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Abstract: Gut microbiota (GM), the microorganisms in the gastrointestinal tract, contribute to the
regulation of brain homeostasis through bidirectional communication between the gut and the
brain. GM disturbance has been discovered to be related to various neurological disorders, including
Alzheimer’s disease (AD). Recently, the microbiota-gut-brain axis (MGBA) has emerged as an enticing
subject not only to understand AD pathology but also to provide novel therapeutic strategies for AD.
In this review, the general concept of the MGBA and its impacts on the development and progression
of AD are described. Then, diverse experimental approaches for studying the roles of GM in AD
pathogenesis are presented. Finally, the MGBA-based therapeutic strategies for AD are discussed.
This review provides concise guidance for those who wish to obtain a conceptual and methodological
understanding of the GM and AD relationship with an emphasis on its practical application.

Keywords: gut microbiota; Alzheimer’s disease; microbiota-gut-brain axis; experimental models;
therapeutic strategy

1. Relationship between Gut Microbiota and Brain Function

Gut microbiota (GM) refers to the microorganisms living in the gastrointestinal (GI)
tract [1]. Primarily, they come from all three taxa of microorganisms, including Bacteria,
Archaea, and Eukarya, with Bacteria being the most predominant. Among them, the
most popular gut bacterial species consist of Proteobacteria, Firmicutes, Actinobacteria, and
Bacteroidetes [2]. From the evolutionary perspective, the GM has fostered a mutually ben-
eficial relationship with the host in several ways [3]. For example, GM plays a critical
role in metabolism by producing enzymes and metabolic intermediates not synthesizable
by the host. In addition, the GM resident on the enteric mucosal epithelium serves as
an immuno-neutral zone to defend against the entry of pathogenic microorganisms into
the host. Beyond its direct effects on host metabolism and immunophysiology, it seems
to indirectly impact the communication between the GI tract and central nervous system
(CNS) in both health and disease states. In particular, GM can influence the neural net-
work controlling gut function through the intrinsic and extrinsic nervous systems, such
as the autonomic nervous system, enteric nervous system, and neuroendocrine and im-
mune systems [4]. As a consequence, GM has been implicated in the regulation of neural
development, neurotransmission, and the maintenance of brain homeostasis.

Considering the critical roles of GM in the normal neurophysiology of the host, some
researchers suggested its direct involvement in the development of various brain dis-
eases under pathogenic conditions. The current predominant theory postulates that the
mechanism of GM-mediated neuropathogenesis involves GM-induced enhanced neuroin-
flammation and imbalanced inhibitory/excitatory neurotransmission. In this theory, GM
dysbiosis, which is defined as a pathogenic imbalance in the gut microbial community, can
upregulate local and systemic inflammations by secreting several bacterial endotoxins, typ-
ically lipopolysaccharides (LPSs). The translocation of these bacterially secreted LPSs from
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the gut to the bloodstream can lead to the so-called “leaky-gut” state, which is characterized
by increased intestinal permeability, followed by infiltration of monocytes and secretion of
neuroinflammatory cytokines and chemokines [5–7]. In addition, GM dysbiosis can also
upregulate the microbial production of a wide range of neurotransmitters and neuromodu-
lators, including dopamine, norepinephrine, serotonin, γ-aminobutyric acid (GABA), and
short-chain fatty acids (SCFAs), as well as neurotoxic metabolites, such as D-lactic acid and
ammonia [6,8,9]. Such GM-induced neuroinflammation and GM-derived neurochemicals
can adversely affect host neural functions and inter-bacterial communication processes in a
pathogenic manner, ultimately leading to various brain disorders [8].

To emphasize the critical roles of GM in the normal and pathological regulation of a
variety of gut and brain functions, a new term, “microbiota-gut-brain axis” (MGBA), was de-
fined, to describe the communication and influence between GM and brain. MGBA has been
implicated in various CNS disorders such as depression, anxiety, autism, and Alzheimer’s
disease (AD) [9–13]. Accumulating evidence suggests the direct involvement of GM in
the regulation of social behaviors, stress resistance, and cognitive functions [5,14–16]. In
particular, a number of studies suggested the pathogenic roles of GM in the development of
Alzheimer’s disease, Parkinson’s disease (PD), and Huntington’s disease (HD) [17,18]. In re-
gards to PD, alternation of GM was confirmed in PD patients by two separate studies [19,20].
Interestingly, the presence of α-synuclein-aggregates in the enteric nervous system before
their appearance in the brain suggests their gut-to-to-brain spread theory [21]. In line with
this, α-synuclein-mediated motor deficits were aggravated by GM in the mouse model [22].
GM dybiosis was also confirmed in the mouse models of HD [23–25]. Based on these
observations, already-known pathogenic mechanisms for various brain diseases have been
re-evaluated in the context of this newly-found relationship between GM and the brain.

