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Abstract: Cancer is the second leading contributor to global deaths caused by non-communicable
diseases. The cancer cells are known to interact with the surrounding non-cancerous cells, including
the immune cells and stromal cells, within the tumor microenvironment (TME) to modulate the
tumor progression, metastasis and resistance. Currently, chemotherapy and radiotherapy are the
standard treatments for cancers. However, these treatments cause a significant number of side effects,
as they damage both the cancer cells and the actively dividing normal cells indiscriminately. Hence, a
new generation of immunotherapy using natural killer (NK) cells, cytotoxic CD8+ T-lymphocytes or
macrophages was developed to achieve tumor-specific targeting and circumvent the adverse effects.
However, the progression of cell-based immunotherapy is hindered by the combined action of TME
and TD-EVs, which render the cancer cells less immunogenic. Recently, there has been an increase in
interest in using immune cell derivatives to treat cancers. One of the highly potential immune cell
derivatives is the NK cell-derived EVs (NK-EVs). As an acellular product, NK-EVs are resistant to
the influence of TME and TD-EVs, and can be designed for “off-the-shelf” use. In this systematic
review, we examine the safety and efficacy of NK-EVs to treat various cancers in vitro and in vivo.
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1. Introduction

According to the World Health Organization (WHO), the COVID-19 pandemic has
claimed over 6.6 million lives globally [1]. Nonetheless, the incidence of infections and
deaths has declined significantly with the availability of vaccines. Contradictorily, solu-
tions for cancer treatment still remain obscure today. In 2021 alone, the WHO recorded
9.3 million global deaths from neoplasms [2]. Chemotherapy and radiotherapy are the stan-
dard treatment for cancerous tumors which cannot be removed entirely through surgery,
despite the accompanying adverse effects [3,4]. These drugs and radiations damage the
actively proliferating cancer cells and dividing normal cell indiscriminately [5–8], leading
to deterioration in patient health by causing severe weight loss, poor skin conditions and
hair loss (alopecia) [9,10]. The adverse effects of chemotherapy and radiotherapy in weak-
ening patients’ health and immune system have yet to be resolved despite many years of
refinement. In fact, criticisms from patients receiving these treatments discourages many
from enrolling as their physical and mental wellbeing are at risk. The percentage of patients
refusing to have or continue their chemotherapy is reported to be as high as 3–19% [11].
All these limitations demonstrate the importance of developing novel treatment for cancer
which is highly specific and effective in eradicating the cancer cells without affecting the
healthy cells.
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Stem cells have been studied extensively in the field of regenerative medicine due
to their excellent regenerative and anti-inflammatory properties [12]. They have been
regarded as a viable solution for many age-related and chronic degenerative illnesses. This
development has piqued the interest of utilizing stem cells for other therapeutic applica-
tions, including cancer immunotherapy. The development of cell-based immunotherapy
can be achieved by establishing cell lines that express tumor selectivity and cytotoxic func-
tions. Several prospective candidates that have been rigorously studied are natural killer
(NK) cells, dendritic cells (DC), macrophages and T-lymphocytes [13–16]. These cells play
critical roles in alerting the immune system (e.g., chemotaxis), arming other immune cells
(e.g., antibody-dependent and cytokine-dependent activation) and exerting their cytotoxic
effect against the cancer cells (e.g., receptor-mediated cell apoptosis). DC and CD4+ T-cells
(T-helper cells) are important components of the immune system in that they serve as the
moderators of various immune responses [17,18]. They produce molecular signals, e.g.,
cytokines and chemokines, to guide and activate other immune cells. Conversely, NK cells,
macrophages and CD8+ T-cells (cytotoxic T-cells) are effector cells that exert a cytotoxic
effect against the cancer cells [19–22].

The CD8+ T-cell’s mechanism of action is through the antibody-dependent cellular
cytotoxicity (ADCC). ADCC is initiated by the binding of T-cell receptors (TCR) to the
antigen presented by major histocompatibility complex-1 (MHC-1) [23]. NK cells also
can eliminate the target cells via ADCC pathway through the cluster of differentiation-16
(CD16) or FcγRIII on its plasma membrane [24,25]. Upon activation, these cells will release
cytolytic enzymes (e.g., caspases, granzymes (Gzm) and perforin (PFN)) to damage the
target cells. Meanwhile, macrophages elicit antibody-dependent cellular phagocytosis
(ADCP), which involves engulfment and degradation of the internalized cells via phago-
some acidification [26,27]. Since mutational activities are frequent in cancer cells, antigen
or peptide reconfigurations or direct inhibition of cytotoxic receptor (e.g., CA-125 inhibits
Fcy-receptor) can disable ADCC/ADCP entirely [27–31]. In the event ADCC and ADCP
are inhibited, the immune cells still can eliminate the cancer cells via the TRAIL and Fas
signalling pathways. TRAIL and Fas receptors are “death receptors” which belong to the
receptor family of tumor-necrosis factors (TNF) that induce programmed cell death when
they are cross-linked by its ligands [32–34]. In addition, certain immune cells also secrete
lytic granules containing Gzm and PFN that induce lysis or apoptosis of target cells via
degranulation [35–37].

In spite of its potential, the progression of cell-based immunotherapy has been ham-
pered by the limitations that it may cause life-threatening adverse reactions, laborious
production procedure, limited efficacy against solid tumors due to insufficient trafficking
and homing, and variable efficacy owing to immune cell inactivation by the tumors [38,39].
Recently, purification of cell biologics was made possible by the new innovations in isola-
tion technique. By using these advanced isolation technologies, researchers have isolated
the extracellular vesicles (EVs) produced by the immune cells and use them as cancer
immunotherapy. In that regard, immune cells have been repurposed as biological manu-
facturers of these membrane-bound nanovesicles [40]. NK cells-derived EV (NK-EV) is
being explored in many studies as it is rich in cytotoxic proteins, cytokines and miRNAs
that selectively kill the tumor cells [41]. In the interest of this development, this systematic
review was performed to determine the potential of NK-EVs as cancer immunotherapy
based on data collected from the in vitro and in vivo experiments. EVs can be classified
based on their biogenesis and size into exosomes (EXO), microvesicles (MVs) and apoptotic
bodies [42,43]. In this review, NK-EVs are referring to the EXO and MVs produced by the
NK cells.
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2. Methods

Search keywords were selected using medical subject headings (MESH) available from
PUBMED/MEDLINE. Common terms not available in MESH were also included in the
search. Access to SCOPUS, PUBMED and Web of Science (WOS) was provided by the Na-
tional University of Malaysia (UKM). All searches were filtered to either “research articles”
or “journal articles” published in the last 5 years (2017–2022). All search registers were
downloaded as bibliographies containing title, keywords and abstract. The bibliographies
were labelled appropriately as source, date of access and results (e.g., PUBMED_210622_455
results). The bibliographies were then exported into Mendeley (Elsevier, The Netherlands).
The merging of duplicates was performed automatically and manually. The first level of
screening was based on relevance of title, abstract and keywords with topic of interest.
After that, full-text research articles were downloaded for second level of screening. The
final screening was performed following the inclusion and exclusion criteria as briefly
described. Inclusion criteria: (i) NK cell, (ii) EV or EXO, (iii) cancer and (iv) controlled
experimental studies. Exclusion criteria: (i) other immune cells, (ii) no EV or EXO, (iii) com-
bined therapy and (iv) uncontrolled experimental study. Subsequently, the in vivo studies
were reviewed for their risk of bias using SYRCLE’s ROB tool for animal studies. The
protocol above has been registered (ID: CRD42022339710) in the international prospective
register of systematic reviews (PROSPERO) by the National Institute for Health Research
(United Kingdom).

