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Abstract: Precision medicine has driven a major change in the treatment of many forms of cancer.
The discovery that each patient is different and each tumor mass has its own characteristics has
shifted the focus of basic and clinical research to the singular individual. Liquid biopsy (LB), in this
sense, presents new scenarios in personalized medicine through the study of molecules, factors, and
tumor biomarkers in blood such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA),
exosomes and circulating tumor microRNAs (ct-miRNAs). Moreover, its easy application and com-
plete absence of contraindications for the patient make this method applicable in a great many fields.
Melanoma, given its highly heterogeneous characteristics, is a cancer form that could significantly
benefit from the information linked to liquid biopsy, especially in the treatment management. In this
review, we will focus our attention on the latest applications of liquid biopsy in metastatic melanoma
and possible developments in the clinical setting.

Keywords: liquid biopsy; metastatic melanoma; precision medicine; circulating tumor cells;
circulating tumor DNA

1. Introduction

The past few decades of research have achieved milestones in cancer diagnosis, man-
agement, and treatment. It is known that a tumor mass is not a single entity, but rather
it is made up of sets of cells, very different from each other, communicating with the
surrounding microenvironment that influences its growth, progression, and response to
treatments [1]. New technologies and omics approaches have enabled a deep knowledge
of cancer that translates, of course, into targeted therapies tailored to the individual patient.
Precision medicine, indeed, aims to identify the specific characteristics of the individual to
be translated into more effective therapies over time [2]. The in-depth study of the tumor is,
therefore, crucial for patient management in terms of predicting responses to therapy and
in cases in which treatment changes are needed. Indeed, the tumor is constantly evolving,
and this is one of the reasons behind the failure of many therapeutic treatments and the
establishment of secondary resistance. In this scenario, liquid biopsy (LB) proves to be a
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strong ally for the clinician who can monitor the progress of response to a treatment and
any recurrence of disease, and decide to undertake treatments more suitable for the specific
patient [2]. Extremely simple to perform and free of contraindications, LB has significant
advantages compared with traditional biopsy which is extremely invasive and difficult to
replicate over time [3].

Metastatic melanoma represents one of the tumors that could most benefit from
the use of LB. Recommended current diagnostic approaches for patients with metastatic
melanoma include ultrasound, magnetic resonance imaging (MRI), and positron emission
tomography (PET)-CT which play important roles in tumor staging, surveillance, and
assessment of therapeutic response [4]. The assessment of BRAF mutational status is
also currently considered in metastatic melanoma diagnosis [5]. In the last decade, the
assessment of other molecular pathways has been explored to evaluate genetic tumor
evolution, for prognostic purposes, to monitor treatment response and acquired drug
resistance [6]. Longitudinal analysis of LB samples is an emerging potential technology to
dissect the complex clonal architecture of cancers without performing repeated and invasive
tissue biopsies. Indeed, given its extremely heterogeneous characteristics, treatment of
melanoma is still unresponsive in a significant number of patients due to the development
of secondary resistance [7]. As demonstrated and discussed by several authors, LB can
overcome the limits of traditional treatments. LB screening throughout immune [8] and/or
target therapy [9] is crucial for patient monitoring in order to lead clinical decisions for
personalized therapy.

The purpose of this review is to analyze the most interesting aspects of LB (in terms
of methodologies and applications) and its implication in the detection, prognosis, and
monitoring of metastatic melanoma.

