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Abstract: Biomass-derived C6-furanic compounds have become the cornerstone of sustainable
technologies. The key feature of this field of chemistry is the involvement of the natural pro-
cess only in the first step, i.e., the production of biomass by photosynthesis. Biomass-to-HMF
(5-hydroxymethylfurfural) conversion and further transformations are carried out externally with the
involvement of processes with poor environmental factors (E-factors) and the generation of chemical
wastes. Due to widespread interest, the chemical conversion of biomass to furanic platform chemicals
and related transformations are thoroughly studied and well-reviewed in the current literature. In
contrast, a novel opportunity is based on an alternative approach to consider the synthesis of C6-
furanics inside living cells using natural metabolism, as well as further transformations to a variety of
functionalized products. In the present article, we review naturally occurring substances containing
C6-furanic cores and focus on the diversity of C6-furanic derivatives, occurrence, properties and
synthesis. From the practical point of view, organic synthesis involving natural metabolism is advan-
tageous in terms of sustainability (sunlight-driven as the only energy source) and green nature (no
eco-persisted chemical wastes).

Keywords: biomass; bioderived chemicals; organic synthesis; furan; HMF; natural products;
sustainable chemistry

1. Introduction

The appearance of 5-hydroxymethylfurfural (5-HMF) in the list of platform chemicals
has boosted the interest in the chemistry of biomass-derived furanic compounds. Currently,
the synthesis and application of furanic compounds is an important branch of green and
sustainable chemistry. Indeed, a myriad of papers describes the synthesis of 5-HMF and
its derivatives as well as the preparation of new materials on their basis. Due to the
increasing attention to the topic, the synthesis and transformations of C6-furanics are
regularly reviewed [1–14].

A wide range of naturally occurring carbohydrates serves as a starting point in the
chemical conversion of biomass, resulting in bioderived furanics (Figure 1A). Despite all
efforts, it remains a typical chemical process with poor E-factor and waste generation. As
critically highlighted by Sels and coworkers, the instability of HMF and its derivatives
drastically complicates the development of new chemical technologies [15]. Susceptibility of
2,5-functionalized C6-furanic cores to intermolecular condensation leads to contamination,
which severely blocks the catalytic centers on the biomass-to-HMF conversion and on the
further HMF transformation stages [15,16]. Indeed, any traditional laboratory or industrial
synthesis produces waste. Fine chemical synthesis and pharmaceuticals are characterized
by poor E-factor (more than 25 kg of waste per 1 kg of the product) [17–22]. The processes,
including C6-furanic cores, are not exceptions and lead to the formation of a significant
amount of waste [23–31].
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Figure 1. Various approaches to biobased furans: (A)—conventional production method of HMF 
and its derivatives; (B)—direct isolation of complex C6-biofurans; (C)—classification of furan de-
rivatives via oxidation level metric. 

Interestingly, at the same time, 1,4-functionalized C6-furanic moieties can be found 
among natural compounds themselves. Chemical synthesis by natural metabolism (in 
plants, fungi, etc.) does not produce persistent wastes (remains are essentially consumed 
by nature) (Figure 1B). Consideration of natural biosynthetic routes and their incorpora-
tion into practice is a great advantage. Finding important and practically relevant natural 
products followed by their biotechnological production is an attractive methodology for 
a sustainable future [32–35]. Therefore, a promising opportunity emerges for the isolation 
of furanic compounds without external chemical transformations. A considerable num-
ber of these compounds demonstrate promising biological activity and could serve as 
prospective pharmacological substances. The explosive development of furan chemistry 
in recent decades can change the viewpoint on natural furans. Now, this group of com-

Figure 1. Various approaches to biobased furans: (A)—conventional production method of HMF and
its derivatives; (B)—direct isolation of complex C6-biofurans; (C)—classification of furan derivatives
via oxidation level metric.