We recorded a combined total of 1002 registers from three databases: PUBMED (330),
SCOPUS (438) and WOS (234). A total of 340 registers were removed as a result of duplicate
merging, leaving only 662 individual registers. The first process of screening removed
631 registers based on the title, abstract and keywords. This yielded 31 suitable articles
for full-text retrieval. One article was not successfully retrieved since no English-text or
translation was available. A total of 30 retrieved full-text articles were screened using the
inclusion and exclusion criteria stated above. Finally, 18 individual registers containing
either in vitro only, in vivo only or both in vitro and in vivo evidence were selected for data
extraction and analysis. The article selection was performed by two authors (A.M.L.C and
J.M.C.) and any disputes in article inclusion were resolved via discussion to reach mutual
consensus. The article selection process is summarized in Figure 1.
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Figure 1. PRISMA flow chart for systematic review.

3. Results and Discussion
3.1. NK-EVs Express Cytotoxicity against Various Human Cancer Cell Lines

A total of 17 studies performed in vitro experiments to examine the efficacy of NK-EVs
against a panel of tumor cell lines, and all of them reported positive outcomes (Table 1).
The NK-EVs were found to be effective against a wide range of cancer cell lines, shown
in Figure 2 below, such as the brain [44–51], breast [44,45,47,49–55], blood [44,48,53,55–57],
cervix [57], colon [50,51], liver [45,49,58], lung [57], ovary [51,54], pancreas [59], prostate [51],
skin [51,60], stomach/gastric [50,60], and thyroid [45,49]. The dose of NK-EVs used in
these studies ranged from low dose, between 0.3−5 µg, to median dose, between 10−25 µg,
and high dose, between 40−100 µg. The NK-EVs were found to kill the cancer cells in
a time- and dose-dependent manner [44–60]. Hence, higher cytotoxicity was recorded
when the cancer cell lines were exposed to higher dose of NK-EVs for a longer period.
Importantly, the NK-EVs showed selective cytotoxicity towards the cancer cell lines with-
out affecting the viability of the healthy or normal cell lines tested. This evidence clearly
showed that NK-EVs exhibited selectivity akin to their parental cells, as reported in the
previous literature [61].
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Table 1. In vitro evidence demonstrating cytotoxicity of NK-EVs against various cancer cell lines.

Study Type of NK-EV Dose of
NK-EV Tested Cancer Cell Lines Key Findings

Jong et al.,
2017
[44]

NK-EVs from
PB-NK of healthy

donors
20 or 40 µg

Human acute
lymphoblastic leukemia

(NALM-6; SUPB15),
neuroblastoma (CHLA-136;

CHLA-255) and breast
cancer (MCF-7)

NK-EVs increased apoptosis of all
tumor cell lines in a time- and

dose-dependent manner.

Zhu et al.,
2017
[60]

NK-EXO from
human NK cell line

(NK92-MI)
5 or 20 µg

Mouse melanoma (B16F10);
Human gastric carcinoma

(SNU484) and colon cancer
(HCT-5)

All cell lines showed lower cell
viability in a time and

dose-dependent manner.
NK-EXO did not illicit any response

in healthy cells.
NK-EXO induced cancer cell

apoptosis through PFN and Gzm as
well as activation of Fas/FasL

pathway.

Zhu et al.,
2018
[45]

NK-EXO and
NK-EM from

human NK cell line
(NK92-MI)

10, 20 or 30 µg/mL

Human glioblastoma (D54),
breast carcinoma

(MDA-MB-231), anaplastic
thyroid cancer (CAL-62)
and hepatic carcinoma

(HepG2)

NK-EM showed greater anti-tumor
properties compared to NK-EXO.

Both treatment groups reduced BLI
signal intensity for all tested tumor

cell lines in a time and
dose-dependent manner.

Neviani et al.,
2019
[46]

miR-186 enriched
NK-EVs from

PB-NK of healthy
donors

A series of 2-fold
dilutions starting

from 4 × 1011

particles/mL

Human MYCN-amplified
(CHLA-136 and LAN-5)

and non-amplified
(CHLA-255)

neuroblastoma

IL-15 treated NK cells and its
exosomes successfully halted

growth of neuroblastoma cell lines.
Inactivation of NK cells via TGFβ1
did not affect the functions of the

secreted exosomes despite
downregulation of cytotoxic

proteins.
miR-186 delivery via NK-EXO

reduced expression of tumor escape
oncogenes, i.e., MYCN, AURKA,

TGFβ1R and TGFβ2R.

Sun et al.,
2019
[59]

miR-3607-3p
enriched NK-EVs

from PB-NK of
healthy donors

− Human pancreatic cancer
(MIA PaCa-2 and PANC-1)

NK-EVs inhibited growth, migration
and invasive properties of both

cancer cell lines.

Wang et al.,
2019
[47]

NK-EXO and
NN/NK-EXO from
PB-NK of healthy

donors

10, 20 or 40 µg

Human breast cancer
(MDA-MB-231) and

neuroblastoma
(CHLA-255)

NK-EXOs reduced the viability of
both tumor cell lines in a
dose-dependent manner.

NN/NK-EXOs showed higher levels
of tumor cytotoxicity compared to

NK-EXOs.

Wu et al., 2019
[48]

NK-EVs from
PB-NK of healthy

donors and human
NK cell line
(NK92-MI)

40 µg/100 µL

Human acute
lymphoblastic leukemia

(SUPB15) and
neuroblastoma (CHLA255)

NK-EVs were cytotoxic towards
both cancer cell lines.

PFN, GzmA, GzmB and GNLY were
found to work collectively to induce

tumor cytotoxicity.
NK-EVs were able to enter

caspase-dependent and independent
pathways, highlighting the

flexibility of NK-EVs to access
multiple cytotoxic pathways.
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Table 1. Cont.

Study Type of NK-EV Dose of
NK-EV Tested Cancer Cell Lines Key Findings

Zhu et al.,
2019
[49]

NK-EVs from
human NK cell line
(NK-92MI) with or

without IL-15
treatment

5, 10 or 15 µg

Human breast cancer
(MDA-MB-231), anaplastic

thyroid cancer (CAL-62)
and glioblastoma

(U87/MG)

Both NK-EVIL-15 and NK-EVs
displayed dose- and time-dependent

cytotoxicity against all cancer cell
lines.

NK-EVIL-15 had greater cytotoxic
effect compared to NK-EVs.