2. Metastatic Melanoma

Although accounting for only 10% of the total, melanoma represents the deadliest
form of skin cancer [10]. Melanoma development arises from atypically transformed
melanocytes, commonly in the skin, in the setting of ultraviolet radiation (UVR) injury, and
is most often caused by sun exposure and sunbeds. Sun exposure is the most significant
environmental cause of skin cancer and continuous exposure to UVR is correlated with
the occurrence of this disease. Other epidemiological risk factors such as pigmentation
characteristics, high density of freckles, and a high number of naevi affect susceptibility
to melanoma [11]. When not diagnosed early, the survival of patients with melanoma is
drastically reduced, with only 15% of the total surviving 3 years after diagnosis [1,12]. Over
the last 10 years, targeted therapies and immunotherapies have significantly improved re-
sponses and survival trends, changing the clinical management of patients with metastatic
melanoma. Recently, several studies have focused on checkpoint inhibitor molecules that
down-regulate immune responses. Immune checkpoint inhibitors against cyto-toxic T-
lymphocyte-associated antigen 4 (CTLA-4) (Ipilimumab) and against programmed cell
death protein 1 (PD-1) (Nivolumab) are currently used in advanced melanoma. Moreover,
the discovery of BRAF mutations in several cancers including melanoma led to the develop-
ment of BRAF kinase and MEK kinase inhibitors [13]. According to the current guidelines,
BRAF-wildtype patients with advanced melanoma should either receive a dual therapy
with ipilimumab plus nivolumab or a monotherapy with nivolumab or pembrolizumab
(PDL-1 inhibitor), on the basis of clinical discretion. The same recommendation is valid for
BRAF-mutant patients including an additional option with BRAF/MEK inhibitors [14,15].
Melanomas are histologically classified according to the tumor, node, and metastasis system
(TNM) regulated by the American Joint Committee on Cancer (AJCC), which determines
the stage of the tumor (T) through specific and universal characteristics such as tumor
thickness, ulceration, and mitosis in lesions. Other parameters used for the classification of
this pathology concern its ability to involve the lymph node system (N) and the possible
presence of metastases (M) distant from the primary tumor [16–18].
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The melanoma clinical stage depends on the involvement of the lymph node system
and the infiltrating capacity of the disease; indeed, stage I–II–III melanomas include pa-
tients characterized by the absence or microscopic presence of lymph node and/or distal
metastases whereas stage IV provides for the massive presence of distal metastases [17].
The less favorable prognoses are obviously linked to the more advanced stages of the
disease. In recent years, many studies have shed light on the mechanisms underlying
melanoma development and have shown that the melanocytes tumor transformation pro-
cess is complex and multi-stage [19,20]. It is clear that the most benign lesions present the
alteration of v-Raf murine sarcoma viral oncogene homolog B (BRAF) in the codon V600E
(that is sufficient for the nevus formation), but for melanoma development, BRAF mutation
is not sufficient because the disease progression is bound to concomitant alteration in
other genes involved in the most important cellular processes [21,22]. Indeed, the benign
nevi remain quiescent even for several years and, only after possible genetic mutations
against target genes such as telomerase reverse transcriptase (TERT), cyclin-dependent
kinase inhibitor 2A (CDKN2A), phosphatase and tensin homolog deleted on chromosome
10 (PTEN), neurofibromin 1 (NF1), and receptor tyrosin kinase (KIT), does neoplastic trans-
formation begin. These genetic alterations are responsible for the uncontrolled activation
of mithogen-activated protein kinase (MAPK) and phosphatidylInhositol3-kinase (PI3K)
pathways that are physiologically involved in cell proliferation and survival [23]. It is
certain that the MAPK pathway is the most dysregulated in melanoma and includes three
major kinase families, i.e., MAPK kinase kinase, MAPK kinase, and MAPK, which acti-
vate and phosphorylate downstream proteins [24]. This pathway exhibits anomalies in
many tumor contexts as it promotes proliferation and is involved in numerous treatment
resistance processes [25,26]. Although less frequently, the PI3K pathway is also mutated
in melanoma [27]. For example, PTEN (an important negative regulator of the PI3K path-
way) in melanoma is frequently mutated/deleted and its loss of function is present and
concomitant with BRAF mutations in approximately 44% of melanomas [28,29].