Interestingly, at the same time, 1,4-functionalized C6-furanic moieties can be found
among natural compounds themselves. Chemical synthesis by natural metabolism (in
plants, fungi, etc.) does not produce persistent wastes (remains are essentially consumed
by nature) (Figure 1B). Consideration of natural biosynthetic routes and their incorporation
into practice is a great advantage. Finding important and practically relevant natural
products followed by their biotechnological production is an attractive methodology for
a sustainable future [32–35]. Therefore, a promising opportunity emerges for the isola-
tion of furanic compounds without external chemical transformations. A considerable
number of these compounds demonstrate promising biological activity and could serve
as prospective pharmacological substances. The explosive development of furan chem-
istry in recent decades can change the viewpoint on natural furans. Now, this group of
compounds, which were previously discussed as rare and hardly available metabolites,
can become attractive from a practical point of view. This review aims to summarize
information on natural furanic compounds, which can become targets for total synthesis or
biological investigations.
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In this focused review, we describe chemically demanding 1,4-functionalized C6-
furanic compounds (Figure 1A), which can be found in living nature (plants, fungi, bacteria,
marine organisms, etc.) and synthesized by a clean natural method (Figure 1B). In this
review, compounds are systematized by the oxidation level (OL) of furan side groups and
the type of functional groups present in the molecule (Figure 1C).

2. Results and Discussion

The number of oxygen atoms in the C6-furanic derivatives is the key factor for their
practical opportunities [36–46]. Depending on the anticipated applications, compounds
with lower and higher oxygen contents are of primary interest.

The oxidation level can be calculated as the quotient of dividing the number of bonds
with oxygen (i.e., electronegative elements for general use with functionalized derivatives)
by the total number of bonds of alpha carbons. The corresponding formula is given in
Figure 1C.

For classification purposes, derivatives with the same oxidation level are placed into
the same sector (Figure 1C). Compounds whose derivatives have been found in nature are
shown on a green background, and the gray background defines compounds that do not
occur in nature. The presented scheme provides a general overview of all known nature-
occurring furan derivatives. In this review, we discuss nonpolar derivatives followed by
compounds with increased oxygen levels.

2.1. Oxidation Level of 2,5-Dimethylfuran (OL = 0%)

2,5-Dimethylfuran 1 demonstrates the lowest oxygen content in the C6-furanic series.
As a result, this compound is the least polar furan derivative found in nature. Within
studies of the potential impact of bioaerosols on health, 2,5-dimethylfuran was found
among volatile organic compounds produced by the fungi Penicillium crustosum and
Penicillium cyclopium [47]. 2,5-Dimethylfuran present with the other furan derivatives,
and such a mixture could serve as a characteristic indicator for those species. Additionally,
1 is an aroma compound with an odor described as «bouillon» and part of the aroma com-
position responsible for the aroma of the freshly cut leek Allium ampeloprasum (Alliaceae) [48].
Freshly cut leek slices stored frozen for one year possess an odor where 2,5-dimethyl furan
is one of the most important components of the aroma composition alongside pentanal,
decanal and dipropyl disulfide.
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tetra-substituted furans as well. 

Furan fatty acids derivatives plakorsins A and B were isolated from the marine sponge
Plakortis simplex [49]. Synthesis of these natural products was accomplished using ele-
gant tandem of phosphine-catalyzed Michael addition and Pd-catalyzed Heck reaction
(Scheme 1) [50]. This unified approach can be applied to the synthesis of tri- and tetra-
substituted furans as well.
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2.2. Oxidation Level of Methyl(Hydroxymethyl)furan (OL = 17%)