Choi et al.,
2020
[50]

NK-EVs from
PB-NK of healthy

donors
2, 5, 10 or 20 µg

Human hepatocarcinoma
(HEPG2), colon cancer

(SW-620), stomach cancer
(MKN-74), breast cancer

(MCF-7) and brain cancer
(T98G).

NK-EVs were cytotoxicity against all
cancer cell lines.

Di Pace et al.,
2020
[56]

NK-EXO from IL-2
or IL-15 stimulated
PB-NK of healthy

donors

5, 20 or 50 µg/
100 µL

Human childhood B acute
lymphoblastic leukemia

(NALM-18) and
erythroleukemia (K562)

NK-EXOs exerted cytotoxicity
against both cancer cell lines in a

dose-dependent manner.

Han et al.,
2020
[52]

NK-EXO and
PTX-NK-EXO from
human NK cell line

(NK92-MI)

40 µg/mL of
NK-EXO or

15 µg/mL of
PTX-NK-EXO

Human breast cancer
(MCF-7)

NK-EXOs were as cytotoxic as PTX
against the breast cancer cell line.

NK-EXOs showed great potential as
cancer drug carriers with

PTX-NK-EXOs showed the highest
tumor cytotoxicity.

Cochran et al.,
2021
[53]

NK-EVs from
human NK cell

lines (NK3.3 and
NK92-MI)

1, 10, 25, 50
or 100 µg/mL

Human T cell leukemia
(K562 and JURKAT) and
breast cancer (HEK293,

MCF-7 and MDA-MB-231)

NK-EVs showed cytotoxicity against
both cancer cell lines in a time- and

dose-dependent manner.
NK-EVs did not trigger apoptosis in

normal cells, i.e., HEK293 and PB-
and CB-derived lymphocytes.

Enomoto
et al., 2021

[57]

NK-EV from
human NK cell line

(NK92-MI)
0.3, 1 or 3 µg

Human T cell leukemia
(K562 and JURKAT), lung
(A549) and cervical cancer

(HELA)

NK-EVs exerted time- and
dose-dependent cytotoxic towards

all the cancer cell lines albeit the
dosage is much lower compared to

other studies.

Jiang et al.,
2021
[54]

NK92-EXO from
human NK cell

lines (NK92-MI and
NK92-hIL-15)

cultured in either
normal or hypoxic

condition

25 or 50 µg/mL
Human breast cancer
(MCF-7) and ovarian

cancer (A2780)

NK cells in hypoxic culture (24 and
48 h) doubled its EV production.
Hypoxic and normoxic NK-EVs
demonstrated similar degree of

cytotoxic towards the cancer cell
lines.

Kaban et al.,
2021
[55]

NK-EXO from
human NK cell line

(NK92-MI)
overexpressing
BCL-2 siRNAs

200 µg/mL

Human T cell leukemia
(K562 and MEC1) and

breast cancer (HEK293T,
SKBR3, MCF-7, MCF-10A,
T-47D and MDA-MB-231)

Transduced cells produced EVs
enriched with BCL-2 siRNAs.

Modified NK-EVs showed greater
cytotoxicity against the breast cancer

cell lines but have no effect on the
normal cells.
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Table 1. Cont.

Study Type of NK-EV Dose of
NK-EV Tested Cancer Cell Lines Key Findings

Aarsund et al.,
2022
[51]

NK-EVs from IL-15
or IL-12/15/18-

stimulated PB-NK
of healthy donors

and human NK cell
line (NK92 and

KHYG-1)

20 µg

Human colon cancer
(HCT116 and HCT-15),
prostate cancer (DU145
and PC3), breast cancer
(SK-BR-3 and T-4D7),

ovarian cancer (OVCAR-3),
leukemia (KHYG-1),

melanoma (WM9) and
glioblastoma (U87).

NK-EVs isolated from IL-15 and
IL-12/15/18-stimulated NK cells

and NK-92 cells were able to kill the
cancer cells in 2D and spheroid

cultures.
KHYG-1 EVs showed no tumor

cytotoxicity in both in vitro models.

Kim et al.,
2022
[58]

NK-EXO from
human NK cell line

(NK-92)

10, 20, 50, 100, 200
or 500 µg

Human hepatocellular
carcinoma (Hep3B, HepG2

and Huh7)

NK-EXOs had a cytotoxicity
towards Hep3B compared to HepG2
and Huh7 cells in a dose-dependent

but not time-dependent manner.
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of NK-EVs for cancer cell cytotoxic assay.

The impressive findings from the in vitro studies merely demonstrated the fundamen-
tal anti-cancer potential of NK-EVs without the interference of other biological systems.
Thus, the use of mere in vitro data to show the anti-cancer potential of NK-EVs is totally
insufficient, as the model does not replicate the physiological complexities that make up a
living organism [62]. For more effective translation, a highly defined and complex model of
pharmacodynamics (PD) and pharmacokinetics (PK) is needed, such as the one constructed
by Bouhaddou et al. (2020) [63]. In term of cancer, the main debacle that has stumped the
progression of many medical innovations is the existence of drug resistance, which is very
difficult to replicate in vitro [64]. Tumor cells are known to interact with the surrounding
cells and tissues, also known as tumor microenvironment (TME), to ensure their survival
and the development of drug resistance. The TME provides important support needed
by the tumor to thrive, including the secretion of signalling molecules by the proximally
located cells, structural support and biochemical signals granted by the altered extracel-
lular matrices (ECM), protection by the immunosuppressive local immune cells, nutrient
supply and waste removal by the sprouting blood vessels, and a dynamic microenviron-
ment (e.g., optimal temperature and pH level) that favor cancer cell growth, invasion and
metastasis [65–68].
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3.2. Tumor Microenvironment (TME): A Physicochemical Barrier against Immunotherapy