3. Liquid Biopsy (LB): An Overview

Precision medicine requires the study and analysis of a tumor in real time. Indeed, a
tumor evolves over time, and its genetic, metabolomic, etc., characteristics can undergo
profound changes [30]. This leads to variations in terms of disease progression and response
to therapies. Traditional biopsies, performed invasively on tissues and organs, cannot meet
(for patient management and cost reasons) the information requirements required to draw a
map and determine tumor evolutions. Moreover, this method, which is still used for tumor
diagnosis, is related to the performing time and provides a limited picture of the tumor, not
taking into account tumor heterogenicity [31]. LB, on the other hand, presents new scenarios
in real-life oncology, providing tumor assessment throughout a painless and feasible blood
draw over time. LB is not only limited to blood but can also be represented by several other
human fluids such as semen, urine, cerebrospinal fluid (CSF), saliva, pleural fluid, and
ascites [32–34] with a biomarkers quantity largely linked to the localization of the primary
tumor and metastasis [35]. For instance, CSF is used to monitor glioblastoma patients as it
has a higher amount of ctDNA and CTCs than blood [34]. Urine, instead, is used in a new
urine-based assay to detect single mutant molecules of fibroblast growth factor receptor
3 (FGFR3) that are indicative of bladder cancer, which represents a noninvasive tool of
early-stage diagnosis [32]. Furthermore, to explore the potential of ctDNA as a biomarker
for head and neck squamous cell carcinomas (HNSCC), Wang at al. studied ctDNA from
the saliva of 93 HNSCC patients, showing that the sensitivity was site-dependent and
most efficient for tumors in the oral cavity. Instead, in HNSCCs distal to the oral cavity
(oropharynx, larynx, and hypopharynx) ctDNA was often detectable, but the frequency
and the fraction of mutant alleles were considerably lower than those found in the oral
cavity [33].
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This review will focus on the analysis of circulating tumor cells (CTCs), circulating
tumor DNA (ctDNA), exosomes, and circulating tumor microRNAs (ct-miRNAs) released
by cancer cells in blood [36] (Figure 1).
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Figure 1. A schematic view of liquid biopsy. Blood collected from cancer patients contains circulating
tumor cells (CTCs), circulating tumor DNA (ctDNA), exosomes, and circulating tumor microRNA
(ct-miRNA). These biomarkers could provide real-time information on tumor progression, prognosis,
and treatment response.

An important LB benefit is the possibility of monitoring the tumor mass. Indeed,
monitoring makes it possible to assess changes (of various types) related to detectable tumor
components in fluids over time. All tumor products can fluctuate in their concentrations
and mutational and molecular status depending on the characteristics of the tumor cells
and the stage of the disease (Table 1).
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Table 1. Most important tumor alterations investigable in circulating biomarkers by sequential
LB analysis.

LB
Biomarkers

Type of
Evaluation Results Reference(s)

CTCs
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3.1. Circulating Tumor Cells (CTCs)

CTCs are tumor cells originating from the primary site of the malignancy or from
metastasis, which give an instantaneous picture of the disease [58,59]. These cells are
present in the bloodstream in very low concentrations (1–10 cells/milliliter of blood) but,
compared with standard tissue biopsies, are able to provide fundamental information on
inter- or intra-tumoral heterogenicity from genetic aberrations and transcriptional and
epigenetic dysregulation in that a small amount of tissue may not be representative of the
whole tumor [60–64]. CTCs are critical for tumor analysis as several studies have shown
that blood concentration changes more significantly and in closer correlation with the tumor
origin than other tumor markers [62,65,66]. The detection and isolation methods of CTCs
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are different but are all essentially based on the physical and biological characteristics of the
cells [67]. The EPithelialImmunoSPOT (EPISPOT) assay (which exploits tumor expression
of specific molecules) allows blood detection of even a single cell and has produced signifi-
cant results in terms of cell concentration assessment in several solid tumors [68,69]. The
assay discriminates tumor cells from “normal” cells by selectively recognizing the expres-
sion of the epithelial cell adhesion molecule (EpCAM) [70]. Unlike other solid tumors, such
as adenocarcinomas of the colon and pancreas and hormone-refractory adenocarcinomas
of the prostate, melanoma has non-high levels of EPCAM protein [71,72]. For example,
Odashiro and collaborators, in a study conducted on 25 patients with uveal melanoma,
did not any detect positivity for EPCAM expression in the samples analyzed [73]. Un-
like other solid tumors, melanoma has non-high levels of EPCAM protein. Therefore, it
was necessary to identify other molecules to discriminate circulating melanoma cells, and
specifically, a new EPISPOT assay based on S-100 protein recognition (S100-EPISPOT) was
developed [71,74].

CTCs and Melanoma

In recent years, the development of precision and personalized medicine has re-
quired the need to capture pictures of tumor progression. Highly heterogeneous tumors,
such as metastatic melanoma, undergo profound changes dictated by intrinsic cell alter-
ations or drug treatments. Therefore, the analysis of tumor behavior through the study
of CTCs appears increasingly cutting edge. Many studies have focused their attention on
melanoma CTCs.