2. Gut Microbiota and Alzheimer’s Disease

AD is one of the most common neurodegenerative diseases, characterized by a de-
cline in cognitive function and neuronal loss. Neuritic plaques and neurofibrillary tangles
(NFTs) are considered to be pathological hallmarks of AD [26]. Recently, numerous studies
have described the notable impact of GM on the pathogenesis of AD [27–32]. In par-
ticular, GM dysbiosis was shown to have negative effects on brain function and host
behavior through MGBA dysregulation, suggesting its potential role in the development
of AD [33,34]. The GM is thought to be involved in AD through alterations of at least
five different pathogenic processes. These include amyloid-beta (Aβ) deposit, increased
tau (a microtubule-associated protein) phosphorylation, neuroinflammation, metabolic
dysfunction, and oxidative stress (Figure 1). Individuals with GM dysbiosis due to intesti-
nal diseases were also shown to be at high risk for developing AD [35,36]. Additionally,
the degree of alteration in the fecal microbiome has been correlated with the severity of
AD [37–39]. Approximately 85% of patients with dementia were reported to have alteration
in GM compositions as compared to populations of healthy individuals [40] and decreases
in GM richness and diversity were observed in patients with AD [30]. Moreover, the levels
of the specific bacterial species were found to be correlated with the cerebrospinal fluid
(CSF) biomarkers of AD pathology. These data indicate that the alterations in GM can be
linked to neuropathological changes in AD [30].
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Figure 1. Contribution of gut microbiota (GM) to the pathogenesis of Alzheimer’s disease (AD). GM
is involved in the onset and progression of AD through alterations of at least five pathogenic pro-
cesses, including amyloid-beta deposit, increased tau phosphorylation, neuroinflammation, metabolic
dysfunctions, and oxidative stress via the microbiota-gut-brain axis.

Several GM species are associated with the production of amyloid fibers [41]. These
amyloid fibers can cross the intestinal epithelium and blood-brain barrier (BBB) and in-
duce several effects on the deposition of Aβ in the brain, resulting in AD pathogene-
sis [28,42]. Bacterial amyloids produced by GM promoted the misfolding of Aβ fibrils
and oligomers [43]. In addition, due to the similarity in structure and immunogenicity,
amyloids secreted by GM can bind to Toll-like receptor 2 (TLR2) on microglia and acti-
vate inflammatory responses [27]. These factors may enter the brain and directly affect
AD pathology. Moreover, IL-17-expressing T helper cells migrate to the CNS via the gut-
associated lymphoid tissue and interact with microglia, contributing to neurodegeneration
in AD [27]. Furthermore, GM dysbiosis reduces the clearance of Aβ by affecting the gut
mucosal barrier and energy homeostasis [44]. Collectively, GM increases the production of
Aβ fibers, accelerates their aggregation and misfolding, and reduces Aβ clearance, all of
which may contribute to the development and progression of AD.

Hyperphosphorylated tau and disintegrated microtubules are characteristics of NFTs,
another pathological hallmark of AD [45]. A recent study found elevated levels of a GM-
derived metabolite, trimethylamine N-oxide (TMAO), in the CSF of patients with AD
dementia [46]. TMAO was involved in tau pathology, suggesting the influence of GM in
AD pathogenesis through tau dysregulation [46]. Other researchers revealed GM-induced
hyperphosphorylation of tau through the activation of the glycogen synthase kinase 3
beta (GSK-3β) pathway, resulting in cognitive impairment [47]. Moreover, another study
found alleviation of Aβ deposition, tau pathology, and memory impairment following fecal
microbiota transplantation (FMT) from healthy wild-type mice into transgenic (Tg) mice
with AD-like pathology, including amyloid and NFTs [48]. Although the comprehensive
tau-mediated AD pathogenesis by GM remains elusive, these studies indicate that the
modulation of GM may be a potential strategy to alleviate tauopathy for AD treatment.

Neuroinflammation is one of the plausible mechanisms to explain AD pathogenesis.
This physiological response to stimuli maintains homeostasis, but excessive inflammatory
responses cause harmful effects on the CNS. Changes in GM composition can trigger
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peripheral immune responses by activating immune components and regulating the levels
of pro-inflammatory cytokines in the brain [49–51]. Recent evidence suggests that GM
dysbiosis is associated with the development of AD through neuroinflammation [52–54].
The increase in pro-inflammatory GM is accompanied by enhanced systemic inflammation
and neuroinflammatory processes. Since GM dysbiosis can lead to defects in the activities of
microglia, its activation can contribute to the progression of AD. Several gut microorganisms
were reported to produce nitric oxide (NO) and activate microglia, thereby exacerbating
the AD condition [55].

Metabolic dysfunction is also another hallmark of AD. As mentioned above, GM can
produce bioactive metabolites, such as SCFAs and neurotransmitters, which can modulate
the immune system and influence brain activities [56,57]. These metabolites can cross the
BBB to affect cognition directly or indirectly through immune, neuroendocrine, or vagal
mechanisms [58,59]. A meta-analysis of observational studies reported that increased levels
of GABA were associated with a lower risk of AD [59]. There is a significant difference
in the level of GM metabolites between AD patients and the control group [60]. Several
metabolites upregulated by GM in patients with AD, including indole-3-pyruvic acid,
an endogenous metabolite of tryptophan, and SCFAs, were correlated with cognitive im-
pairment [60]. Interestingly, PD patients showed the opposite phenomenon, which is the
reduction of SCFAs [61]. In addition, serotonin concentrations in the serum and urine of AD
patients were significantly lower than in controls [62]. Most GM-associated metabolic path-
ways have been predicted based on sequencing analysis of the microbiome [63]. Therefore,
validation is essential to prove the relationship between certain GM and AD pathogenesis.