The TME is described as an extremely hostile ecosystem consisting of both physical
and chemical components, as illustrated in Figure 3 [69,70]. Similar to all other cell types,
cancerous cells are no exceptions to the innate ability to secrete EVs. In fact, tumor-derived
extracellular vesicles (TD-EVs) are expressed in significant quantities, making them a plau-
sible biological marker and progress indicator for cancer patients [71–73]. Cancer cells
are also more self-sufficient than regular cells since they are capable of producing and
responding to their own growth factors [74]. As demonstrated by El-Fattah Ibrahim et al.
(2019), these tumor-enabling secretions can operate in an autocrine (own cells), paracrine
(neighboring cells) and endocrine (distally located cells) manner [75]. TD-EVs were known
to alter the surrounding microenvironment, making it hostile for immune cells and other
healthy tissue, but their utility and mechanism of action were never fully comprehended.
However, they do share a resemblance to anti-inflammatory secretions by supporting cell
proliferation and angiogenesis, while inhibiting cell apoptosis, maturation or differenti-
ation, and suppressing the recruitment of inflammatory-responsive cells (e.g., NK cells,
macrophages, B and T lymphocytes) [76]. When healthy cells are replaced or destroyed,
the surrounding environment is contaminated by the metabolic waste products, inflamma-
somes from cell lysis, and cell debris. Active glycolysis in malignant cells consumes the
surrounding oxygen and releases acidic products (e.g., pyruvate and hydrogen ions) [77].
After depleting the surrounding oxygen, cancer cells will undergo anaerobic glycolysis,
which contributes to further acidification via lactic acid production [78]. These manifest
into the well-known acidic and hypoxic properties of TME, forming a chemical barrier that
limits immune cell penetration.
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Figure 3. The tumorigenic cells are centered around faulty extracellular matrices, necrotic bodies, and
a hypoxic and acidified microenvironment. This tumor microenvironment discourages immunoreac-
tive cells from responding or otherwise entering the tumor to eradicate the tumor cells. At the same
time, the hypoxic and acidic environment will induce cell death and exacerbate the inflammation.
Moreover, tumor-derived extracellular vesicles will reprogram the host’s cells (e.g., endothelial cells)
to support tumor development via increasing the secretion of growth factor, pro-angiogenic and
anti-inflammatory cytokines.
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What is also seemingly peculiar about TD-EVs is the manipulation of host cells, akin
to a virus. TD-EVs are able to influence or reprogram the recipient cells to cooperate with
tumors [79]. For example, TD-EVs can falsely trigger the anti-inflammatory machinery
of the healthy cells to reduce the TME inflammation. On the other hand, death cells in
TME will continuously release inflammatory particles. Hence, TME paradoxically houses
both anti-inflammatory particles and pro-inflammatory particles. How these opposing
factors co-exists and modulate the TME inflammation is yet to be fully understood. In
addition, studies have shown that the circulating inflammatory bodies passively recruit
immunoreactive cells to the tumor region [80–83]. The immune cells recruited to the TME
will be modulated by the TD-EVs to deactivate its tumor cell killing function and/or to
maintain its status quo via overstimulation of the inhibition:activation signal ratio [84]. At
the same time, the aggregation of naïve/resting or inactivated immune cells interlocked
by faulty ECMs obstructs any movement and acts as a shield against activated immune
cells or medical interventions (e.g., chemotherapy drugs). Thus, the formation of this
pseudo-barrier reinforces the physical impenetrability of the tumor, contributing to drug
resistance.

TME and TD-EVs are known to work in harmony to disrupt NK cell function, thus,
reducing the effectiveness of NK cell therapy. The acidic pH, as well as the immunosup-
pressive myeloid derived suppressor cells’ (MDSCs) and M2 macrophages’ presence in the
TME, suppress the activation of NK cells, thereby compromising their cytotoxicity against
a range of tumor cells [85]. Similarly, the TD-EVs were found to impair the function of
NK cells through the transfer of multiple immunosuppressive factors (e.g., miRNAs and
TGF-β) [86,87]. The existence of physical and chemical barriers in TEM paired with the
inhibitory factors from TD-EVs render the NK cells and other immune cells almost entirely
incompetent. Cellular release and uptake of EVs are known to increase in acidic environ-
ments [88]. Additionally, the pH-related stress also increases the EVs’ protein content and
surface electrokinetic potential (zeta potential) [89]. The EVs with higher surface charges
can bind strongly to the cell membrane, therefore increasing its internalization via receptor
or non-receptor endocytosis. The higher EV absorption is not restricted to TD-EVs, but
applicable to other EVs as well. This implies the possibility of higher absorption of NK-EVs
and other immune cell-derived EVs by the cancer cells.

3.3. NK-EVs Show In Vivo Cytotoxicity in Tumor-Bearing Mice

The in vitro to in vivo extrapolation has seen numerous failures due to subpar experi-
mental design and the presence of many limitations that yet to be addressed [62]. Thus,
preclinical study needs to be performed to extrapolate animal data to humans despite that
it is also unreliable due to species differences. Table 2 describes studies that assess the
performance of NK-EV therapy using the in vivo model of tumor-bearing animals and the
range of doses per administration [45–47,50,53,60,90]. The four studies shown in Figure 4
that performed intra-tumoral (IT) infusion reported significant suppression (p < 0.05) of
tumor growth and lowered cancer cell viability in the neoplastic mass [45,53,60,90]. Similar
results were reported in the seven studies that performed intravenous (IV) delivery of
NK-EVs through the tail vein [45–47,49,50,58,90]. In all these studies, NK-EV infusion
significantly (p < 0.05) reduced the bioluminescent intensity (BLI) signals and/or physical
dimensions of the tumor mass compared to the untreated animals. The study by Zhu et al.
(2018) performed a direct comparison between IT and IV administration routes in their
animal models [45]. They found that IT administration is more effective (p < 0.05) compared
to IV administration in shrinking the tumor mass. Similar results have been reported in
previous studies examining the anti-tumor effect of immunotherapies in tumor-bearing
mice [91,92]. These findings indicate that the IT route is likely to be more efficacious for
NK-EV therapy but the IV route is still viable and may be used in specific situations when
the IT route is not accessible.
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Table 2. In vivo evidence demonstrating the antitumor potential of NK-EVs.

Study Type of Cancer and Animal Model
(n = Sample Size per Group)

Dosage and Method of
Administration Key Findings

Zhu et al.,
2017
[60]

B16F10/effluc cells (1 × 105 cells/
100 µL) were subcutaneously injected
into the right thigh of pathogen-free

6-week-old female C57BL/6 mice
(n = 6)

20 µg/100 µL of human
NK-EXO via IT

Tumor was effectively reduced
(3.5 folds) after 2 to 5 days.

In vivo and ex vivo BLI confirmed
reduced signal intensity and reduced
tumor mass in the treatment group.

Zhu et al.,
2018
[45]

D54 cells (5 × 106 cells/100 µL) were
subcutaneously injected into

pathogen-free 6-week-old female
BALB/c mice

(n = 5)

100 µg/150 µL (via IV) and
30 µg/50 µL (via IT) of human
NK-EM, 3 times at intervals of

3 days

Both treatments reduced the tumor
mass with IT route showed greater

reduction.

Neviani
et al., 2019

[46]

CHLA-136-Fluc cells (1 × 106 cells)
were intra-renally injected into left

kidney of 4- to 8-week-old female and
male NSG mice

(n = 5 − 10)

1 mg/kg/d of miR-186
enriched human NK-EVs via

IV 3 times per week

BLI signal intensity of tumor cells and
weight of kidneys were decreased in

the animals received miR-186-enriched
NK-EVs compared to the control group.
The treated animals showed improved

survival rate.

Wang et al.,
2019
[47]

CHLA-255-luc cells (1 × 107 cells/
500 µL) were injected via IV into

specific pathogen-free, 6-week-old
female NOD/SCID mice

(n = 3)

100 µg of human NK-EXO
with or without NN let-7a
loaded polyamidoamine
dendrimer via IV route

NN/NK-EXOs showed better homing
efficacy and greater suppression of

tumor growth compared to the
NK-EXOs.

Zhu et al.,
2019
[49]

U87/MG/F cells were administered
into specific pathogen-free, 6-week-old

female BALB/c nude mice
(n = 15)

50 µg of human NK-EVs or
50 µg of human NK-EVsIL-15
via IV for 5 times at intervals

of 2 days

Both treatments significantly reduced
BLI signals and tumor weight
compared to the control group.