In 2013, Karakousis and collaborators highlighted the need to monitor patients with
metastatic melanoma, even during therapy, to correct the target as soon as favorable
conditions changed. The authors described that in 101 patients with stage IV melanoma,
26% of them had values ≥2 of CTCs at baseline. The account of CTCs was evaluated
with the CellSearch CTC enumeration system, which used Melcam and high-molecular-
weight melanoma-associated antibody (HMW-MAA), 2 markers expressed in up to 80%
of metastatic melanoma lesions. The number of CTCs was significantly correlated with
overall survival (OS) and thus could be considered an important prognostic factor. Indeed,
during treatment, patients with no significant decreases in the number of CTCs (≥2)
had a worse median OS (7 vs. 10 months) than, in contrast, the group of patients with
decreased values of CTCs (<2) [37]. A more recent study investigated the prognostic role
of CTCs in 93 patients with stage IV metastatic melanoma, whose CTCs baseline levels
were assessed by an immunomagnetic system. All patients that presented values ≥ 1 were
considered positive and eligible. Confirming the findings of the previously described study,
a significant correlation was found between baseline levels of CTCs and the progression of
disease (PD) within 180 days of detection. Therefore, in metastatic melanoma, CTCs can be
considered as possible biomarkers that can identify patients with a higher risk of PD [38].
In stage III melanoma patients, the association between the CTCs and disease relapses
was evaluated in a recent clinical study. In 243 patients, CTCs detection was significantly
associated with shorter relapse-free survival (RFS) [39].

In addition to their prognostic role in survival and PD, CTCs can also provide accurate
and real-time information in response to treatments. Kiniwa et al. evaluated the role of
CTCs as biomarkers of treatment response in BRAF-mutated melanoma. Although per-
formed in a limited number of patients, the study showed a fluctuating trend in CTCs levels
in 4 of 5 patients with grade IV metastatic melanoma treated with BRAF and MEK inhibitors.
This finding, which also takes into account the high heterogenicity of melanoma cells, points
out the correlation between the number of CTCs and the response to treatment [40]. Like
target therapies, immunotherapy is showing important results in melanoma treatment and
CTCs appear to be a predictive biomarker of response to this type of treatment.

Khattak and collaborators recently showed, in patients with advanced melanoma,
a significant correlation between the levels of PDL1-rich CTCs and the response to pem-
brolizumab. Indeed, patients with CTCs/PDL1+ had favorable effects in terms of progression-
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free survival (PFS) compared with the same patients with low circulating levels of PDL1 [41].
Constant monitoring of CTCs could be a valuable support for clinicians in screening pa-
tients going through therapies, thus avoiding unnecessary and harmful treatments. For
this purpose, for example, the development of a 19-gene signature for melanoma CTCs
has enabled early and rapid assessment of the response to immunotherapies. Indeed,
changes in this gene signature after treatment provide important data about the response
to therapies, even in the long term [42].

3.2. Circulating Tumor DNA (ctDNA)

The tumor presence in the bloodstream is represented not only by cells but also by
their waste products, such as tumor DNA. Indeed, tumor can release genetic material
for a variety of reasons, mainly in the case of programmed death by apoptosis or cell
necrosis [75,76]. At the same time, the high genomic instability that characterizes cells
undergoing rapid division, as in the metastatic process, can further result in the release of
DNA into the circulation [77,78]. Circulating tumor DNA (ctDNA) is essentially represented
by small fragments of genetic material (<166 bp) that undergoes changes in terms of
blood concentrations during PD or after drug treatments. ctDNA represents only the
smallest fraction of all circulating free DNA (cfDNA) released even by non-tumor cells.
The percentage of ctDNA varies from one patient to the other and using a quantitative
PCR-based approach has determined that the proportion of tumor DNA varies between
10% and 90% of total cfDNA, with the highest proportions in the samples with low overall
cfDNA levels [79]. In contrast, an earlier study reported much lower proportions of tumor
DNA (between 0.2% and 10%) [80]. The concentration of cfDNA in the serum of cancer
patients is about 4 times higher than that of healthy controls and is observed in healthy
subjects at concentrations between 0 and 100 ng/mL of blood with an average of 30 ng/mL.
However, in cancer patients a fraction of this total cfDNA contains tumor-specific somatic
alterations derived from ctDNA and the concentration in plasma or in serum varies between
0 and 1000 ng/mL, with an average of 180 ng/mL [81]. Isolation methods are based on the
detection of mutations (mt), rearranged genomic sequences, copy number variations (CNV),
microsatellite instability (MSI), amplified sequences, loss of heterozygosity (LOH), DNA
methylation (DNAm), and the degree of integrity [82–84]. There are several kits available
for isolating ctDNA based on different techniques of processing plasma including affinity
column, magnetic bead, polymer, and phenol-chloroform methods. These methods vary
in their ability to purify fragments of different sizes. Consequently, they may change the
total quantity of cfDNA isolated and skew the fraction of ctDNA [85]. Highly sensitive and
specific methods are currently used to detect ctDNA, such as droplet digital PCR (ddPCR)
or next generation sequencing (NGS) [86].