This oxidation level is presented by the N-alkylated β-carboline alkaloid vittacarbo-
line 4, which was isolated from the ethanolic extract of the fresh flowers of Hippeastrum
vittatum (Amaryllidaceae) [51]. Notably, 3.65 kg of chopped flowers provided 8 mg of pure
vittacarboline. Vittacarboline, with its substitution pattern, represents a new structural
type within the family since β-carboline alkaloids are not common in the members of
Amaryllidaceae.
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2,5-Bis(hydroxymethyl)furan (BHMF) 5 is a symmetric molecule that can be considered
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monomer for the synthesis of biomass-based polyesters and polyurethanes, its synthesis
was described an exceptional number of times [5]. In nature, 5 can be found predominantly
in fungi. It was isolated from the fungus Phellinus linteus, which grows on mulberry
trees [52]; the ascomycete Xylaria longipes [53]; the phytopathogen fungus Colletotrichum
acutatum [54], isolated from strawberry plants; and the marine-derived fungi Paecilomyces
sp. [55], although the overall bio-production of BHMF is negligible. Extraction of the
Xylaria longipes culture fluid (18 L) provided 2.9 mg of BHMF. Culture liquid (3 L) extract of
Colletotrichum acutatum yielded 7 mg of BHMF. The extraction of 10 L of culture broth
of Paecilomyces sp. containing both mycelium and supernatant provided a small quantity
of BHMF (1.96 mg). Isolated 5 was tested for antimicrobial activity against methicillin-
resistant Staphylococcus aureus (MRSA), Escherichia coli, Aeromonas hydrophia, and Candida
albicans and showed activity only against MRSA with inhibition zone 8 (±0.1) mm.
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amount (0.8 mg) of Pichiafuran C. Compound 7 was investigated for brine shrimp lethality
and displayed toxicity with an LD50 higher than 200 µg/mL. Synthesis of pichiafuran C
was carried out by Tamariz et al. in three different ways (Scheme 2) [58].
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O-β-D-Glucopyranoside of BHMF 8 was isolated from the Anoectochilus formosanus
(Orchidaceae) [59]. The extraction of whole dried plants (2.3 kg) followed by chromato-
graphic purification provided a 59 mg yield of 8. This furanic glycoside was assayed for
inhibition of α-glucosidase and interaction with rat adipocytes; however, no activity was
found [59].
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and deteriorative changes in food such as tomato paste, infant milk, honey, and fruit juices.
This compound originates from hexoses via partial dehydration [61]. Therefore, HMF is
present in many different food items, including honey, barley, brandy, citrus juices, tomato
products, syrup, grape juice, freeze-dried pears, wine, coffee, caramel products, dried
fruit, prune juice, and bread. Therefore, everybody is exposed to HMF and some of its
derivatives [1,62]. Authentic compound 10 was found in Schisandra chinensis (Schisandraceae)
(whose fruit is known as magnolia berry or five-flavor fruit) [63]. It was found that HMF
formed during the processing course. Heating time, temperature and treating solvents all
have an effect on the HMF level in the decoction of Schisandra.
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Moreover, HMF 10 was found in red alga Laurencia undulata, an edible species used as
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potential antioxidant character on the molecular, cellular and gene levels.

Ethers
The most simple HMF ether, 5-methoxymethylfurfural 11, was found in Achillea mille-

folium ssp. pannonica (Asteraceae), Cirsium chlorolepis (Asteraceae), Asparagus cochinchinensis
(Asparagaceae) [65] and Jaborosa Magellanica (Solanaceae) [66]. In 1958, it was reported that
furan 11 was present as a component of the roots of Asparagus lucidus (Asparagaceae), but
it was assumed that this product had been formed as an artifact from fructose during the
isolation process [67].
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Cirsiumaldehyde 12, which can be described as a product of the intermolecular de-

hydration of HMF, was first discovered in the roots of Cirsium chlorolepis (Asteraceae) [65]
and named after it. Cirsium chlorolepis roots are used in southwest China folk medicine
against various diseases, especially fracture and haematuria. After double extraction and
chromatographic separation, the dried roots (5 kg) provided 30 mg of dimeric compound
12. Later, this compound was found in fruits of Hippophae rhamnoides (Elaeagnaceae) [68],
flowers of Lonicera bournei (Caprifoliaceae) [69] and tubers of Gastrodia elata (Orchidaceae) [70].
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chidaceae) [71–73]. This rhizome has been traditionally used in Korean and Chinese tra-
ditional medicine for the treatment of headaches, migraines, dizziness, epilepsy, and
infantile convulsion tetanus [74–76] and has many biomedical properties, such as enhanc-
ing strength and virility, improving circulation, and facilitating memory consolidation and
retrieval [77,78]. Inhibitory effects of 13 for enzymes were tested; however, low activity was
found at 100µM concentration with 23% and 39% inhibition ratio for topoisomerases I and
II, respectively. Synthesis of compound 13 was performed from HMF and O-protected 4-
hydroxybenzylic alcohol using H2SO4 in CH2Cl2 [58]. Extraction of 30 kg of dried rhizomes
of G. elata yielded 4.5 mg of 15 and 4.2 mg of 16. The presence of a phenolic moiety in these
compounds indicates their metabolic relation with lignin. Thioether 16 (sulfur-containing
analog of compound 15) was also found in the rhizome of Gastrodia elata. The cytotoxic
effects of the isolated compounds 15 and 16 were evaluated in vitro by MTT methods on
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PC12 cells with no activity found. At the same time, compound 16 concentration depen-
dently protected PC12 cells against H2O2-induced cell death exhibiting neuroprotective
activity [73].
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2-Hydroxyphenyl ether of HMF 17 was isolated from the seeds of Cassia fistula
(Fabaceae) [79]. Extraction of 3.5 kg of seeds with methanol followed by chromatography
produced 25 mg of 17. The total synthesis of 17 was performed by reaction of 5-chloro-
methylfurfural with catechol and K2CO3 in acetone solution under reflux.
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Compound 20 (Sessiline) is an alkaloid from the fruits of Acanthopanax sessiliflorus
(Araliaceae) [83]. This plant is distributed in Korea, Japan and China and has traditionally
been used as a tonic and a sedative, as well as in the treatment of rheumatism and diabetes.
Processing of the air-dried powdered fruits (2 kg) provided 23 mg of sessiline. The synthesis
of sessiline from HMF and succinimide was described by Ilkei et al. (Scheme 3) [84].
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Esters
Compounds 21–24 (Duabanganals A-D) are HMF esters with saturated and unsatu-