NK-EVsIL-15 were significantly more
effective compared to NK-EVs. Both

treatments did not elicit toxic response
in tumor-bearing animal model.

Choi et al.,
2020
[50]

MCF-7 cells (3 × 106 cells) were injected
subcutaneously into the right flank of

5-week-old, female athymic nude mice
(n = 4)

50 µg/100 µL of human
NK-EVs via IV 3 times weekly

The tumor dimension and mass
reduced significantly compared to the

control group after 2 weeks.

Cochran
et al., 2021

[53]

GFP-expressing MDA-MB-231 cells
(2 × 106 cells) were injected into the 4th
mammary fat pads of female athymic

nude mice
(n = 4–5)

50 µg of human NK3.3-EVs
via IT, 7 times at intervals of 3

to 4 days

The NK3.3-EV treated animals showed
a higher number of dead cells both
histologically and in TUNEL assay.

Kim et al.,
2022
[58]

Hep3B cells (1 × 107 cells/100 µL) was
subcutaneously (right back) or

(2 × 106 cells/50 µL) orthotopically
(liver) xenografted into 6-week-old

male BALB/c nude mice
(n = 5)

50, 100, 200 or 500 µg of
human NK-EXO via IV 6

times at intervals of 2 days

NK-EXO exerted migratory and
targeting ability to inhibit tumor

growth in dose-dependent manner in
both subcutaneous and orthotopic

animal models.

Lee et al.,
2021
[90]

Canine REM134 cells (1 × 104 cells)
xenografted into mammary fat pad of

BALB/c nude mice via IT route
(n = n/a)

100 µg of canine NK-EXO via
IT once and IV twice per week

for 6 weeks

NK-EXO suppressed tumor growth and
reduced the expression of
tumor-associated markers.

Abbreviations: BLI—Bioluminescent imaging; IT—Intra-tumoral; IV—Intravenous; NK-EM—Natural Killer
cell-derived exosome-mimetic vesicle; NSG—NOD-SCID gamma mice; PBS—Phosphate buffered saline.
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Figure 4. Distribution of in-vivo studies for (A) type of cancer studied, (B) administration route of
NK-EVs, (C) tested dose of NK-EVs per dose and the (D) frequency of dose administered throughout
study phase. Numbers indicated in (A,B) refers to the frequency of reviewed studies that fall into the
categories.

The SYRCLE’s risk of bias tool adopted from Hooijman 2014 was used to assess
the risk of bias of the selected studies (Figure 5) [93]. Generally, most of the elements
evaluated showed an unknown risk of bias. While most of the studies demonstrated
low risk of bias for some of the elements investigated, a few studies were found to have
high risk. Among the nine studies reviewed, five studies (55.6%) explicitly mentioned
randomization [45–47,50,58] but three studies (33.3%) did not [49,53,60]. A single study
(11.1%) was deemed high-risk due to undisclosed sample size and allocation method [90].
The baseline was presented prior to treatment in 6 studies (66.7%) but ambiguous in the
remaining three studies (33.3%). None of the studies disclosed information for allocation
concealment, random housing, blinding of interventions or caregivers, random outcome
assessment, and blinding of outcome assessment. Nearly all studies (n = 8, 88.9%) have
unknown risk of bias for selective outcome reporting bias, with one study has high-risk of
bias [50]. Five studies (55.5%) reported low risk of attrition bias and three (33.3%) had an
unclear risk, with one (11.1%) having high-risk [50]. The unclear risk is mainly attributed
to the inconsistency in the sample size of the study’s outcomes with the number of animals
allocated per group. Failure to disclosure the number of animals (alive or dead) excluded
from the analysis or parameter conducted were also took into account. All studies were
at low risk of “other sources of bias” by disclosure of ethics approval, potential conflict of
interest, or the collaborating parties and their roles.
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3.4. NK-EVs Overcome the Chemical and Physical Barriers of TME

NK-EVs inherit the components and functions of NK cells to exert cytotoxicity against
tumor cells in vitro and in vivo. NK-EVs not only express tumor-targeting ability but also
possess homing and migratory properties via chemotaxis [45–47,50,58]. As depicted in
Figure 6, NK-EVs’ framework is significantly more compact (30–200 nm) and they are
also more biostable than NK cells [94,95]. These properties enable them to have improved
infiltration and survival in the hostile TME. It has been demonstrated that NK-EVs express
NKG2D, FasL and TRAIL just like the parent cells for receptor-mediated apoptosis. Lytic
proteins such as PFN and Gzm also exist ubiquitously in NK-EVs to initiate caspase-
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dependent apoptosis pathway. All these functions show that the simple configuration of
NK-EVs does not compromise their capability to eliminate cancer cells through the multiple
cytotoxic pathways utilized by its parent cells. Instead, the NK-EVs might be more effective
without the interference of the TME and TD-EVs that halt the production of PFN and Gzm
in NK cells. It is believed that the anti-cancer potency of NK-EVs is mainly attributed
by these killer proteins. However, the concentration and ratio of NK-EVs in relative to
TD-EVs in the TME will likely determine if they will be able to exert anti-tumor effects. It is
highly possible that the level of inhibitory signals induced by TD-EVs may overwhelm the
activating signals of NK-EVs to prevent any cytotoxic action [84]. This means that the dose
and delivery method of NK-EVs in vivo need to be critically evaluated to ensure their high
bioavailability in the tumor in order to exert their cytotoxic function.
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Figure 6. TD-EVs suppress the recruitment and migration as well as reduce the proliferation, survival
and cytolytic function of NK cells. On the other hand, NK-EVs secreted by the NK cells are small
and diligent enough to overcome the physical and chemical barriers of TME to reach and exert its
cytolytic effect on the tumor cells.
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3.5. NK-EVs Are More Clinically Applicable than NK Cells

Results from the in vitro and in vivo experiments demonstrated that NK-EVs are an
effective and safe immunotherapy. However, there are several foreseeable issues that need
to be addressed in preparing this therapy for future clinical trials and registration. To
begin, the functions of NK cells are distinguishable by their cell activation status [24,96,97].
Generally, both naïve and activated NK cells can secrete NK-EVs [98]. However, the
activated NK cells are preferable for EV isolation due to their high cell number in in vitro
culture. It has been reported that the NK-EVs derived from inactivated NK cells have lower
amounts of cytotoxic proteins [46]. In a separate study, the authors found that EVs secreted
by the NK92 cell line contain fewer cytotoxic proteins compared to the EVs secreted by
in vitro-expanded NK cells [48]. Additionally, Shoae-Hassani et al. (2017) reported that NK
cells exposed to neuroblastoma cells produced NK-EVs with higher cytotoxicity towards the
tumor cells in vitro and in vivo compared to the NK-EVs derived from naïve NK cells [99].
Priming of NK cells with IL-15 was also reported to increase the cytotoxicity of NK-EVs [49].
These observations show that NK-EVs are highly heterogeneous depending on the cellular
origin, culture environment and physiological status. Therefore, it is important to conduct
experiments to the optimize the NK cell culture protocol in order to harvest NK-EVs with
potent therapeutic potential. Importantly, the optimization should also consider increasing
the yield of NK-EVs in order to reduce the cost.