In metastatic melanoma patients, ctDNA detection promotes the identification of
typical mutations (i.e., BRAF and Neuroblastoma RAS Viral Oncogene Homolog (NRAS))
and epigenetic markers such as methylated DNA [47,87]. Indeed, DNA methylation of
specific genes, such as Tissue Factor Pathway Inhibitor 2 (TFPI2), has been shown to
be correlated with advanced melanoma [88]. Several studies have shown ctDNA fluc-
tuations in different tumor contexts, such as in pancreatic cancer and BRAF-mutated
metastatic melanoma [89,90]. In recent years, ctDNA as a biomarker of treatment re-
sponse and PD has assumed a key role in cancer patient monitoring, providing a real-time
view of the tumor and allowing for the assessment of changes in the disease mutational
structure [89–92]. Furthermore, it has long been known that ctDNA can influence the
course of tumor progression because it is a biologically active product. An interesting study
conducted pre-clinically in patients with colon cancer showed that the presence of ctDNA in
the supernatant could induce murine NIH3T3 cells toward malignant transformation [93].

ctDNA and Melanoma

The high prognostic potential of ctDNA has increased studies in recent years on its role
as an indicator of disease and response to treatment in various cancer settings, particularly
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in melanoma. To date, although many steps have been taken, there is still no clear and
specific evidence on the prognostic validity of ctDNA due to studies with sometimes
conflicting results.

One of the most frequent sites of melanoma metastasis is the brain and the OS of
patients characterized by this metastatic site is about 4–6 months [94]. In an interesting
study, Lee and collaborators evaluated the potential role of ctDNA for surveillance and
monitoring of the response to systemic therapy in patients with melanoma brain metastases.
Circulating levels of BRAF, NRAS, and c-KIT mutations were assessed in 72 patients
with brain metastases from melanoma and who were undergoing anti-PD1 treatment.
The study showed that patients with lower ctDNA values (at baseline and/or during
treatment) had better OS [43]. Studies involving the analysis of ctDNA are developing
rapidly. Recently, another research group focused on creating a data platform for LB and
correlated ctDNA levels and patient survival. Specifically, the authors selected 19 subjects
with stage III and IV melanoma and, after validating their mutational status matched
in ctDNA, observed that patients with higher levels of circulating genetic material had
significantly decreased PFS [44]. ctDNA levels can be considered a good marker of response
to treatments, especially those with a nonimmediate outcome, such as immunotherapies,
and can therefore help in stratifying patients for treatment. It was observed that melanoma
patients characterized by lower pre-treatment (anti-PD1) ctDNA levels had a longer PFS.
The group of patients with higher blood concentrations of ctDNA had better survival
ranges only when treated with the combination of anti-PD1 and CTLA-4 inhibitors [45].

With completely opposite results, a very recent study, in patients with metastatic
melanoma, had compared the function of ctDNA as a PD indicator with radiomics imaging.
The authors analyzed ctDNA, obtained at the stage of PD, from 108 patients with melanoma,
and 66 patients were monitored after response to therapy. Although well-articulated, the
results obtained from the retrospective and prospective study did not show good efficacy
of ctDNA in detecting PD in melanoma, when compared with analysis of standard positron
emission tomography imaging. ctDNA was detected in only 62% of patients at the time of
PD and only a non-significant number of patients showed changes in ctDNA blood levels
between the onset of PD and treatment response [46].

