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Abstract: In recent years, porous titanium (Ti) scaffolds with BaTiO3 coatings have been designed
to promote bone regeneration. However, the phase transitions of BaTiO3 have been understud-
ied, and their coatings have yielded low effective piezoelectric coefficients (EPCs < 1 pm/V). In
addition, piezoelectric nanomaterials bring many advantages in eliciting cell-specific responses.
However, no study has attempted to design a nanostructured BaTiO3 coating with high EPCs. Herein,
nanoparticulate tetragonal phase BaTiO3 coatings with cube-like nanoparticles but different effective
piezoelectric coefficients were fabricated via anodization combining two hydrothermal processes.
The effects of nanostructure-mediated piezoelectricity on the spreading, proliferation, and osteogenic
differentiation of human jaw bone marrow mesenchymal stem cells (hJBMSCs) were explored. We
found that the nanostructured tetragonal BaTiO3 coatings exhibited good biocompatibility and an
EPC-dependent inhibitory effect on hJBMSC proliferation. The nanostructured tetragonal BaTiO3

coatings of relatively smaller EPCs (<10 pm/V) exhibited hJBMSC elongation and reorientation, broad
lamellipodia extension, strong intercellular connection and osteogenic differentiation enhancement.
Overall, the improved hJBMSC characteristics make the nanostructured tetragonal BaTiO3 coatings
promising for application on implant surfaces to promote osseointegration.

Keywords: Barium titanate; tetragonal; mesenchymal stem cells; cell shape; osteogenic differentiation

1. Introduction

Titanium (Ti) and its alloys are commonly used as bone and dental implants based
on their good biocompatibility and excellent mechanical properties. However, they are
essentially bio-inert, leading to delayed and frequently unsatisfactory osseointegration.
The past decade has witnessed unprecedented research progress with the advent of surface
coating technology that can endow Ti implants with extra bioactivity while maintaining
Ti’s good biocompatibility and mechanical properties [1]. Bone-driven biological coatings
fabricated by stimulating the physiological bone microenvironment may generate bone
implants with enhanced osseointegration and better clinical performance. Unlike biological
molecules and chemicals, surface physical cues with adjustable properties have become a
research hotspot since they can be applied in a timely and localized manner [2]. The natural
bone extracellular matrix (ECM) contains nanoscale cues that are widely believed to play
crucial roles in bone turnover. Inspired by this, Ti with myriad nano-textured coatings has
been developed to enhance the bioactivity of Ti implants [1].

Endogenous electric fields exist in the body and are essential for tissue development,
remodeling, and repairment [3]. Natural bone tissues exhibit electromechanical coupling [4],
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which has long been thought to be attributed to the piezoelectricity of collagen [5]. A recent
study demonstrated that most of the electromechanical response of bone comes from the
flexoelectricity of bone minerals rather than collagen [6]. Besides, ionic streaming poten-
tials contribute to the electromechanical properties of wet bone. These have encouraged
research on the biological effect of external electric fields/currents, with an increasing
body of evidence of their effects on inducing osteogenesis [7]. Clinically, external electric
devices have been used successfully to treat bone fractures since the 1970s [8]. However, the
clinical application of such large-sized extracorporeal equipment is limited by the need for
professional equipment and complex implementation. Compared to external macroscopic
electric fields, those built-in on the implant surface can provide more clinical convenience
and may be better perceived by the cell surface receptors to regulate their functions. Accord-
ingly, pre-charged biomaterial surfaces with polarized ferroelectrics have been developed
to influence cell functions and osseointegration [9–11]. Current evidence suggests that
positive surface charges promote the spreading and enhance osteogenic differentiation
of mesenchymal stem cells compared to the negative and neutral charges [9,10]. Besides,
nanocomposite membranes with negative potential have been observed to enhance bone
regeneration [11]. Indeed, it is highly likely that the surface charges have a limited effective
period since they will decay over time [11]. The electromechanical coupling nature of bone
may be simulated by piezoelectric material coatings, which can generate surface electric
charges in response to mechanical stress or deformation, to provide localized sustained and
dynamic mechanical-responsive electrical stimuli [12]. Mechanical stress or deformation
can originate from biological activities such as cell spread, traction and migration, body
motion, and external stimulators, especially ultrasound [13]. Barium titanate (BaTiO3),
discovered to be piezoelectric early in 1946 [14], has good biocompatibility and has attracted
much attention in the field of biomedical science [15–17]. As a perovskite material, BaTiO3
has five crystalline phases, among which the tetragonal phase, an asymmetrical structure,
has attracted significant interest for practical applications due to its excellent piezoelectric
effect [18]. Piezoelectric nanomaterials are advantageous in eliciting cell-specific responses
due to their nano size, surface nanostructure, high surface-area-to-volume ratio, and high
surface energy compared to their bulk or microscale counterparts [13].

