weeks with agonist glycolipids such as «-GalCer [40]. Expanded iNKT cells express
high levels of CD4 and alleviate xenograft GvHD, as evidenced by a higher survival rate
for the iNKT-treated mice, as well as significantly less severe GVHD features in the skin,
small intestine, liver, and lung compared with those in the PBMC-only-treated mice. The
suppression of the proliferation of conventional T cells was observed as well, which might
be the consequence of strong TCR-mediated activation of responder T cells or the high ratio
of responder T cells to iNKT cells [40].

Two main phenotypes of iNKTs in humans include CD4" iNKT cells that secrete
more IL-4 and CD4'CD94" iNKT cells with a strengthened cytotoxic function [75]. These
cells suppress GVHD by expansion manipulation through IL-4 secretion and peripheral
tolerance pathways [33] and by controlling alloreactivity through CD4" iNKT cells targeting
recipient APCs [35]. Being supported by the biology of these two sublineages and the
clinical evidence of the correlation between donor iNKT persistence and lower incidences
of GvHD, preclinical studies have broadened the road for potential allogeneic therapies
that utilize CD4" or CD4'CD94* iNKT cells as the source. A study has generated third-
party hematopoietic stem cell (HSC)-engineered human iNKT (**'HSC-iNKT) cells, which
is accomplished through the combination of HSC gene engineering and in vitro HSC
differentiation, demonstrating the ability of iNKT cells to simultaneously ameliorate GvHD
while maintaining the anti-tumor response. Similar to the PBMC-derived endogenous
CD4 iNKT cells, *dHSC-iNKT cells secrete high levels of IFN-y, TNF-«, granzyme B, and
perforin, indicating the Thl cytokine profile and cytotoxic potential. In this study, the
iNKT cells” suppression for GvHD is at least partially through the recognition of CD1d.
Such an advantage in GvHD reduction is also attributed to the Treg expansion induced
by IL-4 as mentioned above. One interesting point about this study is that although the
mechanisms vary, CD4* iNKT cells are also involved in GvHD amelioration. By controlling
resident immune cells and secreting regulatory cytokines, iNKT cells are found to be potent
mediators of GVHD in allograft patients, and engineering mechanisms to harness this
potential is being investigated for its therapeutic benefit [39].

4. v5 T Cell Modulation of GvHD

v T cells are a highly heterogeneous population of T lymphocytes that exhibit qualities
of both innate and adaptive immune cells. They are defined by a vy TCR unique from the
conventional o3 T cells in their antigen recognition, anatomical distribution, and killing
mechanisms [76]. yb T cells normally constitute between 1-10% of the total T cells in the
human body and operate independently of HLA recognition during the initial phases
of the immune response [43]. The y5 TCR loci are the T-cell receptor gamma (TRG) and
the T-cell receptor delta (TRD) loci, and rearrangement is dependent on recombination
activating genes (RAG). These loci are much more restricted than in «f3 T cells, with only
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six functional TRG V segment genes and eight functional TRD genes (compared with
70 Va and 52 VB genes) [77]. The TCR composition largely determines the localization of
the T cell, with V61, V63, or V65 TCRs localizing in epithelial tissues and Vy9V52 more
commonly circulating in the peripheral blood [78,79]. The vast majority of y5 T cells do
not express CD4 or CD8 coreceptors but rather express several NK receptors for NK-like
function (e.g., CD16, NKG2D, MIC-A, MIC-B, and UL16) [80,81].

Whereas a3 T cells migrate to the thymus, many yd T migrate to tissues such as the
epidermis, dermis, intestines, or uterus. In addition, unlike conventional 3 T cells, y5 T
cells recognize molecules independently of MHC [76]. TCR composition and coreceptor
expression largely dictate the physiological distribution and antigen specificity of different
v6 T cell subtypes. The most common peripherally circulating v T cells, Vy9Vo2 v
T cells, recognize phosphoantigens produced by microbes or malignancies, and tissue-
localized Vo1 and V&3 vd T cells recognize molecules presented by the CD1 family of
surface receptors [77]. Vy8V3 peripheral blood v6 T cells recognize annexin A2, and
Vy4V65 v8 T cells recognize endothelial protein C receptors in the peripheral blood [82,83].