Oxidative stress is another factor responsible for AD pathology. GM dysbiosis can
involve in AD development by influencing the levels of oxidative stress in the CNS. For
example, NO conversion from nitrate and nitrite by Lactobacillus, E. coli, and Bifidobacterium
increases the permeability of the BBB and contributes to neurotoxicity in AD [64,65]. In-
creased intestinal permeability and following GM dysbiosis were also confirmed in the
mouse model of HD [66]. Pathogenic enteric bacteria, such as Salmonella and E. coli, can
induce hydrogen sulfide production in the gut, resulting in decreased mitochondrial oxy-
gen consumption and overexpression of pro-inflammatory cytokines [67]. Hydrogen is a
highly diffusible bioactive gas produced mainly by anaerobic cocci, which belong to the
Enterobacteriaceae family [68]. GM dysbiosis may lead to reduced hydrogen production
and limit gas supply to neurons in the CNS. Taken together, alterations in the GM favor
oxidative stress, resulting in the pathogenesis of AD.

3. How to Study the Relationship between GM and AD

Overall, similar to other research, there are three different types of experimental ap-
proaches used to explore the relationship between GM and AD. These include in vitro,
in vivo, and human studies (Figure 2). In this section, the concepts, strengths, and weak-
nesses of these three methods to study the role of the MGBA in the pathogenesis of AD
are presented.

3.1. In Vitro Study

Although conceptually possible, cell-based studies have several limitations in studying
the interconnection between GM and AD. The study of the MGBA has almost exclusively
relied on the genomic or metagenomics analysis of samples collected from animal or
human models. Up to now, there is a lack in in vitro models to simulate the communication
between GM complex and intestinal epithelium or host-microbiome interactions [69,70].
To discover the disease status or intervention related to GM thoroughly, there is a need
for longitudinal studies in animals and humans, which are difficult, expensive, and time-
consuming. Therefore, this review will focus on in vitro gut fermentation models and their
application for longitudinal studies to supplement in vivo microbiome studies.
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To study the role of GM in the pathogenesis of AD, technology has proved a powerful
tool to support in combination with cellular biology. Organ-on-a-chip (OOC) technology
is a typical example of this combination [71–73]. This design successfully integrates the
physiological features [70] in a model with bacterial molecular flux, microbial co-cultivation
at the anoxic–oxic interface, a mucus bilayer with physiological thickness, or physical de-
formations for peristalsis-like motion [74,75]. However, most of today’s in vitro gut models
are designed without the presence of tissue-resident immune cells [76]. The inclusion of
the typical GM and human immune cells offers a promising gap to develop a reliable and
predictive in vitro model to elucidate the relationship between GM and AD.

In the in vitro three-dimensional (3D) models used in AD studies by Sommer, brain
cells were loaded in a suitable hydrogel matrix and cultured in a novel microfluidic device
under perfusion with flow rates similar to the interstitial flow in brain tissue [70]. An
innovative microfluidic device constitutes the building block of a multi-organ platform,
and a hydrogel-based 3D model of brain cells can be housed in the microfluidic device to
facilitate the expression of APP and accumulate amyloid, which is related to AD pathology.
Based on this feature, the device can host suspended 2D and 3D cell-based models cultured
alone or interconnected with other OOC units, to represent biological barriers, such as the
BBB. Human neuroglioma H4-SW cells were chosen to test this model for their simplicity
and capability to produce high levels of toxic Aβ. In particular, neural progenitor cells
were cultured in a microfluidic chip under continuous flow conditions and a gradient of
oligomeric assemblies of Aβ [77]. The main drawback of this study is the static conditions,
although it provided evidence about the amyloid hypothesis in AD. Therefore, it is im-
portant to improve the dynamic conditions in in vitro studies for the simulation of AD
pathogenesis.

Microfluidic OOCs in vitro modeling is a successful production of combining cellular
biology and technology. This model provides an extraordinary opportunity to study the
MGBA mechanisms in the development of neurodegenerative disorders, including AD.
However, there is room left to improve more reliable and physiologically relevant OOCs.
Currently, the most challenging aspects are building a dynamic environment and co-culture
of multiple cell populations in multi-stage OOCs [78].
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3.2. In Vivo Study

In vivo studies play a major role and provide a powerful tool for studying the under-
lying pathogenic mechanisms of GM-mediated AD. Various animal models, such as mice,
rats, pigs, and zebrafish, have been used for GM research [79–82]. Furthermore, inbred
and knockout techniques are regularly used for some animals like mice or rats [83,84].
There are different types of animal models depending on the origin of GM. They can be
germ-free (GF) models (animals without microorganisms living in them), conventionally
raised animals (animals colonized with their native GM), gnotobiotic animals (animals
colonized with specific microbe(s), or human GM-transferred animals (animals colonized
with human GM) [85]. These models are illustrated in Figure 2. The major advantage of
animal models is the availability of pharmacological interventions that are not approved
for humans and the access to organs and tissues after scarification [84]. The advantages
and disadvantages of in vivo animal studies are summarized in Table 1.

Table 1. The advantages and disadvantages of animal models in studying the effects of gut microbiota
on Alzheimer’s disease [86].