Unlike the stem cell, donor-derived NK cells have variable and limited expansion
potential in vitro [100]. Thus, efforts have been made to prepare immortalized NK cell
lines, such as the NK92-MI from the American Type Culture Collection (ATCC, USA). From
Table 1, eleven of the seventeen reviewed studies purchased this cell line to source their NK-
EVs. Wu et al. (2019) and Aarsund et al. (2022) discovered little-to-no difference between
the NK-EVs from NK92-MI cell line and those from freshly isolated peripheral blood-
derived NK (PB-NK) cells [48,51]. Cryopreservation is widely used for long-term storage of
NK cells. However, the cryopreserved NK cells have relatively poor viability albeit different
freezing medium have been tested. Many studies have reported cell viability less than
10% after revival [101]. More alarming is that the survived cells ceased proliferating and
failed to exert any cytotoxic functions [102]. Failure of cell cryopreservation will definitely
hamper the clinical translation of NK-EV therapy as it will limit the potential of producing
them on a large scale and consistently. At the moment, new donor-derived NK cells are
used to prepare the NK-EVs, which leads to high batch-to-batch variation. Furthermore, it
will also increase the production cost and lead time.

Manual cell culture protocol using tissue culture flask is prone to contamination,
technical errors and high batch-to-batch variation [103,104]. To overcome these limitations,
efforts should be made to shift the NK cell expansion to a bioreactor platform which
is highly automated, allows more control over the culture environment (e.g., glucose
concentration, oxygen concentration and pH) and requires less manpower [105]. Usage
of a highly efficient bioreactor system might also reduce the cost of production [44]. Not
least, it is important is to optimize the EV isolation protocol, which should allow quick and
reliable isolation of EV subpopulation.

Last but not least, long-term storage and off-the-shelf availability are highly desirable
for NK-EV therapy. To achieve this, researchers need to device a storage condition that
can preserve EV stability over a long period of time. As an acellular product, NK-EVs
can be kept chill (4 ◦C) for immediate use or frozen (−20 ◦C or −80 ◦C) up to 12 months
with acceptable loss of proteins and RNAs [106–110]. More importantly, the NK-EVs retain
their anti-tumor effect. For easier storage and transportation, NK-EVs could be lyophilized.
Even though lyophilization has been widely explored for storage of stem cell-derived EVs,
it is still unknown whether lyophilization can be used to preserve the NK-EVs.
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3.6. Defining Nomenclature, Isolation Technique, QA/QC Methods and Biomarkers for NK-EVs

In the very beginning, EVs were first thought as a mechanism of disposing cellular
waste products [111]. Later, studies found that these minute vesicles are rich in lipids,
proteins, nucleic materials (e.g., DNA, RNA, mRNA, miRNA) and other biologically
active molecules [112]. On their surface, they express different molecules and proteins
adopted from parent cell membrane during the budding or exocytosis process. These
physical hallmarks contribute to the diverse functions and heterogeneous properties of EV
molecules. Size is commonly used to classify EVs [113]. The largest EVs are the apoptotic
bodies (1000–5000 nm), followed by microvesicles (50–1000 nm), with exosomes (30–150 nm)
being the smallest [114]. The term “exosome” is often incorrectly used interchangeably with
“extracellular vesicle” to describe the small EV preparation [42]. This is because most of the
studies isolate the EVs based on their size instead of the specific phenotype that represented
their unique biogenesis pathway. Every EV subset has a specific protein phenotype and
molecular content. Thus, the Minimal Information for Studies of Extracellular Vesicles
(MISEV) 2018 guidelines have recommended the nomenclature “extracellular vesicles”
to describe the small membrane-bound particles secreted by the cells. It is crucial to
establish a uniform and specific standard for appropriate evaluation of different NK-EV
preparations as it would allow researchers to determine the strengths and weaknesses of
any modifications or novelties introduced.

Based on Table 3 and Figure 7, the most commonly used EV isolation method is
the ultracentrifugation (UC) [44,45,50,52–55,57,58,60,90]. UC is often used in combination
with other EV isolation techniques to improve the purity [45,50,53,58,60]. Alternative
isolation techniques used in the reviewed studies include density gradient centrifugation
(DGC) [45,49,50,53,60], polyethylene glycol-8000 (PEG8000) precipitation [44,48,53], differ-
ential centrifugation (DC) [47,56,58] and size exclusion chromatography (SEC) [46,49,51].
Generally, the existing techniques are unable to achieve both high recovery and high
specificity. With the rise in interest in EV-related therapeutics especially mesenchymal
stem cell-derived EVs (MSC-EVs) and EV-based immunotherapy, it is vital to develop a
novel isolation method which can give high recovery and high purity as well as can be
easily scaled up [42,113]. Currently, tangential flow filtration (TFF) is being revisited and
improved for more efficient recovery of EVs [58,115,116]. Watson et al. (2018) utilized
the combined platforms of TFF and SEC to isolate MSC-EVs and reported that TFF is a
reproducible and scalable technique to recover clinical-grade EVs compared to other known
techniques [117].

Table 3. Method of isolation, characterization and functional analysis of NK-EVs.

Study Isolation
Method

Size Range or
mean (±SEM)

(nm)

Size Peak or
Mode
(nm)

Methods of
Assessment

Identification
Markers Functional Markers

Jong et al.,
2017
[44]

PEG8000 155 ± 5.9 120 ± 6.4 Caspase assay,
NTA, TEM, WB

CD63, FN,
GNLY, GzmA,
GzmB, PFN

CD56, Cytochrome-C,
Rab5A

Zhu et al.,
2018
[45]

a Serial
extrusion + UC
or b UC + DGC

a 100–150
b 100–120

a 99.2 ± 21.5
b 118 ± 33.1

Caspase assay,
Cellular uptake

assay,
Inhibition assay,
NTA, TEM, WB

ALIX, β-actin,
CD63,

Cytochrome-C,
Fas, GM-130

AKT, ERK, PFN,
p-AKT, p-ERK

Neviani
et al., 2019

[46]
SEC 122.2 ± 1.3 92.5 ± 1.2 NTA, TEM, WB

ALIX, β-actin,
CANX, CD81,

FN, HSP70,
TSG101

AURKA, GzmA,
GzmB, MYCN, PFN,

TGFBR1, TGFBR2
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Table 3. Cont.