3.3. Exosomes

Exosomes are small (30–200 nm) extracellular vesicles (EV) secreted by all cells for
intercellular communication by transferring functional proteins, metabolites, and nucleic
acids [95,96]. Initially considered a mechanism by which cells expel waste material, it is
now known that exosomes play an important role in cellular communication and influence
several cellular processes, such as immune response and maintenance of cell stem state,
and are obviously involved in tumor mechanisms [97–100]. Indeed, they are central
players in the survival and growth of the primary tumor by promoting exchanges and
interconnections between tumor and non-tumor cells; they stimulate extracellular matrix
remodeling by inducing tumor migration and invasion; and they promote angiogenesis,
which is necessary for the metastatic process [101].

The exosome isolation methods differ depending on the material they contain. In
a recent study, Mondal and colleagues discriminated tumor exosomes from other EVs
using a size-exclusion chromatography (SEC) followed by an immunoaffinity approach,
based on an anti-chondroitin sulfate peptidoglycan 4 (CSPG4) monoclonal antibody specific
for an epitope expressed only by melanoma cells [102]. Although it is not very easy to
discriminate vesicles produced by “normal” cells from those released by tumor cells, the
great abundance of these structures in circulation gives them the function of possible
biomarkers in different tumor contexts [103–106]. Melanoma cells not only use molecules
released via exosomes to influence the surrounding microenvironment in their favor, they
can also induce the reprogramming of fibroblasts into cancer-associated fibroblasts (CAFs)
via Gm26809 delivery and thereby stimulate tumor progression and migration [107]. In
addition, melanoma stimulates the stromal release of pro-inflammatory cytokines, such
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as interleukins 6 and 8 (IL-6 and IL-8), resulting in the establishment of a pro-tumorigenic
microenvironment. Therefore, pharmacological action targeted toward these elements
could open up new therapeutic scenarios [108].

Exosomes and Melanoma

Several studies have investigated the possible tumor biomarker role of exosomes.
There is evidence that patients with melanoma have higher levels of protein content of
exosomes than healthy subjects, even in non-active disease settings.

A 2020 study conducted in 19 melanoma patients and 6 healthy donors found that
the expression of immunosuppressive proteins was higher in exosomes isolated from the
peripheral blood of melanoma patients than in those of healthy donors. This could be
related to the ability of the tumor to suppress the immune response and inhibit the action
of immunotherapy agents [48]. The ability to monitor disease evolution over time is one of
the foundations on which precision medicine is based; it focuses on intervening treatments
and improving drug performance.

Cordonnier and collaborators analyzed exosomal levels of PDL-1 (with immunosup-
pressive properties) in 100 melanoma patients and observed a significant increase in this
circulating protein compared with healthy controls (64.26 pg/mL vs. 0.1 pg/mL). The
authors also pointed out an increased sensitivity of LB compared with standard tissue
biopsies because serum levels of PDL-1 were detected in all patients analyzed, whereas
only 67% of tissue biopsies were PDL-1 positive. Changes in the serum concentration of
PDL-1 could, therefore, be used as a biomarker of treatment response and clinical out-
come [49]. Exosomal PDL-1 immunosuppressive action has been extensively investigated
in melanoma in several other studies. Indeed, PDL-1, as previously described, can not only
lead to immune evasion, but can also antagonize anti-PD-L1 therapy by binding to the
antibody itself [103,109].