In recent years, much emphasis has been placed on building BaTiO3 coatings on Ti
porous scaffolds to promote bone regeneration [19–22]. Unfortunately, most studies did
not explore the phase transition of the BaTiO3 coatings, and none developed a nanos-
tructured BaTiO3 coating [19–22]. It is well-established that bulk BaTiO3 can be easily
manipulated to exhibit tetragonal ferroelectricity at room temperature, which is gradually
reduced with decreasing particle size and disappears below a certain threshold (in the
range of 10–100 nm) [23]. Hence, it remains challenging to fabricate nanostructured BaTiO3
coating on Ti that exhibits tetragonal ferroelectricity, nor is the combined effect of nanos-
tructured tetragonal phase BaTiO3 with piezoelectric properties as Ti implant coatings
on the functions of bone mesenchymal stem cells (MSCs) clear. In this paper, tetragonal
BaTiO3 nanoparticulate coatings with effective piezoelectric coefficients of 10–180 pm/V
were developed on Ti by anodization combing two hydrothermal processes. Importantly,
their effects on the cell morphology and osteogenic differentiation of human jaw bone
marrow mesenchymal stem cells (hJBMSCs) were studied.

2. Results and Discussion

Figure 1 shows the SEM micrographs of surface morphology and corresponding cross-
sections of S-BT(Coating with small cube-like BaTiO3 particles on the surface)
(Figure 1a1,a2,a3), M-BT(Coating with middle cube-like BaTiO3 particles on the surface)
(Figure 1b1,b2,b3), and L-BT(Coating with large cube-like BaTiO3 particles on the sur-
face)(Figure 1c1,c2,c3), which correspond to 12, 24, and 36 h during the secondary hy-
drothermal reaction, respectively. Evenly distributed cube-like nanoparticles were ob-
served on the three kinds of Ti samples, as shown in the higher magnification surface
morphology SEM micrographs (Figure 1a2,b2,c2). On S-BT, the size of the nanoparticles
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was 103 nm, and a decrease in size was observed with time (95 and 86 nm for M-BT and
L-BT, respectively, Figure 1d). The edges of cube-like nanoparticles were relatively sharp
on S-BT, which became smoother with time (Figure 1a2,b2,c2). The surface morphology
SEM micrographs at low magnification (Figure 1a1,b1,c1) showed that sparsely distributed
cube-like microparticles with sharp edges gradually emerged on M-BT and L-BT, and their
size was positively correlated to the reaction time. The mean microparticle size was 1.86 and
3.03 µm for M-BT and L-BT. Cross-sectional observation of the coatings (Figure 1a3,b3,c3)
showed that the grain size decreased gradually from top to bottom. The coating thickness
values of M-BT and L-BT were slightly smaller than S-BT (Figure 1e).
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Figure 1. SEM micrographs of surface morphology of low magnification (a1–c1) and high magnifi-

cation (a2–c2), and corresponding cross-sections (a3–c3) of the S-BT (a1–a3), M-BT (b1–b3), and L-
Figure 1. SEM micrographs of surface morphology of low magnification (a1–c1) and high magni-
fication (a2–c2), and corresponding cross-sections (a3–c3) of the S-BT (a1–a3), M-BT (b1–b3), and
L-BT (c1–c3). (d) Grain size of the cube-like nanoparticles on the three Ti surfaces. (e) Coating
thickness measured from the cross-sections. Data are presented as mean ± SD, * p < 0.05.