Effector function in y$ T cells is activated through various means, including secreting
regulatory cytokines, releasing perforin, granzymes, and IFN-y, and antibody-dependent
cellular cytotoxicity (ADCC) via CD16 [84]. Effector function in yd T cells may vary
depending on the individual cell’s niche, with intestinal-resident yd T cells secreting
keratinocyte growth factor for epithelial homeostasis [77]. Other effector functions may be
induced either dependent or independent on TCR recognition. For example, IL-13- and
IL-23- induced cytokine production allows v T cells to secrete IL-17 and other regulatory
cytokines in humans [85]. Furthermore, TCR- and NK-marker activation may enable y5 T
cells to enter a pro-inflammatory state, secrete IFN-y, TNF-«, and IL-17, and induce cells to
enter a state of antigen presentation, thereby promoting the adaptive immune response in
CD4" and CD8* T cells [10]. In this manner, v T cells serve a role in bridging the innate
and adaptive immune responses, activating with and without antigen stimulation.

The nature of y5 T cells’ MHC-independent activation suggests that they may play
a vital role in mediating GvHD for allogeneic cell therapies. In patients with allogeneic
stem cell transplantation for hematological malignancies, higher concentrations of y6 T
cells about two months after transplantation correlated with improved overall survival and
relapse-free survival. Moreover, the risk of acute GvHD one month after transplantation
was greatly reduced for patients with higher levels of yd T cells [43]. Speculatively, allo-
geneic yd T cells may alleviate GvHD by immunoregulatory actions such as IL-4 secretion
or cytotoxic effects on CD277-expressing APCs [48,86]. These data suggest a role for these
lymphocytes in protecting against tumor cells and against alloreactivity.

In addition to being associated with better prognosis in stem cell transplant patients,
vd T cells show great potential as an allogeneic cell product for cancer immunotherapy
owing to their absence of MHC restriction, inherent antitumor abilities, and ability to act as
an APC [87]. Several methods have been studied to utilize y5 T cells as an adoptive cell
product. Most commonly aminobisphosphonates, known stimulants of y3 T cells, have
been utilized for ex vivo expansion and activation. Gertner-Dardenne et al. demonstrated
expanded yd T lymphocytes were capable of efficient killing of AML blasts via TCR- and
DNAM-1-mediated perforin/granzyme activation both in vitro and in murine models [88].
Further studies with anti-BTN3A 20.1 monoclonal antibodies have demonstrated in vitro
expansion and Vy9V$2-T-cell-mediated killing of AML in vitro. The monoclonal antibody
activation of Vy9V62 T lymphocytes was demonstrated to be instigated via both TCR
and BTN3A pathways, with the anti-BTN3A 20.1 antibodies enabling effector cells to
target cells resistant to typical Vy9V62-T-cell-mediated lysis [89]. Similarly, FDA-approved
monoclonal antibodies (i.e., rituximab and alemtuzumab) and the bispecific T-cell engager
(BiTE) blinatumomab have shown improved survival against hematological malignancies in
murine models [87]. Monoclonal antibodies targeting hematological malignancies activate
v6 T cells via CD16-mediated ADCC function, and BiTE molecules activate via CD3
stimulation and dual engagement of tumor and T cells.
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For adoptive cell transfer, CAR-yd T cells show promise as an allogeneic therapy
due to MHC-independent TCR recognition. Data is limited on the success of CAR-y6 T
cells; however, preclinical data demonstrates enhanced killing against leukemia, targeting
both CD19* and CD19" tumor cells in murine models [14]. Adoptive transfer has also
been tested in preclinical trials for CD20-directed CAR-yd T cells and showed promise
against B-cell lymphoma, serving as the basis for a phase I clinical trial for patients with
CD20-positive B-cell malignancies (NCT04735471) [90]. Preclinical success with CAR-yd
T cells supports a multipronged activation resulting from NK activation markers and
CAR-specified activation of the engineered cells.