Alegre and collaborators underlined the possible prognostic role of exosomes with
a study that examined the presence of biomarkers such as melanoma inhibitory activity
(MIA), S100B, and tyrosinase-related protein 2 (TYRP2) in exosomes obtained from the
serum of healthy donors, metastatic melanoma, and melanoma disease-free patients. The
study showed that melanoma patients had significantly higher S100B and MIA exosomal
concentrations than the negative controls analyzed. Furthermore, patients with exosomal
concentrations of MIA greater than 2.5 µg/L had a shorter PFS than those with a lower
level (4 vs. 11 months; p < 0.05); however, TYRP2 showed no significant differences within
the three study groups [50]. The study of exosomes may also provide important informa-
tion for the development of new therapeutic strategies, especially in melanoma where the
microenvironment strongly conditions the disease course. Indeed, a very recent study has
shown that melanoma exosomes induce the pro-inflammatory function of cancer-associated
fibroblasts (CAFs) by stimulating the production of cytokines such as IL-6 and IL8. These
factors, therefore, could be considered a valuable therapeutic target [108]. Exosomes pro-
duced by melanoma cells markedly influence progression and the ability of the tumor mass
to evade the immune system. The presence of exosomes in vitro results in the establishment
of a microenvironment consisting mainly of type 2 macrophages and suppressive dendritic
cells, suggesting the triggering of immunosuppressive mechanisms [110]. Melanoma cells
secrete into the bloodstream EVs as well as exosomes containing microRNAs [111]. Most
recently, Sabato et al. characterized plasma EVs associated with miRNAs (pEV-miRNAs)
profiles from metastatic melanoma patients providing a melanoma-specific ct-miRNAs
signature. Through a miRNA bioinformatic analysis they identified a panel of four pEV-
miRNAs, namely, miR-412-3p, miR-507, miR-1203, and miR-362-3p, with a high diagnostic
power [51].

3.4. Circulating Tumor microRNA (ct-miRNAs)

MicroRNAs are small endogenous (19–22 nt) single-stranded non-coding RNA molecules
able to modulate gene expression at the post-transcriptional level, with a key role in multiple
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cellular processes and regulatory pathways [112]. MiRNAs can be secreted into biological
fluids, such as blood, semen, urine, and cerebrospinal liquid, after cell death processes or
to selectively mediate intercellular signaling [113].

Circulating tumor miRNAs (ct-mirRNAs) are more stable compared with other extra-
cellular RNAs: they are complexed with proteins or lipoproteins such as Argonaute 2 (AGO2),
or packaged inside EVs which protect them against RNase activity [114]. Despite high
stability in blood, their low concentration and lack of consistent processes for collection
make the pre-analytical phase of ct-miRNAs detection a critical step to minimize analytical
variabilities [115]. Commercially available kits for RNA extraction and real-time quantita-
tive reverse transcription polymerase chain reaction (qRT-PCR) for quantification are the
gold standard in ct-miRNAs assessment [116].

Due to their presence in readily accessible body fluids, since 2008, the potential role
of ct-miRNAs as promising diagnostic, prognostic, and predictive biomarkers in solid
cancer has been investigated [116–121]. Many ct-miRNAs are found to be up- or down-
regulated in the blood of cancer patients [122]. Up-regulation of miR-221, involved in cell
cycle regulation and proliferation, has been observed in a large number of tumors such as
glioblastoma [123], lung cancer [124], breast cancer [125], thyroid papillary carcinoma [126],
hepatocellular carcinoma [127], and melanoma [114]. Down-regulation of miR-192, miR-
194, and miR-215 prevent apoptosis in multiple myeloma [128].

ct-miRNAs and Melanoma

In the last few years ct-miRNAs have been proposed as promising non-invasive
biomarkers for melanoma. Several studies investigated ct-microRNAs functional role
in melanoma, as extensively summarized by Ghafouri-Fard et al., [129]. For instance,
there is evidence of their involvement in the regulation of MAPK/ERK, PI3K/PTEN/AKT
and NF-kb signaling pathways, involved in several cellular processes foundamental for
tumor biogenesis, such as proliferation, migration and invasion [24,130,131]. However,
the underlying mechanisms are not clarified completely [129]. This section will focus on
the employment of ct-miRNAs as promising quantitative non-invasive biomarkers for
melanoma. Particularly, significative alterations in ct-miRNAs expression are crucial to
identified melanoma patients and stratified them as metastatic and non-metastatic [132].
Most recently Ruggiero et al. showed that specific ct-miRNAs (miR-579-3p and miR-4488)
can be used to predict response to target therapy. Retrospective analysis was carried out in
70 serum samples derived from BRAF-mutated melanoma patients treated with MAPKi
in order to discover a possible “mini-signature” identifying ones who could benefit from
therapy [52].