Figure 2a–c shows the AFM 3D reconstruction and roughness of the Ti surfaces. Over-
all, the surface morphology of each group was consistent with the SEM results. For the S-BT
group, the Sa (arithmetic mean height) value was 0.0239 µm, and the Sq (root mean square
height) value was 0.0307 µm, which means that the surface coating of the S-BT group has a
typical nanomorphology. Unfortunately, due to the sparse distribution of larger particles on
the surface of M-BT and L-BT and the limited scanning range of the AFM probe, the surface
roughness data obtained had no practical significance and could not be analyzed. The cube-
like nanoparticles on the Ti samples were scraped off for TEM inspection. No significant
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difference was observed for nanoparticles from different Ti samples. The representative
TEM and S-BT images are shown in Figure 2d,e. The internal structure of the nanoparticles
was compact without defects. HRTEM image (Figure 2e) obtained from the area outlined by
the bright square in Figure 2e showed that the nanoparticles have good crystallinity, and the
lattice stripes of the small particles were clear. The labeled spacings of 0.282 and 0.399 nm
were consistent with the (110) and (100) crystal plane spacings of BaTiO3, respectively. The
EDS data (Figure S1) further showed that BaTiO3 particle was successfully immobilized on
the surface of the Ti since Barium was observed in the EDS data.
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Figure 2. AFM 3D reconstruction (left) and roughness (right) of the Ti surfaces: (a) S-BT, (b) M-BT
and (c) L-BT. TEM image of the cube-like nanoparticles from S-BT (d) and HRTEM image (e) obtained
from the area outlined by the bright square in (d). (f) The images of the scratch test of the S-BT, M-BT,
and L-BT. The red line represents the critical load point.

It is well-established that the strong bonding strength between the implant and the
coating is essential. Otherwise, the coating may peel off during the implantation process,
affecting the osseointegration of the implant. Figure 2f shows the typical images of scratch
tracks for different samples during the scratch test. Overall, the coating was deformed and
destroyed due to the large strain energy generated around the diamond indenter during
the scratch test. The load at which the coating is completely stripped from the substrate is
called the critical load (Lc) [24,25]. Under the same experimental load and scratch length,
the later the stripping point appears, the stronger the coating adhesion is. In our study,
the stripping point of the S-BT appeared later than for M-BT and L-BT, indicating that
the bonding strength of S-BT was better than M-BT and L-BT. Since the bond strength
can be calculated by the ratio of the critical load to the surface area of the scratch tip, we
calculated that the bond strength of S-BT, M-BT and L-BT groups is 140, 70, and 56.6 Mpa,
respectively. Interestingly, the bonding strength of S-BT was superior to hydroxyapatite
(HA) on titanium substrates by various methods in previous reports [26]. Meanwhile, we
acknowledge that the bonding strength values obtained from scratch tests were difficult
to compare across different studies due to the critical load loading method, instrument
type, and different coating/substrate surface influence. Further “pull-out” tests in animal
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experiments [27] are warranted to confirm the sufficiency of coating strength to withstand
the forces bearing during surgery and functioning.