Allogeneic cell therapies based on y6 T cells show promise across several pathways
of administration. The positive association of v T cell level and patient outcome and
prognosis in regard to tumor relapse and occurrence of GVHD heavily indicates that y5 T
cells play a role in the modulation of alloreactivity and tumor persistence. Because of this,
several means of utilizing the MHC-independence and high tumor reactivity of y6 T cells
are being explored for allogeneic cell therapies. However, other research has suggested
that yo T cells may have a negative impact in GvHD. Wu et al. discovered that y6 T cells
enhanced CD4 T-cell migration via the SDF-1-CXCR4 axis, exacerbating acute GvHD post
allo HSCT [91]. As a result, more research into the influence and activities of y5 T cells in
modulating GvHD is warranted.

5. Discussion

Reducing the occurrence of GvHD events in transplant patients has the potential
to broaden the population able to receive newly developed adoptive transfer treatments.
Due to their MHC-independent targeting mechanism, innate-like T-cell subsets, which
are distinguished by their semi-invariant TCRs, show promise to reduce the occurrence
of GVHD. In this review, we comprehensively summarized the biological functions of
MAIT, iNKT, and y8 T cells and their role in the modulation of GvHD responses. Innate T
cells, as previously noted, do not recognize MHC molecules, reducing GvHD by limiting
the detection of foreign antigens by surveilling immune cells. Low frequencies of MAIT,
iNKT, and y8 T cells are correlated with an elevated risk of GVHD and a decreased overall
survival rate in patients following allogeneic stem cell transplantation, suggesting innate T
cells play a role in the modulation of GvHD in recipients of allogeneic transplants [28,43,92].
Therefore, these T-cell subtypes are receiving increasing attention to address GvHD in
transplant patients.

Although there is a correlation between the presence of innate T cells and the risk
of GvHD, the mechanisms of how GvHD is modulated remain unclear for MAIT cells
and yd T cells. However, for iNKT cells, GvHD-mediation is better studied. For instance,
we understand that iNKT cells prevent and reverse chronic GVHD in murine models by
expanding donor Tregs via cytokine stimulation [38] and CD4" iNKT cells were found to
protect mice from fatal GVHD [33]. Furthermore, human CD4~ iNKT cells were reported
to suppress the numbers and maturation levels of recipient APCs (mostly dendritic cells)
during an allogeneic immune response [35]. Schimid et al. proposed that iNKT cells
could induce preferential apoptosis of circulating conventional dendritic cells (cDCs),
key stimulators of the alloreactive T cell response [36]. This selective apoptosis could
result in a relative expansion of beneficial plasmacytoid dendritic cells (pDCs) and a
decrease in the activation and proliferation of T cells from healthy donors and GvHD
patients [36]. Although there is overlap in the mechanisms of each, the overall pathway for
the suppression of alloreactions in human iNKT cells remains undetermined [36,56].

Despite little understanding of the mechanisms of innate T cells in GvHD modulation,
there are four primary approaches that these cells could be promisingly incorporated into
for allogeneic transplantation (Figure 2). First, innate T cells have a great safety profile
and could be employed as the primary effector against cancer and other disorders through
their NK-like and TCR-mediated cytotoxic functions [93]. Our lab developed a stem
cell platform to generate off-the-shelf allogeneic iNKT cells for cancer [37]. These cells