Study Isolation
Method

Size Range or
mean (±SEM)

(nm)

Size Peak or
Mode
(nm)

Methods of
Assessment

Identification
Markers Functional Markers

Wang
et al., 2019

[47]
DC 100 − BCA assay, DLS,

NTA, TEM, WB
ALIX, CD63,

TSG101
CD47, CXCR4,
Cytochrome-C

Wu et al.,
2019
[48]

PEG8000 − −

Caspase assay,
Cytochrome-C
assay, ELISA,

WB

β-actin,
Cytochrome-C
FasL, GzmA,
GzmB, GNLY,

PFN

−

Zhu et al.,
2019
[49]

SEC + DGC

NK-EVs:
106.9 ± 21.6
NK-EVsIL-15:
118.2 ± 20.3

−

BLI, Caspase
assay, FC, MTT

assay, NTA,
TEM, WB

ALIX, β-actin,
Calnexin, CD63,
Cytochrome-C,

GM-130

Membrane-FasL,
Cytoplasm-FasL,

PFN, GzmB

Choi et al.,
2020
[50]

DGC + UC − −

2-DE proteome
analysis,

Antibody
blocking assay,
BCA assay, WB

CD40L, CD49,
CD51, CD63,
Integrin α1,
Integrin α3,
Integrin β1,
L-selectin

Apo A-IV, Apo E,
β-actin, DR4, DR5,

DNAM-1, Fas, FasL,
FGB, FGG, FN,

HSP90 α/β, IFN-γ,
IL-6, L-plastin,

NKG2D, NKP44,
NKP46, TRAIL,

TNF-α, VCP

Aarsund
et al., 2022

[51]
SEC 60–125 −

BCA assay,
LC-MS/MS,

NTA, TEM, WB

CD63, CD81,
FasL, GzmB,
PFN, TSG101

DNAM-1, NKG2D,
NKP46, NKP30

Han et al.,
2020
[52]

UC 80–110 −
DLS, HPLC,

TEM, qRT-PCR,
WB

ALIX, CD63,
TSG101

Bax, Bcl-2, β-actin,
Cas-3,

Cochran
et al., 2021

[53]

PEG8000 +
DGC + UC 188.6 ± 2.7 133.4 ± 8.0

BCA assay,
Caspase assay,

GO,
LC-MS/MS,
qPCR, NTA,

TEM, WB

ALIX, Annexin
V, β-actin, CD9,
CD63, HSP70,

HSP90, LAMP1,
NKLAM,
TSG101

DNAM1, GNLY,
GzmA, GzmB,

ICAM1, MHC-I,
MHC-II, PFN,

VCAM1

Jiang
et al., 2021

[54]
UC 50–200 205.6 ± 29.65

BCA assay, FC,
TEM, WB,

Wound healing
assay

CD63, FasL,
GAPDH, GzmB,

PFN, TSG101
−

Kaban
et al., 2021

[55]
UC 115.8–128.9 −

Caspase assay,
FC, NTA, TEM,
Immunogold

staining,
qRT-PCR

CD56, CD63

7-AAD, Annexin V,
Bcl-2, Cas 3/7, Cas-9,

Cytochrome-C,
TMRE
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Table 3. Cont.

Study Isolation
Method

Size Range or
mean (±SEM)

(nm)

Size Peak or
Mode
(nm)

Methods of
Assessment

Identification
Markers Functional Markers

Di Pace
et al., 2020

[56]
DC 135.9 ± 0.5 88 ± 1.3

Bradford assay,
Caspase assay,

Cellular uptake
assay, ELISA,
FC, NTA, WB

CANX, CD63,
CD81, TSG101

CD3, CD16, CD19,
CD56, CD69,

DNAM1, GzmA,
GzmB, IFN-γ, LFA-1,

NKP44, NKG2D,
PFN, PD-1

Enomoto
et al., 2021

[57]
UC − 148.2

BCA assay, FC,
Migration assay,

miRNA
profiling (small
RNA-seq), MS,

NTA, GO,
qRT-PCR, WB

α-tubulin,
β-actin, CD63,

CD81,
Cytochrome-C

CD226, FasL, GNLY,
GzmA, GzmB,

GzmH, PFN, TRAIL

Kim et al.,
2022
[58]

UC + DC + TFF
a 106.1 ± 71.5
b 128.5 ± 33.3 −

Caspase assay,
Cellular uptake

assay, a DLS,
LDH assay, b

NTA, TEM, WB

ALIX, CD63,
CD81, GzmB,
PFN, TRAIL,

FasL

β-actin, Cas3, Cas7,
Cas8, Cas9,

Cytochrome-C, PARP,
p-AKT, p-ERK1/2

Sun et al.,
2019
[59]

UC 50–200 −

FC, Migration
and invasion
assay, SEM,
qRT-PCR

ACTIN, CD63,
TSG101 IL-26, mir-3607-3p

Zhu et al.,
2017
[60]

DGC + UC 100–150 −

BCA assay,
Caspase assay,

ELISA, FC,
TEM, WB

ALIX, CD63,
β-actin,
GM-130

Annexin V,
Cytochrome-C, FasL,

PFN, p38, TNF-α

Lee et al.,
2021
[90]

UC 136.6 ± 9.4 − NTA, WB

ALIX, CD63,
CD81, HSP70,

TSG101, GzmB,
PFN

Bax, Bcl-xL, Bmi-1,
CD133, IL-1β, IL-6,
MDR, MMP-3, p53,

PCNA, TNF-α, VEGF

Symbol: “−” indicates data not specified or available by authors. Abbreviations: 2-DE—2-dimensional gel
electrophoresis; 7-AAD—7-aminoactinomycin D; AKT—protein kinase B; ALIX—ALG-2-interacting protein
X; APO—apolipoprotein; Bax—Bcl-2-associated X protein; BCA—bicinchoninic acid assay; BCL2—B-cell lym-
phoma 2 gene; CANX—calnexin; Cas—caspase; CXCR4—C-X-C chemokine receptor type 4; DC—differential
centrifugation; DGC—density gradient centrifugation; DLS—dynamic light scattering; DNAM1—DNAX ac-
cessory molecule-1; DR4—death receptor 4; ELISA—enzyme-linked immunosorbent assay; FC—flow cytom-
etry; FGB—fibrinogen beta chain; FGG—fibrinogen gamma chain; FN—fibronectin; GFP—green fluorescent
protein; GM-130—golgi matrix protein; GNLY—granulysin; GO—gene ontology; GzmA—granzyme A; GzmB—
granzyme B; HPLC—high performance liquid chromatography; HSP70—70-kilodalton heat shock proteins;
ICAM1—intercellular adhesion molecule 1; IFN—interferon; LAMP1—lysosomal-associated membrane protein
1; LC-MS/MS—liquid chromatography–tandem mass spectrometry; LFA-1—lymphocyte function-associated
antigen 1; MHC—major histocompatibility complex; MS—mass spectrometry; NKG2D—natural killer group
2D; NKP44—natural killer cell P44-related protein; NN—nanoparticles; NTA—nanoparticle tracking analysis;
PARP—poly [ADP-ribose] polymerase; PD1—programmed cell death 1; PEG8000—polyethylene glycol 8000;
PFN—perforin; qPCR—quantitative polymerase chain reaction; qRT-PCR—quantitative real-time polymerase
chain reaction; SEC—size exclusion chromatography; SEM—scanning electron microscopy; TFF—tangential flow
filtration; TEM—transmission electron microscopy; TMRE—tetramethylrhodamine, ethyl ester; TNF—tumor
necrosis factor; TRAIL—TNF-related apoptosis inducing ligand; TSG101—tumor susceptibility gene 101; UC—
ultracentrifugation; VCAM-1—vascular adhesion molecule 1; VCP—valosin-containing protein; WB—Western
blot.
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According to MISEV 2018, EVs should be categorized based on size and biochemi-
cal composition (e.g., CD9, CD81 and TSG101) [118,119]. Most of the selected articles in
this study used small NK-EVs in the range 50–200 nm [44–47,49,51–53,55–60,90]. Only
Jiang et al. used a subset of EVs that are larger in diameter, i.e., 205.6 ± 29.65 nm [54].
To prevent misreport or misrepresentation of each author’s work, only text-based evi-
dence of the NK-EV sizes were recorded since not all reviewed studies had specifically
disclosed the diameter, mean or mode of their NK-EVs. The frequently used assessment
tools for EVs in these studies includes nanoparticle tracking analysis (NTA) to examine the
size [44–47,49,51,53,55–58,90], transmission electron microscopy (TEM) to study the size
and morphology [44–47,49,51–55,58,60], Western blot (WB) [44–53,56–58,60,90] and flow cy-
tometry (FC) [49,54–57,59,60] to determine the biochemical markers, and bicinchoninic acid
(BCA) protein assay [47,50,51,53,54,57,60] to quantify the protein concentration. The bio-
chemical markers consistently tested to characterize the EVs were CD63 [44,45,47,49–60,89],
CD81 [46,51,56,57,89], ALIX [45–47,49,52,53,58,60,90] and TSG101 [46,47,51–54,56,59,90]. Fur-
thermore, specific markers, i.e., Fas/FasL or Fas/TRAIL [45,48,50,51,54,57,58], granulysin
(GNLY) [44,48,52,57], granzymes A (GzmA) and/or B (GzmB) [44,46,48,49,51,53,54,56,57],
and PFN [44–46,48,49,51,53,54,56,57,59,60] were used to prove that the EVs originated from
NK cells. The characterization of NK-EVs using the above techniques is crucial to verify
the NK-EVs, as well as to compare and standardize the NK-EV research.