Figure 3 shows the conventional XRD patterns and the Raman spectra of the Ti
specimens. The XRD patterns of all samples (Figure 3a) corresponded to typical BaTiO3
peaks (JCPDS NO. 05-0626). More significant splitting of the Bragg reflection angle 2θ
located at ∼45◦ and indexed as (002)/(200) was observed from 12 h to 36 h. When the
lattice structure of BaTiO3 changed from cubic (centrosymmetric) to tetragonal phase (non-
centrosymmetric), the lattice was distorted, leading to a lengthened c axis, shortened a
axis, and c/a value >1. The calculated c/a ratios were 1.0038, 1.0065, 1.0078 for S-BT, M-BT,
and L-BT, respectively, which indicate that BaTiO3 on Ti samples were in the tetragonal
phase. Raman scattering is a powerful tool for investigating the phase transition of BaTiO3.
The sharp peaks in the Raman spectra at 185, 305, 515, and 715 cm−1 and the absence of a
peak at 190 cm−1 (Figure 3b) also indicate the formation of the tetragonal phase BaTiO3
on the three Ti samples [18]. Overall, it can be concluded that unique BaTiO3 cube-like
nanoparticulated coatings exhibiting a tetragonal phase on Ti substrate were successfully
developed. This is the first report on nanostructured tetragonal BaTiO3 coating on Ti
implant, which is of great significance for studying the combined biological effect of nano
dimension and piezoelectricity.
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Figure 4 depicts the conversion process from the TiO2 nanotube array to large BaTiO3
nanoparticles. Even though the conversion of titanium dioxide nanotubes to BaTiO3 has
previously been described in the literature [28], the mechanism seems different in the
present study. The complete disappearance of the nanotube structure suggested that the
formation of spherical BaTiO3 particles during the first hydrothermal reaction was not
achieved by in situ transformation but by a dissolution–precipitation mechanism, which
can be attributed to high temperature (230 ◦C), high barium concentration and strong alkali
concentration that are the key parameters for nucleation and crystal growth of BaTiO3 [29].
During the secondary hydrothermal process, the BaTiO3 morphology changed from spheri-
cal to cube-like and from cubic phase to tetragonal phase, with the tetragonal characteristics
becoming more apparent with time due to the Ostwald ripening process. With time, the
smaller particles dissolved, diffused and redeposited on the surface of larger particles,
leading to the emergence of microparticles with increased size [30]. Importantly, we ob-
served decreased nanoparticle size, smoothening edges of the nanoparticles, and slightly
decreased coating thickness with the reaction time (Figure 1). Spanier et al. [31] reported
that adsorption of the hydroxyl group was beneficial to the stability of the ferroelectricity of
BaTiO3. Hongo et al. [32] established a model to confirm that the appropriate concentration
of hydroxyl incorporation is conducive to the simultaneous contraction of the a and b axes
of the lattice and elongation along the c axis, important for the stability of the tetragonal
phase structure. Hence, the hydroxyl groups generally formed on the material’s surface
during alkali hydrothermal treatment play an important role during the transformation
from the cubic phase to the tetragonal phase during the second hydrothermal process.
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Piezoresponse force microscopy is often used to measure the ferroelectricity and
piezoelectricity of nanomaterials via an indirect piezoelectric effect, in which the material
deforms under the influence of an applied electric field [15]. Figure 5a–c shows the hystere-
sis loop and the displacement amplitude of the PFM switching of the BaTiO3 coatings on
Ti. A typical “butterfly” loop was observed on the displacement versus voltage diagram
for each group, typical of ferroelectric materials [33]. For the indirect piezoelectric effect,
the expression of piezoelectric strain is ε = dE, where ε, d, and E are strain, piezoelectric
strain coefficient, and electric field, respectively [15]. Accordingly, the effective piezoelectric
coefficient d33 was calculated based on the “butterfly” loop in Figure 5, yielding values
of 10, 60, and 180 pm/V for S-BT, M-BT, and L-BT, respectively. The gradual increase in
piezoelectric coefficient value was ascribed to the emergence of microparticles of increased
size. It has been reported that the piezoelectric coefficient of bulk BaTiO3 fabricated by
conventional sintering using chemical powder is about 190 pC/N [34]. We found that the
piezoelectric coefficient of L-BT was comparable to bulk BaTiO3. It has been reported that
the piezoelectric coefficient of dry bone is 0.7 pC/N [35], while that of wet bone is about
8 pC/N [36]. Hence, S-BT can reportedly mimic the piezoelectric coefficient of bone, and
M-BT and L-BT can yield the biological effect of supraphysiological ones. In this respect,
the BaTiO3 coatings fabricated by Liu et al. [20] and Cai et al. [22] showed piezoelectric
coefficients of 0.7 pC/N [20] and 0.42 pC/N [22], respectively, which are similar to dry bone.
The coatings developed in the present study generated significantly higher piezoelectric
coefficients than reported in the literature in a context where achieving high tetragonality
and piezoelectricity at the nanoscale level is challenging [23].
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Electrical stimulation has been demonstrated to show a dose-dependent effect on
the behavior of MSCs [37,38]. Hence it is widely thought that the biological effect of
piezoelectric coatings yields a piezoelectric coefficient-dependent effect. However, little
attention has been paid to the piezoelectric coefficient effect on cell functions. The com-
bined effect of the nanostructure and different piezoelectric coefficients on the functions
of hJBMSCs was explored, and BaTiO3 was found to be biocompatible [1]. The hJBMSCs
used in this experiment conform to the characteristics of MSCs, which can be used in the
later experiment (Figure S2). Comparable cell viability was observed after one day of
culture. The gradual proliferation of hJBMSCs on all Ti surfaces (Figure 5d) and good cell
attachment and spreading after three and five days of culture (Figures 6 and 7) on all Ti
surfaces validated the good biocompatibility of the BaTiO3 nanostructured coatings. Good
biocompatibility means that the material implanted in the body will not cause toxic effects
on cells. After three and five days of culture, after pure titanium was taken as the control
group, M-BT showed slight growth inhibition while L-BT inhibited cell growth. Current
evidence suggests that piezoelectric biomaterial (piezoelectric coefficients of 10 pC/N)
exhibits an inhibitory effect on MSCs growth [38]. Meanwhile, the BaTiO3 coatings with
piezoelectric coefficients of 0.7 pC/N [20] and 0.42 pC/N [22] yielded a stimulatory effect
on cell proliferation. Thus, it may be concluded that the effect of the piezoelectric coefficient
on cell proliferation is dose-related, with a smaller piezoelectric coefficient (0.4–0.7 pC/N)
enhancing cell proliferation and a larger piezoelectric coefficient (≥10 pC/N) inhibiting
cell growth.
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Figure 6. Cell morphology and geometry by immunofluorescence (a,b) and SEM (c–f). Fluorescent
staining of cell actin skeleton after culturing for three days on all Ti surfaces (staining: blue-nuclei,
green-actin): (a) lower magnification, and (b) higher magnification. The red arrows indicate the
cell protrusions, and the yellow arrows point to the intercellular connections. SEM micrographs
of hJBMSC morphology on different Ti samples after incubation for five days. The magnification
increases gradually from (c–f). The yellow arrows show the direction of the cell orientation.
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Figure 7. The osteogenic differentiation of hJBMSCs on the Ti samples under dynamic pressurized
conditions. (a) alkaline phosphatase staining, (b) Alizarin Red staining, and (c) semi-quantitative
analysis of Alizarin Red staining. Bars = 500 µm. Data are presented as mean ± SD, * p < 0.05.