Advantages Disadvantages

• Allowance of experiments that are not
permissible in humans due to ethical reasons

• Use of numerous genetically modified and
knockout mouse models

• Less burden on maintenance cost, high
reproduction, and short life span

• Homogenous genetic background and
enhanced reproducibility of experiments

• Control of sources of variations, minimizing
unwanted environmental noises to GM

• Fundamentally different physiology
from humans in animal models

• Alteration of GM composition in
different animal models

• No human-specific crosstalk between
the GM and the host in animal models

• No inherent genetic variations in
animal models

• Inability to recapitulate “real”
human-GM relationship in
animal models

Among different types of animal models, the GF model is the most popular one to
study GM-host interactions. Almost human microbiota can be colonized in GF mice, while
it is difficult to transfer predominant taxa in the gut of the human to ordinary mouse gut.
In several cases, after colonization, the growth of microbiota may be modified and loss the
characteristics of human donors [87,88]. Similarly, GM composition is likely to be altered by
the disease states of GM dysbiosis after the colonization of GF mice, which may no longer
reflect the composition in the disease state [89]. Several factors including diet, housing
conditions, and sample collection procedures are also known or suspected to alter GM in
animals [90]. Furthermore, origins or commercial suppliers of animal models are other
factors to affect the variety of GM composition [83,91–93]. Despite the huge advantages
and wide application of in vivo research, there are still other disadvantages of animal
studies. For example, the reduction of animal experiments is necessary for ethical reasons.
In addition, animal models are economically more burdensome than most in vitro models.
On top of this, they need appropriate and special animal housing facilities, including GF
facilities [84]. Moreover, longitudinal studies with animals are expensive and challenging
since numerous animals need to be sacrificed at each time point [94,95]. Ultimately, there is
a significant gap in the GM and immune systems between humans and animals, making it
difficult to translate the results of in vivo research to human clinical trials [96].

The use of GF animals has been instrumental in understanding microbe-host relation-
ships [97]. The first GF model in rodents was successfully generated in the 20th century [98].
Similar methods are now typically used to produce many generations of GF animals. Ce-
sarean section is preferred to avoid inoculation of pups by microbiota [99,100]. Regular
examinations of cages and feces are carried out to confirm the absence of bacteria [101].
Subsequent GF animals can be bred in an isolator, and GF pups can be born virginally.
Alternatively, an embryonic transfer can be performed in GF animals into a GF host mother
at the two-cell stage [101]. GF animals have shown completely different developmental
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and physiological processes when compared with animals hosting commensal bacteria.
GF animals are lighter and live longer. They have reduced levels of most GI luminal
amino acids when compared with specific pathogen-free mice [100,102,103]. The lack of
commensal microbes renders GF animals have an abnormal impact on immune systems,
hormone signaling, metabolism, and neurotransmission [104–106]. Interestingly, pheno-
types of GF animals are different across species, sex, research group, and even strain. This
indicates the importance of microbiota and host genetics in determining several animal
phenotypes [107,108].

Despite its many strengths, GF mice have several limitations. They include physiology,
neurodevelopment, and immunity that are aberrant from human counterparts. All these
factors limit translatability to clinical applications [86]. Nonetheless, GF mice have been
used as the first of choice to investigate the involvement of microbiota in a given pro-
cess [109,110]. Moreover, the results of GF studies begin to be applied to other non-rodent
species such as pigs to maximize their translational value [109]. Alternatively, the transfer
of mice with specific, known strains of bacteria (gnotobiotic animals) has also been utilized
to investigate the specific microbiota-host relationship [111]. Among such methods, the
altered Schaedler flora (ASF) mouse line has been the most widely used [112,113]. Eight
bacterial colonization used in ASF mice simplified the study of microbiota involvement in
brain diseases. A study with ASF mice was also able to produce more clinically relevant
data than GF studies. When performing the experiments using GF mice, several host
developmental defects including an underdeveloped immune system, slower intestinal
epithelial turnover, differing nutritional requirements, and less body fat were frequently
found. ASF mice turned out to be able to reduce these limitations [114]. Therefore, the ASF
model is regarded as an attractive alternative to studying the effects of GM on stress-related
brain disorders [112].

In the below paragraphs, illustrations and descriptions are mentioned about the uti-
lization of animal models. To elucidate the impact of GM manipulation on AD pathology, a
study used the 5xFAD model mice treated with antibiotics or probiotics [115]. While antibi-
otics treatment significantly reduced viable commensals, probiotics treatment transiently
increased Lactobacillaceae. An analysis of Aβ deposition in the hippocampus confirmed
the finding of ameliorated pathology. This study provides evidence that antibiotics might
elicit a beneficial effect on AD pathology by the subsequent decrease in the Aβ influx.
Another study also used the 5xFAD Tg mice model to understand the role of commensal
gut bacteria on the progression of cognitive decline in AD [116]. The oral administration
of Bifidobacterium brought alterations in the GI tract related to AD pathogenesis. These
alterations included changes in GM composition, reduced fecal and blood LPS levels in
feces and blood, suppressed nuclear factor kappa B (NF-κB) activation, and tumor necrosis
factor-alpha (TNF-α) expression in 5xFAD Tg and aged mice. These results suggest that
gut dysbiosis and excessive endotoxin production can lead to endotoxemia and systemic
inflammation, and CNS disorders. Moreover, the administration of Bifidobacterium was able
to suppress the GI inflammation, resulting in the attenuation of cognitive decline in AD
and aged mice through the regulation of neuroinflammation by the MGBA.