Instead of using in isolation, panels of miRNAs may result in increased sensitivity
and specificity. Van Laar et al. used a combination of 38 miRNAs (MEL38) to differentiate
healthy controls from patients who had stage I-IV melanoma [53]. Stark and collaborates
identified a panel of seven melanoma-related biomarkers (MELmiR-7) able to detect an
increase in tumor burden in 100% of cases analyzed. The ‘MELmiR-7’ panel characterizes
overall survival of melanoma patients better than both serum LDH and S100B [54]. An other
study highlighted higher levels of miR-199a-5p in advanced stages of desease promoting
melanoma metastasis and angiogenesis. Moreover miR-199a-5p in combination with
up-regulated miR-877-3p, miR-1228-3p, miR-3613-5p and down-regulated miR-182-5p,
correlated with higher melanoma stages at the time of primary melanoma excision [55].

Due to its immunogenic profile and higher mutational burden, melanoma represent an
ideal model to investigate the interplay between cancer cells and immune cells. Jorge and
colleagues identified a correlation between ct-miRNAs in metastatic melanoma samples
and poor clinical outcome, associated to immune evasion and tumor microenvironment
response [56]. Bypassing host systemic immune control, metastatic melanoma can develop
resistance to immunocheckpoint inhibitors (ICIs). Recently a prospective pilot study demon-
strated the potential role of ct-miRNAs as blood biomarkers for stage III and IV melanoma
patients in assessing ICIs responses. MiR-1234-3p, miR-4649-3p and miR-615-3p were sig-
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nificantly increased in post-treatment samples from stage IV non-responder patients, while
miR-4649-3p, miR-1234-3p and miR-615-3p decreased in post-treatment samples of stage
IV patients who had a complete response during ICIs treatment. When comparing stage III
responders versus non-responders, only miR-3197 was found differentially expressed [57].

4. Conclusions

Metastatic melanoma could significantly benefit from LB applications. Given its
high heterogeneity, melanoma treatment is in many cases unresponsive due to intrinsic
resistances or to the development of secondary resistances [7]. In this sense, LB could
be an advantage method not only to diagnosis and prognosis but above all for patient
management in order to monitor treatment response, relapse, and progression of disease,
presenting new scenarios toward personalized medicine [2]. LB provides clinical informa-
tion obtained from the analysis of CTCs, ctDNA, exosomes, and ct-miRNAs. Moreover, LB
enables a less invasive approach, is more cost-effective, easier to perform, and is performed
with high throughput testing compared with traditional biopsy. To date, there are currently
no clinically validated stage-specific liquid biomarkers to stratify melanoma patients, and
thus further investigations are needed.
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AGO2 Argonaute 2
AJCC American Joint Committee on Cancer
BRAF v-Raf murine sarcoma viral oncogene homolog B
CAFs Cancer-associated fibroblasts
CDKN2A Cyclin-dependent kinase inhibitor 2A
CNV Copy number variations
CSF Cerebrospinal fluid
CSPG4 Chondroitin sulfate peptidoglycan 4
CTCs Circulating tumor cells
CTLA-4 Cyto-toxic T-lymphocyteassociated antigen 4
ctmiRNAs Circulating tumor microRNAs
ddPCR Droplet digital PCR
DNAm DNA methilation
EPCAM Epithelial cell adhesion molecule
EPISTOP EPithelialImmunoSPOT
EV Extracellular vesicles
FGFR3 Fibroblast growth factor receptor 3
HNSCC Head and neck squamous cell carcinoma
HMW-MAA High-molecular-weight melanoma-associated antibody
ICIs Immune checkpoint inhibitors
IL-6 and IL-8 Interleukins 6 and 8
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KIT Receptor tyrosin kinase
LB Liquid biopsy
LOH Loss of heterozygosity
MAPK Mitogen-activated protein kinase
MIA Melanoma inhibitory activity
ML Circulating tumor DNA
MSI Microsatellite instability
NF1 Neurofibromin1
NGS New generation sequencing
NRAS Neuroblastoma RAS Viral Oncogene Homolog
OS Overall survival
PD Progression of disease
PD-1 Programmed cell death protein 1
pEV-
miRNAs

EVs-associated miRNAs

PFS Progression-free survival
PI3K PhosphatidylInhositol3-kinase
PTEN Phosphatase and tensin homolog deleted on chromosome 10
qRT-PCR Real-time quantitative reverse transcription polymerase chain reaction
RFS Relapse-free survival
SEC Size-exclusion chromatography
TERT Telomerase reverse transcriptase
TFPI2 Tissue Factor Pathway Inhibitor 2
TNM Metastasis system
TYRP2 Tyrosinase-related protein 2
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