Cell morphology and geometry influence cellular processes such as stem cell differenti-
ation, which the biomaterial surface nanotopography can modulate. Indirect mechanotrans-
duction of integrin dependent signal pathways and direct mechanotransduction of gene
expression originated from cell nucleus distortion by force transferred via the cytoskeleton
represent the mechanisms by which biomaterials steer stem cell fate [39,40]. No significant
difference in the cell morphology was observed from the lower magnification images of cell
skeleton staining after three days of culture (Figure 6a). Relatively fewer cells were found on
L-BT compared to the other groups, which is in accordance with the cell proliferation assay
results (Figure 5d). Observation at higher magnification (Figure 6b) showed that the cells
on Ti control tended to elongate many thin filopodia (red arrows) and exhibited relatively
thin intercellular connections (yellow arrows). However, on the three BaTiO3 coatings,
broad lamellipodia (red arrows) with broad and tight intercellular connections (yellow
arrows) were mainly observed instead of thin filopodia. Filopodia are thin extensions at
the cellular periphery responsible for cell migration [41], while lamellipodia are broad
sheet-like cellular actin structures playing roles in cell motility, directional migration, cell
polarity maintenance and environmental probing [42]. Besides cell-biomaterial interaction,
cell-cell communication is also important for cell functions, which have been reported to be
modulated by biomaterials [43]. Cell skeleton staining indicated that nanostructure and
static electrical stimulation promoted arrangement and cell adhesion. Meanwhile, we also
obversed hJBMSC morphology through SEM.