Various AD mouse models have been used to investigate the correlation between
MGBA and AD. The D-galactose (D-Gal)/AlCl3-induced AD mouse model was used to
examine the effect of the water extract of Gastrodia elata rhizoma (WERG) on MGBA in
AD treatment. WERG treatment enriched the gut probiotics and decreased the levels of
phosphorylated tau, therefore, the cognitive impairment of D-Gal/AlCl3-induced mice
was improved in the WERG-treated group [117]. The regulation of GM by gastrodin (Gas)
from G. elata for neuroprotection in AD was also determined using a D-Gal–induced AD
model [118]. In that study, Gas was found to mitigate the memory dysfunction of AD mice.
Interestingly, the antibiotic cocktail partially reversed the neuroprotective effect of Gas by
changing the GM composition. In conclusion, Gas could improve the memory function of
AD mice by partly targeting the MGBA and mitigating neuronal inflammation [118].
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In addition to AD mice models, ordinary mice models are also used in the study of GM
and AD. In research assessing the effect of GM depletion on anxiety- and depression-related
behaviors, C57BL/6 mice were treated with an antibiotic cocktail for a long period of time
from weaning to adulthood [119]. Results showed that there is a significant decrease
in anxiety-like behaviors in the healthy antibiotic-treated group. Antibiotic treatment
from early adolescence prevented the development of anxiety- and depression-related
behaviors in AD-induced mice. In another study investigating the effect of Lactobacillus
dominance by Korean red ginseng on the improvement of AD, Tg mice (Tg2576) were used
for the experimental model of AD [120]. It was found that Korean red ginseng improved
the cognitive behavior of mice and decreased the Aβ42/Aβ40, indicating reduced Aβ

accumulation. In particular, the diversity of GM was altered, showing the increased
population of Lactobacillus species.

Interventions, such as FMT, were introduced to in vivo studies to prove the effect of
GM on the pathogenesis and treatment of AD. Research with an APPswe/PS1dE9 Tg mouse
model was used to evaluate the efficacy of FMT for AD treatment [121]. FMT treatment
improved cognitive deficits and reduced the brain deposition of Aβ in APPswe/PS1dE9
Tg mice. FMT treatment reversed the changes in the GM and SCFAs. In another study,
FMT was proved sufficient to induce behavioral phenotypes in GF mice [122]. Kundu et al.
used C57BL/6 mice to study FMT for AD treatment [122]. In their study, FMT transferred
from 5xFAD mice to normal C57BL/6 mice decreased hippocampal neurogenesis and
brain-derived neurotrophic factor expression, resulting in memory decline. This result can
clarify the role of 5xFAD mouse-derived microbiota in AD development.

3.3. Human Study

GM can be studied in humans with a wide variety of individuals, including healthy
volunteers, patients with a disease, patients with ileostomies, and individuals with sudden
death [84]. The major advantage of human studies of GM is biological significance. Several
antibiotics, including cefepime [123], amoxicillin [124], rifampicin [125], D-cycloserine [126],
and doxycycline [127], reduced Aβ pathology and improved cognition in clinical studies.
Furthermore, live and post-mortem studies using plasma [128] and brain samples [129–131]
further indicated the greater LPS abundance in patients with AD compared with control
individuals. However, it seems to be very hard to draw solid mechanistic conclusions
based on these results because we cannot distinguish the direct or indirect effects of
pharmacological interventions on the structure or functionality of the GM [95]. On top
of this, additional challenges need to be overcome in human microbiome studies. For
example, stringent ethical requirements for human study need to be satisfied beforehand.
This may include modification of the research protocols and the prohibition of the usage of
uncharacterized compounds [84]. In general, the time-series measurement methods used in
human studies are costly and time-consuming. Extensive clinical data need to be provided
to distinguish whether GM variability comes from pharmacological intervention or not.
Moreover, due to higher percentages of withdrawal in long-term studies, researchers must
consider patient numbers, which should be great enough to draw statistically meaningful
conclusions [84]. Cohort variability due to host heterogeneity is another challenging
factor to control in human studies [132,133]. Interindividual baseline variation of the
GM with different responses to the same treatment is an additional confounding aspect
to correlate the changes in the GM to the experimental intervention [134]. For example,
the fecal microbiota transfer to different individuals exhibited different responses to the
ciprofloxacin treatment [134,135]. Even the repeated administration of ciprofloxacin in
the same patient also demonstrated different responses due to the composition change of
the GM before and after drug treatment [134]. Several improvements to current research
methodologies have been proposed to address these challenges associated with GM human
studies. Stratification of study participants based on baseline GM may be helpful for
better identification of GM alteration after drug administration. Diet has emerged as
one of the most important factors responsible for normal variation in GM, as the relative
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composition of GM is strongly influenced by nutrients [136]. However, the data from
properly controlled dietary intervention studies are very hard to interpret. Walker et al.
studied the fecal microbiota of 14 overweight men who consumed a precisely controlled
diet for 10 weeks [137]. While there is a dramatic increase in certain bacteria after starting
the diet, they found that fecal microbiota clustered more closely by individuals than by diet.
Patient compliance and the accurate follow-up of food consumption by study participants
are other important factors to determine the quality of these types of studies. The source of
the samples needs to be diversified in data analysis since microbial communities found in
feces are not representative of the whole GI tract [94,138,139]. If researchers are interested
in the interaction between bacteria and the gut mucosa, the collection of intestinal biopsies
may be more desirable.