3.7. Future Considerations of NK-EVs as a Tool for Immunotherapy

Table 4 summarizes the established benefits and challenges of NK cells and NK-EVs
for immunotherapy. However, the discussion going forward shall emphasize on improving
the EV-based immunotherapy as it has yet to be thoroughly explored but already exhibiting
significant advantages compared to the former. One of the main benefits of cell-based
and EV-based therapies is that they are minimally invasive medical procedures [120].
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They are safer alternatives with potentially fewer procedural complications to the high-
risk populations such as infants and elderly. In contrast, surgical treatment can lead to
many serious complications, including induced hemorrhage, post-operative sepsis and
extended rehabilitation [121,122]. Selection of administration route or delivery technique
is critical to ensure the safety and efficacy of a therapy [123]. Although IT administration
would eliminate any concerns over the homing and migration ability of NK-EVs, the IV
administration will be especially useful for regions with poor access or penetrability (e.g.,
brain) [124]. In actuality, a larger dose is typically needed for IV route to compensate for
the accumulated loss of drugs due to unwanted distribution at the other tissues as well
as metabolism and excretion primary at the liver and kidney [125–127]. Nonetheless, the
continual IV administration of NK-EVs after the tumor elimination could be favourable to
ensure complete clearing of tumor cells to minimize the risk of relapse [128,129]. To date,
it is still unclear on the optimal dosage regime of NK-EVs. More research is needed to
determine the ideal frequency, dosage and interval of NK-EV treatment.

Table 4. Summary of pros and cons of NK cell vs. NK-EV for immunotherapy.

Pros Cons

NK CELL

1. Origin of multiple and complex
immune functions that includes
NK-EVs.

2. Able to incite stronger humoral
response (antibody-mediated) via
cross-talks with DC.

3. Have explicit evidence on safety
and references to efficacy.

4. Have GMP-compliant isolation
and expansion protocols.

1. Size and nature of cells limits
permeability through the
biological barriers.

2. Poor cell viability and stability
due to susceptibility from TME
and TD-EVs.

3. Limited modification or drug
delivery potential.

4. Possible graft rejection and
transmission of infectious agents
with the use allogeneic cells.

5. No known effective
cryopreservation methods despite
years of research and
development.

6. Cell therapy remain an ethical
issue.

7. Low yield/purity and high cost
of manufacturing.

NK-EV

1. Inherit the identity and properties
of the parent cells.

2. Nano-sized dimension improve
homing and migratory function.

3. Higher biostability, lower safety
risks and excellent treatment
efficacy.

4. Unaltered by TME and/or
TD-EVs.

5. A viable drug delivery platform
through genetic engineering or
drug loading for an enhanced or
combined therapy.

6. Potential of storage with long
shelf-life.

7. Allow standardization of dose for
targeted and precision medicine.

8. Its classification as “biologics” is
familiar to physicians and more
ethically acceptable.

1. Requires new isolation from
tissue and cell cultures to
replenish stock.

2. Lack of GMP-compliant protocols
for product isolation, testing and
preservation.

3. Unknown clinical potential as a
relatively novel product.
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Efforts are also needed to improve the efficacy of NK-EV production in order to reduce
the cost. Owing to its niche role, NK cells have high metabolic activity and need specific
cytokines to stimulate its proliferation. The commonly used cytokines to expand NK
cells are IL-2, IL-15, IL-18, and IL-21. The cytokines can be provided by the peripheral
blood mononuclear cells (PBMCs) that serve as the feeder cells [130]. Alternatively, the
culture medium can be supplemented with commercially available human recombinant
cytokines to maintain the NK cell culture. Although the use of recombinant cytokines
is simpler as no purification step is needed to remove the contaminating PBMCs and
safer as it is free from PBMC contamination, the cost of recombinant cytokines is very
high. The high concentration and cost of recombinant cytokines will significantly escalate
the production cost. On top of that, the requirement of using GMP-grade or clinical-
grade raw materials and consumables, skilled manpower, stringent quality assurance and
quality control (QA/QC), expansive equipment for scalable production, and the use of a
cGMP-certified production facility will escalate the treatment cost to unaffordable scales
for majority of the patients [131]. This, in turn, will affect the clinical translation and
commercial viability of NK-EV therapy.

4. Conclusions

NK-EVs show promising tumor cytotoxicity with no adverse or side effects in vitro
and in vivo. NK-EVs are not cytotoxic to the normal or healthy cells and can increase the
life span of tumor-bearing animals. Thus, this novel therapy has great clinical potential.
In addition, NK-EVs can circumvent some of the limitations of NK cell therapy, such as
impediment of NK cell functionality by the TME and TD-EVs. In fact, NK-EVs would see
potential benefits due to the increased cellular uptake in the TME. Although IT administra-
tion is superior, the IV administration will be meaningful for “difficult-to-reach” tumors
and high-risk populations. Additionally, NK-EVs can be readily available off-the-shelf as
they are more stable and easier to store compared to NK cells. Nonetheless, NK-EV therapy
and its production procedure need further investigation to improve its safety and efficacy
as well as to increase the yield and lower the production cost.
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