Cell geometry was further studied by SEM after five days of culture (Figure 6c–f).
Observation at lower magnifications showed that on Ti and L-BT (Figure 6c,d), the cells
adopted a polygonal cell shape with a random distribution of orientation and smaller
abundance on L-BT. However, S-BT and M-BT induced the elongation of the cells and
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their reorientation in the same direction (indicated by the yellow arrows). The cells nearly
reached confluence on Ti, S-BT, and M-BT after five days of culture, while those on L-BT
only showed a nearly 50% coverage of the Ti surface. Further details are shown on the
higher magnification SEM images in Figure 6e,f. The ventral-dorsal thickness of the cells
was much larger on the three BaTiO3 coatings than on the Ti control, making the cells on
the BaTiO3 coatings more stereoscopic. Long and strong lamellipodia were commonly seen
on S-BT and M-BT, while short and thin filopodia were more prevalent on Ti. Accordingly,
it is widely thought that S-BT and M-BT have more extensive intercellular connections. To
conclude, BaTiO3 coatings of 10 and 60 pm/V lead to elongation, reorientation, lamellipodia
stretching, and solid intercellular connection of hJBMSCs.

Figure 7 shows the results of the osteogenic activity evaluation under dynamic pres-
surized conditions in vitro. After seven days of osteogenic induction, ALP activity (a
marker for early osteogenic differentiation) was most prominent on different Ti samples of
S-BT, followed by M-BT, Ti and L-BT (Figure 7a). The ECM mineral deposition visualized
by Alizarin Red staining was most prominent in S-BT, followed by Ti, M-BT and L-BT
(Figure 7b,c). The results demonstrate that in the presence of nanostructure, BaTiO3 coating
of 10 pm/V exhibits a stimulatory effect on hJBMSC osteogenic differentiation. Above re-
sult can be explained that the coatings provide a suitable surface topography and generate
an endogenous electric field by mechanical deformation, which can promote hJBMSC cell
adhesion and osteogenic differentiation.

3. Materials and Methods
3.1. Coating Preparation

Ti disk (10 mm in diameter and 1.5 mm in thickness) treatment and anodization were
performed according to a protocol described in the literature [44]. In brief, the nanotube
array coatings were fabricated on Ti in the ethylene glycol (EG, Macklin Biochemical,
Shanghai, China) electrolyte containing 0.5 wt% NH4F (Macklin Biochemical, Shanghai,
China), 5 vol% CH3OH (Fuyu Chemical, Tianjin, China), and 5 vol% H2O at 40 V for
1 h. Then the Ti samples with nanotube array coatings were placed in the PPL-Teflon-
lined stainless-steel reactor containing a mixture of 12.5 M NaOH (Macklin Biochemical,
Shanghai, China) solution and 1 M BaCl2 (Macklin Biochemical, Shanghai, China) solution
with a ratio of 2:1, filled to 50% of its capacity, to construct BaTiO3 film on Ti substrate. The
reactor was kept at 230 ◦C for 24 h as the first hydrothermal reaction. Next, the BaTiO3 film
was introduced to 3.33 M NaOH solution for a secondary hydrothermal reaction at 230 ◦C
for 12, 24, and 36 h to produce BaTiO3 cube-like nanoparticulate films. The secondary
hydrothermal reaction products were named according to their morphologies under SEM.