Several studies have reported that GM composition is related to AD pathology, but
the observed differences are inconsistent across studies. An observational study in the
Netherlands investigated the associations between GM composition and AD biomarkers
using machine learning models [140]. Results showed that GM composition was associated
with amyloid and p-tau status, which were the two characteristics of AD. Another study,
which was conducted in China, examined the structural and functional dysbiosis of GM in
AD patients [38]. The data demonstrated a remarkable reduction in bacterial diversity and
alterations in the taxonomic composition of the fecal microbiota of patients with AD. The
study established the structural and functional dysbiosis of fecal microbiota in AD patients.
The results further suggest the potential for the use of gut bacteria for early diagnosis of
AD and personalized treatment for patients with AD.

To thoroughly understand the relationship between MGBA and AD, a study of the
microbial-derived metabolite is another approach. TMAO, which is generated by choline
metabolism, is a known risk factor for AD [46]. TMAO was found to be higher in the CSF
of individuals with AD dementia than in the control group. In addition, elevated TMAO
in the CSF was associated with p-tau and p-tau/Aβ42, as well as neuronal degeneration.
These findings provide additional insight into the involvement of GM in AD [46].

Several interventional human studies were conducted regarding the role of GM in AD
pathogenesis and treatment, including case reports and clinical trials. A case report about
cognitive function improvement after FMT in patients with AD dementia in 2021 provided
further knowledge about this subject [141]. In that study, the cognitive function showed an
improvement after FMT intervention based on the test score. The intervention also changed
the GM composition in the recipient’s feces. This finding suggests a relationship between
GM and cognitive function in AD. Furthermore, it also suggests a novel therapeutic option,
FMT, for patients with dementia [141]. Another case showed a rapid improvement in
AD symptoms following FMT [142]. The patient reported improvements in mental acuity.
These findings supported the central role of GM in neurological dysfunctions, such as
AD [142].

A randomized multicenter trial was conducted to examine the effects of probiotics
on cognition and mood in the elderly [143]. The results showed that the probiotics group
had greater improvements in the mental flexibility test and stress score than the placebo
group. Probiotics change the composition of GM, promote mental flexibility, and reduce
stress in healthy older adults. These results support the hypothesis that probiotics provide
health-promoting properties as a part of a healthy diet in older adults [143]. Another
explorative intervention study aimed to examine the effect of probiotic supplementation in
patients with AD dementia [144]. The results showed that supplementing patients with a
wide variety of probiotics affected not only tryptophan metabolism in serum, but also GM
composition [144].

Although there is an increase in advanced human studies of MGBA and AD, there is
still a gap in the application of knowledge about MGBA in AD therapies. Further human
research, especially interventional studies, should be conducted in the future to build a
concrete conclusion about the role of GM in AD pathogenesis and provide helpful evidence
for GM-related treatments in AD.
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3.4. Relevant Techniques

Elucidation of GM composition is necessary to study the relationship between GM and
AD [145]. The 16S rRNA gene sequencing has been the main technique in GM analysis for
decades. This technique is applied in both in vivo studies and human studies [119,141,146,147].
Fecal samples are usually collected to investigate the GM profile, total DNA is then isolated,
measured, and 16S rRNA gene sequencing is performed [148].

To determine the diversity and richness of GM, alpha diversity is usually represented
by indexes such as Shannon, Chao1, and Simpson. Meanwhile, beta diversity is usually
represented by Principal Coordinate Analysis (PCoA) for the differences in composition
between groups [118]. While alpha diversity is a measure of microbiome diversity appli-
cable to a single sample, beta diversity is a measure of the similarity or dissimilarity of
two communities. Furthermore, LEfSe analysis is used to identify the specific individual
bacterial taxa which cause the differences between groups. LEfSe analysis refers to the
LDA (Linear discriminant analysis) Effect Size analysis. LEfSe is used to discover high-
dimensional biomarkers and reveal genomic characteristics, including genes, metabolism,
and classification [118,146].

Recently, high-throughput sequencing of the full 16S gene has been applied widely to
investigate the relationship between GM and AD [149–151]. Low-throughput sequencing
methods used the polymorphisms within the gene to distinguish strains or subspecies.
Meanwhile, the complete full-length 16S gene is sequenced in a high-throughput method.
The full 16S gene sequencing provides better taxonomic resolution, and real and significant
advantages over sequencing commonly targeted variable regions [152].