Int. . Mol. Sci. 2023, 24, 4084

8 of 14

persist with a strong capacity for tumor destruction together with minimal evidence of
GvHD in vitro and a long-lasting effect in mice. v T cells and MAIT cells have also been
discovered to display similar powerful antitumor properties [48,93]. Second, HSCs could
be engineered in vitro with genes for specific invariant TCRs to generate TCR-engineered
allo HSCT [94]. The engineered HSCs will continuously produce specific T-cell subsets
post-HSC reconstitution, thus providing patients with a long-term supply of therapeutic
cells and reducing the risk of GVHD for the duration of treatment [94]. Thirdly, to create
a more balanced population of infused cells in allo HSCT, adoptive transfer of donor
innate T cells could be used in low doses to protect from GvHD [34]. Lastly, allo HSCT
might be administered with third-party innate T cells to reduce GvHD while maintaining
the antileukemia efficacy [39]. For example, allogeneic iNKT cells were found to target
myeloid-derived antigen presenting cells and could be administered as an off-the-shelf
therapy in combination with allo HSCT [33,39].

A. CAR-engineered innate T cell therapy

) Healthy ‘
Patient donor Innate CAR-engineered Patient
-~ Teells innate T cells ~
PBMC y L CAR e id

collection ot A2 engineering
or — ‘. ‘ S — &n S —
()
I vitro
differentiation
Cord
blood
B. Innate TCR gene-engineered allogeneic HSCT
Hdealthy Patient
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HSCs A o
HSC TCR gene virus —
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> N
C. Innate T cell-coupled allogeneic HSCT HsCs
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Figure 2. GVHD modulation of innate T cells in cancer immunotherapy. (A) CAR-engineered innate T
cells are generated from human peripheral blood mononuclear cells (PBMCs) or cord blood hematopoietic
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stem cells (HSCs). These CAR-engineered innate T cells could target cancers with high efficacy
and low GvHD risk. (B) Allogeneic HSCs are engineered with innate T cell TCRs via lentiviral or
retroviral transduction. Post-transplant reconstitution, innate T cells could be produced continuously
to target cancers with reduced GvHD. (C) Donor innate T cells are expanded and coupled with HSCs
for allogeneic HSC transplantation (HSCT). A low dose of innate T cells could potentially protect
patients from GvHD. (D) Third-party innate T cells are generated from healthy donor PBMCs or cord
blood HSCs and infused to cancer patients with allogeneic HSCs. Off-the-shelf innate T cells could
provide a more convenient strategy for GvHD reduction.

Innate T cell-related therapy shows potential over traditional methods of GvHD
reduction. Current methods try to improve host immunoregulation, such as by increasing
Treg concentrations or by chemokine/cytokine modulation, or to decrease transplant
potency by T-cell depletion [95,96]. These techniques reduce treatment effectiveness and
increase safety concerns. Instead, by producing ideal innate-like cell products prior to
infusion, therapies may involve fewer complications while reducing the risk of GvHD
reactions. The indirect modulation of GvHD exhibited by these cells also supports the
potential to rely less on recipient preconditioning as the infused innate T cells suppress
reactive T lymphocytes. Furthermore, with a far-reduced risk of GVHD, genetic engineering
approaches could be employed to further improve safety and efficacy. For instance, suicide
genes could be engineered in innate T cells to eradicate effector cells once remission has been
achieved and reduce risk of other toxicities related to the grafted cells [97]. Incorporating
these safety steps into the development process for adoptive cell transfers ensures a built-
in safety mechanism in the result of unforeseen reactions not possible in conventional
MHC-restricted therapies.

However, innate T cells do hold limitations. Since innate T cells compile a small
fraction of human PBMCs, cell isolation and expansion require a significant amount of
time, inhibiting higher yields and large-scale manufacturing [37,98]. This challenge may be
addressed by utilizing stem cells, which produce up to 10,000 doses of therapeutic cells
from a single donor [39,99]. Additionally, as was previously mentioned, the development
of these therapies may be affected by unforeseen reactions from the transplantation of
allogeneic innate-like T cells, likely due to undiscovered immune pathways in these cells.
Therefore, additional research is required to safely and efficiently engineer innate T cells
for the prevention or treatment of GVHD.
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