3.2. Sample Characterization

Surface morphology and coating cross-section of the Ti samples were observed on
field emission scanning electron microscopy (FE-SEM 4800; Hitachi, Tokyo, Japan) with
an acceleration voltage of 5 keV. The Ti surface was coated with gold for optimal imaging.
Surface roughness (Ra) of the specimens was analyzed using atomic force microscopy
(AFM; Agilent Technologies, Santa Clara, CA, USA) with a scanning area of 5 µm× 5 µm
at a scanning rate of 10 µm/s. The particles on Ti samples were scraped off and dispersed
by ultrasonics in anhydrous ethanol. Transmission electron microscopy (TEM) and high-
resolution TEM (HRTEM) micrographs of the nanoparticles scraped off from the Ti samples
were taken on Transmission Electron Microscopes (HITACHI H-800 and JEOL 2010, Tokyo,
Japan) at an accelerating voltage of 200 kV. Coating adhesion to substrates was evaluated
using a scratch tester (WS-2005, CAS, Lanzhou, China) with a 0.2 mm tip radius diamond
indenter, with an experimental load range of 0–30 N, scratch speed of 3 mm/min, and
scratch length of 3 mm. The images were acquired with an optical microscope (Leica,
Wetzlar, Germany). X-ray powder diffraction (XRD) patterns of the products were obtained
on a Japan Rigaku D/Max-IIIC diffractometer at a voltage of 60 kV and a current of 80 mA
with Cu Kα radiation (λ = 1.5406 A), employing a scanning rate of 8◦/min in 2θ ranging
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from 20◦ to 80◦. Raman spectrum was evaluated using a micro-Raman spectrometer (HR800;
HORIBA Jobin Yvon, Paris, France) with a laser wavelength of 532 nm and exposure time of
80 s to acquire the reference peak (r100 cm−1) and reaction peak (r1000 cm−1) of the coatings.
The piezoelectric properties of three BaTiO3 coatings were characterized by piezoresponse
force microscopy (PFM; Nanoscope V Multimode 8, Bruker, Saarbrücken, Germany). The
experiments were conducted under environmental conditions (temperature 25 ◦C, relative
humidity 25%) using the same PFM probe.

3.3. Cell Culture and Identification

The hJBMSCs [45] (Research and Development Center for Tissue Engineering, Fourth
Military Medical University) were grown in αminimum essential medium (α-MEM, Hy-
clone, South Logan, UT, USA) supplemented with 10% fetal bovine serum (FBS, EVERY
GREEN, TIANHANG, Huzhou, China) and 1% Penicillin/streptomycin (Gibico, Carlsbad,
CA, USA) at 37 ◦C in a humidified 5% CO2 atmosphere. The cells were passaged when the
culture reached 80% confluence, and the experiments were performed at passage 4. Cell
identification was performed as previously described [45,46]. Briefly, the abilities of plastic
adherence, osteogenic differentiation, and adipogenic differentiation were studied to verify
the MSC characteristics. Surface antigen (Ag) expressions were detected by flow cytometry
to ensure that the cells were not confounded by other cells.

3.4. Sample Sterilization and Cell Seeding

Given that BaTiO3 undergoes a transition from a ferroelectric tetragonal phase to a
paraelectric cubic phase when heating above 120 ◦C [23], the Ti samples are soaked in
75% medical alcohol (LIRCON, Shandong, China) for 6 h for sterilization instead of using
autoclaving. Then the samples were exposed to ultraviolet irradiation of 2 h to achieve full
sterilization. Finally, the samples were soaked in sterile phosphate buffer saline (PBS, Sigma-
Aldrich, St. Louis, MO, USA) for 6 h to remove possible residual alkali ions before use. The
Ti samples were mounted in 24 well plates (Corning, Shanghai, China). 2 × 104 cells were
suspended in 1 mL α-MEM with 10% FBS, and 1% Penicillin/streptomycin was seeded onto
each Ti sample. The Ti samples were cultured at 37 ◦C in a humidified 5% CO2 atmosphere.