4. GM-Directed Therapeutic Options to Ameliorate the Progression of AD

Due to the importance of maintenance of a healthy microbiota, several modulators
of GM have been proposed such as microecological regulators, including prebiotics and
probiotics, dietary intervention, and FMT. In this section, as depicted in Figure 3, the
therapeutic options based on GM for the treatment of AD are discussed.
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4.1. Prebiotics

Prebiotics are defined as non-digestible short-chain carbohydrates that possess the
ability to change the composition and metabolism of GM beneficially [153]. They can act as
specific fermentation substrates for SCFA-producing probiotic genera, thus affecting both
GI and extra-intestinal functions [154]. Recent studies in animal models and humans have
shown possible effects on psychiatric symptoms [145]. Some promising results have been
reported regarding the use of prebiotics for the prevention or treatment of AD [145,153].
The administration of yeast beta-glucan to mouse models of AD is effective in restoring
the balance between pro- and anti-inflammatory GM species [146]. Lactulose, which was
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the first commercially available prebiotic, was found to improve short-term memory and
learning retrieval in AD mice [147]. In addition, mannan oligosaccharide treatment for
8 weeks induced the growth of Lactobacillus species and decreased Helicobacter abundance,
resulting in reduced LPS leakage and BBB dysfunctions in 5xFAD Tg mice [63]. Interestingly,
GM reconstitution by this prebiotic was also accompanied by decreased Aβ accumulation,
restoration of redox homeostasis, and increased butyrate levels [63]. Similar results were
seen in rodent models of AD treated with Marinda officinalis-derived oligosaccharides, with
the effect of improved memory and learning ability [36,148]. Although the mechanism of
action remains to be elucidated, prebiotic administration may be beneficial in the treatment
of AD [148,149]. Moreover, a combination of probiotics and prebiotics (or synbiotics)
seems to be more effective in increasing neurogenesis and reducing neuroinflammation as
compared to prebiotics alone [149].

Daily administration of fructan, a well-known prebiotic, reduced the risk of AD
development, as data from a large longitudinal study in older adults [150]. However,
other authors suggest that more evidence for the use of prebiotics in clinical practice is still
needed for concluding the normalization of several factors such as age, gender, ethnicity,
and diet [151]. In conclusion, prebiotics may be helpful as a preventive or therapeutic
therapy for AD, and there is a need for more human trials to concrete the importance of
prebiotic treatment.

4.2. Probiotics

Probiotics are living microorganisms that are beneficial to the host with an adequate
amount [152]. Probiotics have recently gained attention in brain function because they
improve GM by positively influencing the MGBA. They are also known as psychobiotics
because they attempt to restore the imbalances in the MGBA. They can release neuroac-
tive substances and directly affect the human brain [155–157]. Many of these responses
arise from the regulation of intracellular signaling pathways, such as mitogen-activated
protein kinases (MAPKs) and NF-κB [158]. Several studies have shown that probiotic
supplementation can restore the GM, improve the integrity of the gut barrier and BBB, and
reduce neuroinflammation, as well as cognitive decline [159]. Administration of probi-
otics increased Actinobacteria and Bacteroides species in the GM composition of AD animal
model, significantly affecting long-term memory, inflammation, and neural plasticity [160].
Recently, a study on Tg AD mice demonstrated that the administration of a probiotic
formulation significantly reduced oxidative stress by inducing sirtuin-1-dependent mecha-
nisms [161]. In addition, the probiotics from a mixture of Lactobacillus and Bifidobacterium
modified specific neurotransmitters, such as GABA and glutamate [162]. In another work,
short-term administration of Bifidobacterium breve strain A1 suppressed immune response
and neural inflammation in Aβ-injected mice [163]. Furthermore, a mixture of Lactobacil-
lus acidophilus, Lactobacillus fermentum, Bifidobacterium lactis, and Bifidobacterium longum
improved learning disability and oxidative stress of rats intra-hippocampally injected
with Aβ1–42 [164]. By using in vitro Caco-2 cell monolayer, di Vito et al. confirmed the
modulation of tight and adherent junction and prevention of LPS-induced inflammatory
damage by administration of commercially available probiotic formulation [165].

In a recent randomized trial, 60 patients with AD were divided into two groups and
administered milk (control group) or probiotics (probiotic group). After 12 weeks of daily
administration of probiotics, a significant improvement in the mini-mental state exam score
was reported in the treated group, as compared to the control group [166]. Similarly, data
from another meta-analysis reported a significant amelioration in cognition and a consistent
reduction in post-intervention levels of malondialdehyde and high-sensitivity C-reactive
protein in subjects receiving probiotics. These results indicate that probiotics, even when
taken alone or in a combination supplement, have shown great potential in the reduction
of AD progression. However, the appropriate strains, doses, time of treatment, routes of
administration, and safe use of probiotics for AD need to be studied in the future.
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4.3. Diet

Interactions between diet, GM, and host are important factors influencing health. Diet
is one of the major factors involved in shaping GM composition [167,168]. Based on recent
evidence, the Mediterranean diet (MD) and the ketogenic diet (KD) are likely to be the
most promising dietary therapies for AD.