rated fatty acids that were found in the stem bark of Duabanga grandiflora (Lythraceae) [85].
It was found that dried and powdered stem bark (1.3 kg) contained Duabanganals A
(3 mg), B (4.6 mg), C (2.1 mg) and D (4.8 mg), as well as 3 mg of Latifolinal. Duaban-
ganals B and C were evaluated for cytotoxicity against six cancer cell lines and failed to
demonstrate activity.

Stearyl ester 25 (Latifolinal) was isolated from the fruit of Cordia latifolia (Ehreti-
aceae) [86] and the stem bark of Duabanga grandiflora (Lythraceae) [85]. Latifolinal can be
described as a product of the full hydrogenation of double bonds in Duabanganals A-C.
Dried fruits (20 kg) of C. latifolia contained 30.5 mg of latifolinal.
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O-(Ethyl succinoyl) ester 27 was isolated from the whole plant of Ajuga decumbens (La-
miaceae) [88]. O-(Butyl succinoyl) ester 28 was found in the fruit of Morinda citrifolia (Ru-
biaceae), also known as noni or great morinda [89]. This fruit has a long history of tradi-
tional use in the Hawaiian and Tahitian islands and is thought to exhibit anticancer and 
immunostimulant activities. The synthesis of ester 28 was performed by Tamariz et al. 
from various starting materials, including one-pot synthesis from HMF (Scheme 4) [90]. 
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4-Hydroxy-3,5-dimethoxy-(E)-cinnamoyl derivative 26 was found in the seeds of
Raphanus nussatirus L. (Brassicaceae), a traditional Chinese herb that has been used for
expectorant, anti-cough and antiasthmatic purposes [87]. The seeds powder of Raphanus
nussatirus L. (15 kg) extraction produced 60 mg of pure 26.
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A series of HMF esters with polycarboxylic acids was found in natural sources. O-
(Ethyl succinoyl) ester 27 was isolated from the whole plant of Ajuga decumbens (Lami-
aceae) [88]. O-(Butyl succinoyl) ester 28 was found in the fruit of Morinda citrifolia (Rubiaceae),
also known as noni or great morinda [89]. This fruit has a long history of traditional use in
the Hawaiian and Tahitian islands and is thought to exhibit anticancer and immunostim-
ulant activities. The synthesis of ester 28 was performed by Tamariz et al. from various
starting materials, including one-pot synthesis from HMF (Scheme 4) [90].
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demic influenza A(H1N1) virus [92]. Synthesis of 29 on the basis of malic acid and HMF 
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isolated from the fruit of Morus alba (Moraceae) [94]. 
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Another polycarboxylic acid whose HMF esters have been found in nature is citric
acid. Ester 29 (Mumefural) was isolated from the fruit juice concentrate of Prunus mume
(Rosaceae), Japanese apricot [91]. Mumefural 29 is a sialidase inhibitor and an effective
enhancer of blood fluidity [91]. Additionally, ester 29 shows activity against the pandemic
influenza A(H1N1) virus [92]. Synthesis of 29 on the basis of malic acid and HMF was
performed by Sugimura et al. (Scheme 5) [93]. Diethyl ester of mumefural 30 was isolated
from the fruit of Morus alba (Moraceae) [94].
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4-Hydroxy-2-methylenebutanoyl derivative 31 was found in the roots of Polygala
tricornis (Polygalaceae) [95]. Polygala tricornis is widely distributed in southern China, and
its roots are used as a tonic, a sedative, and for preventing dementia in Chinese folk
medicines. Isolated compounds were examined for their inhibitory effect on nitric oxide
(NO) production induced by lipopolysaccharide (LPS) in BV-2 microglial cells. Compound
31 exhibited pronounced inhibition of NO production with an IC50 value of 1.77 µM [95].
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Ester 32 (Asfural) was isolated from an enzyme-treated extract of the fresh bottom parts
of Asparagus officinalis (Asparagaceae) stems [96]. Sucrase C as a cellulase and Macerozyme
A as a pectinase were used for the extract treatment. Extraction of 90 kg of fresh asparagus
followed by the enzymatic reaction and additional purification yielded 2 mg of Asfural.
Asfural 32 was evaluated in terms of HSP70 mRNA expression-enhancing activity in
HL-60 cells. Compound 32 significantly increased the expression level in a concentration-
dependent manner. The synthesized R-enantiomer of asfural has shown significantly
lower activity.
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Glycosides 
Glycosides
Glycosides of HMF can be described as the products of partial dehydration of the