3.5. Cell Viability

Cell viability on the Ti samples was investigated using a Cell Counting Kit-8 assay
(CCK-8; Dojindo, Kumamoto, Japan). The detection time points were one, three, and
five days after cell seeding. Briefly, the Ti samples with cells were rinsed with PBS and
transferred to a new 24-well plate. Then 300 mL of the a-MEM medium and 30 mL of the
CCK-8 solution were added to each sample and incubated at 37 ◦C for 2 h. The absorbance
was measured at 450 nm.

3.6. Cell Skeleton Staining

After the cells were cultured on each sample for three days, the cytoskeleton was
stained with phalloidin (100 nM Acti-stainTM488, AmyJet Scientific, Wuhan, China) at
room temperature for 30 min; then the nucleus was stained with DAPI-containing anti-
fluorescence attenuation mounting medium (VECTASHIELD Antifade Mounting Medium,
Annoron Biotechnology, Beijing, China). The stained specimens were stored in a dark box.
Images were acquired using a Nikon A1 confocal microscope (Nikon, Tokyo, Japan).

3.7. Cell Shape Observation by SEM

On day 5, the cells on the Ti samples were washed with PBS, fixed with 2.5% glu-
taraldehyde, dehydrated with gradient ethanol, freeze-dried, and then observed under
SEM after gold spraying.
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3.8. Cell Osteogenic Differentiation

The osteogenic differentiation capacity of hJBMSCs on the Ti samples was detected
under dynamic pressurized conditions in vitro. The culture media were supplemented with
osteogenic induction solution (10 nM dexamethasone (Sigma, MO, USA), 50 mM ascorbate-
2-phosphate (Sigma), 2 mM β-glycerophosphate (Sigma) and 10 nM 1,25-dihydroxyvitamin
D3 (Sigma)). In this experiment, a pressurizing device was used, which was custom-made
in a previous study [47]. Dynamic periodic pressure loading (dynamic pressure 90 kPa,
frequency 0.1 Hz, and once a day for 1 h each time) was conducted through pressure
conversion. After seven days of culture, the osteogenic cell differentiation was assessed.

3.8.1. Alkaline Phosphatase Staining

For alkaline phosphatase staining, on day seven, the cells were washed with PBS, fixed
in 3% glutaraldehyde for 30 min, and then stained with BCIP/NBT ALP kit (LEAGENE,
Beijing, China). The images were acquired with an optical microscope (Leica, Germany).

3.8.2. Alizarin Red Staining

For Alizarin Red staining, after washing with PBS and fixing, the cells were stained
using 40 mM Alizarin Red (pH 4.2, Solarbio, Beijing, China) to assess mineralization.
The unbound stain was washed with distilled water before the images were taken. The
images were conducted with an optical microscope. Then 10% hexadecylpyridine chloride
(Acros, China) eluent was added (1 mL/well) to measure the absorbance value at 620 nm
wavelength for semiquantitative analysis.

3.9. Statistical Analysis

All data were statistically analyzed with the SPSS 22.0 software package (SPSS Inc.,
Chicago, IL, USA) and presented as the mean ± SD for each group. Comparisons were made
at each time point using a one-way ANOVA. A p-value < 0.05 was statistically significant.

4. Conclusions

In the present study, nanostructured tetragonal BaTiO3 coatings with evenly dis-
tributed cube-like nanoparticles of about 90–100 nm in size of different effective piezoelec-
tric coefficients of 10–180 pm/V were successfully fabricated through a novel method of
anodization combing two hydrothermal processes. The coatings displayed good biocom-
patibility but yielded a piezoelectric coefficient-dependent inhibitory effect on hJBMSC
proliferation. In vitro studies, including the CCK 8 assay, cell skeleton staining, osteogenic
differentiation, alkaline phosphatase staining and alizarin red staining, suggested that the
relatively smaller EPC of < 10 pm/V was associated with hJBMSC elongation and reori-
entation, broad lamellipodia extension, strong intercellular connections, and osteogenic
differentiation, highlighting it has huge prospects for bone implant surface application to
promote osseointegration.
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