MD is a way of eating based on the traditional cuisine of countries bordering the
Mediterranean Sea. This diet is characterized by a high intake of fruits, vegetables, cereals,
and legumes; and a low intake of meat, high-fat dairy, and sweets. It is considered to be an
anti-inflammatory diet and prevents the occurrence of several chronic diseases [169,170].
MD is also associated with a lower risk of AD [171]. Two large randomized controlled
trials have demonstrated a positive correlation between “MD plus olive oil” or “MD plus
nuts” with cognitive performance [172,173]. Recently, another clinical study linked MD
with improved cognition [174]. Furthermore, a narrative systematic review and meta-
analysis demonstrated a protective and likely therapeutic role of MD in AD and confirmed
its ability to prevent cognitive impairment [175]. In general, a dietary pattern rich in
fruits, vegetables, and legumes and low in saturated fats and sweets seems to provide
protective effects [176]. Similarly, results highlighted the benefits of MD as a protective
factor against AD [177]. Possible neuroprotective mechanisms common to these diets
include the presence of antioxidants and anti-inflammatory compounds that help reduce
inflammation and oxidative stress in the brain, and high levels of fiber, vitamin C, β-
carotene, and folate. As a result, it improves brain integrity and increases the amount of
brain tissue [178]. It has also been reported that saturated and trans fatty acid deficiency
may reduce BBB dysfunction and amyloid aggregation [179,180].

KD is a term for a low-carbohydrate and adequate protein diet [181]. Recent studies
have demonstrated a role for KD in the compositional remodeling of GM, thereby promot-
ing its protective effects in various CNS disorders, including AD [182,183]. When sugar is
in short supply, ketone bodies, which are used as alternative energy substrates for glucose
in many organs, including the brain, are produced to break down and oxidize fat [184].
In mice models, ketone bodies have been demonstrated to influence neurotransmission,
reduce neuroinflammation and oxidative stress, as well as reduce amyloid accumulation,
and improve learning and memory abilities [185,186]. In humans, KD may benefit people
with mild cognitive impairment or AD [183,187]. Similar to the mechanism (ketone body
production), the medium-chain triglyceride diet/supplementation and modified Atkins
diet are effective not only for symptoms such as fatigue and daytime sleepiness in Parkin-
son’s disease but also for cognitive decline in AD, epileptic seizures, and mood swings
in depression [187,188]. Additionally, the modified Atkins diet, which does not restrict
protein intake as the KD diet, allows much more flexibility than the classic KD. Overall,
dietary patterns that lead to ketone production appear to represent a promising treatment
for AD, although they reveal human protective mechanisms and adverse effects such as
inflexibility and variability in dietary plans. To do so, more research is needed. It can easily
lead to school dropouts and a lack of plant foods rich in vitamins and other antioxidant
compounds [182].

In summary, dietary interventions are generally safer and more beneficial than drug
therapy because they are inexpensive, easy to administer, and reduce the burden on
caregivers of AD patients.

4.4. Fecal Microbiota Transplantation

FMT is a procedure that transfers the healthy donor’s GM to the recipient for therapeu-
tic purposes. It is considered a safe procedure with minor and transient side effects [189].
It has been shown to be effective in the treatment of recurrent Clostridium difficile infec-
tions [190]. To date, most of the studies have been conducted in animal models, with
promising results but a concrete conclusion has not been drawn yet.

Transplantation of feces from AD model donor mice into healthy mice resulted in
impaired neurogenesis, increased memory impairment, increased circulating inflammatory
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cytokines, and Aβ plaque deposition [191,192]. Similarly, GF mice that received feces
from APP/PS1-Tg mice that developed brain Aβ deposition showed increased plaque
formation [49,193]. Furthermore, FMT from AD patients to GF mice accelerated cognitive
decline and the reduction of microbiota-derived metabolites important for nervous system
function [193]. Another study confirmed improved cognition, decreased amyloid accumu-
lation and tau expression, improved synaptic plasticity, and increased SCFA-producing gut
bacteria [194]. FMT effectively restored the microbiota composition in the APP/PS1 Tg
mouse model of AD, improving the conditions of microglia and Aβ deposition [194].

In terms of human studies, two case studies are showing promising results [141,142].
Hazan demonstrated an improvement in AD symptoms (including cognitive function,
memory, and mood) in a man aged 82 after FMT from the recipient’s wife [142]. In a second
case study, a woman aged 90 with AD and severe C. difficile infection who underwent FMT
from a healthy young donor showed improvements in cognitive function, GM composition,
and SCFA production [141]. Interestingly, FMT also improved GM dysbiosis and cognitive
deficits in the mouse model of HD [195].

These studies demonstrate that FMT can rapidly and effectively restore GM dysbiosis
and brain dysfunction in patients, suggesting that restoration of GM homeostasis by FMT
may have beneficial effects on AD treatment. However, several limitations remain for
its wide application, such as standardization of the procedures, timepoint, and treatment
period, as well as inclusion criteria of donor and recipient [196–198]. Therefore, more
human trials will be conducted in the future to provide evidence for the efficacy of FMT
and optimize the intervention.

5. Conclusions

The MGBA is an enticing target to understand the pathogenesis of AD, as well as
to develop new therapeutic options to prevent and treat this disease. The MGBA can
influence the development and progression of AD through various pathways, from Aβ

deposition and tau phosphorylation to neuroinflammation, metabolic dysfunction, and
oxidative stress. Numerous methodologies using in vitro cell models, animal models, and
humans have been developed to gain insight into the relationship between GM and AD.
Understanding of normal and pathogenic roles of the MGBA in host neurophysiology is
critical for the development of mechanism-based prophylactic and/or therapeutic strategies
for AD.
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