terminal hexose moiety in oligosaccharides. Therefore, this type of HMF derivative is
relatively widespread in plants.

A series of D-fructose HMF derivatives O-α-D-fructofuranoside 33, O-β-D-fructofuran-
oside 34 and O-β-D-fructopyranoside 35 were isolated from the roots of Ranunculus ternatus
(Ranunculaceae) [97]. The root of this herbaceous plant is used in traditional Chinese
medicine as a treatment for lymphatic and pulmonary tuberculosis. Air-dried root powder
of Ranunculus ternatus contains 4 mg of 33, 6 mg of 34 and 5 mg of 35.
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O-(2,6-dideoxy-3-O-methyl-α-L-ribo-hexopyranoside) 41 (Calofurfuralside B) were isolated
from the leaves of Calotropis gigantea (Apocynaceae) [102]. This large shrub is commonly
called crown flower or giant milkweed and is used in traditional folk medicines for the
treatment of bronchitis, dyspepsia, paralysis, swellings and intermittent fevers. Isolated
compounds were tested for cytotoxicity against the PANC-1 human pancreatic cancer cell
line, but no significant activity was found.
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and the lung [104]. Exhaustive extraction of the fruits of T. kirilowii (20 kg) produced 96.4
mg of 45 and 16.9 mg of 46.
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Acetal 52 (Niuxixinsterone D) was isolated from the roots of Achyranthes bidentate
(Amaranthaceae). This herb is used as an important traditional Chinese medicine known
as «Niuxi» and has the property of strengthening bones and muscles and ensuring a
proper downward flow of blood. Serfurosterone A 49a was also found in the same source.
Niuxixinsterone D and Serfurosterone A were tested for their inhibitory effects against
LPS-induced NO production in RAW 264.7 macrophages, and compounds 52 and 49a
exhibited anti-neuroinflammatory activity with inhibited 29.7 and 26.0% NO production,
respectively [111].
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examples. The fungal prolinimines represent only the second reported occurrence of a
naturally occurring metabolite incorporating an N-amino-Pro residue.
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5.-(Hydroxymethyl)furan-2-carboxylic acid (HMFCA) 56 (also known as Sumiki’s
acid) is produced by the fungi Aspergillus spp., Gibberella fujikuroi, Helminthosporium maydis
and Pyricularia grisea [114]. Additionally, acid 56 was found in the marine-derived fungi
Epicoccum sp. [115], Wardomyces anomalus [116] and Cladosporium herbarum (isolated from the
marine sponge Callyspongia aerizusa) [117]. HMFCA 56 was found in human urine [118,119].
The analysis showed that Sumiki’s acid is a naturally occurring human metabolite, with a
normal excretion range from about 1 to 25 mg/24h. It was proposed that 56 is involved in
uronic acid metabolism. Acid 56 shows antitumor activity [114] and antimicrobial activity
(against Bacillus subtilis and Staphylococcus aureus) [117].
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Epicoccum sp. [115]. In addition to HMFCA itself, compound 58 is antimicrobial (against
Bacillus subtilis and Staphylococcus aureus) [117].
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2.7. Oxidation Level of 2,5-Diformylfuran (OL = 67%)

DFF double hydrazine 60 (Prolinimine B), as well as Prolinimine A 53, were isolated
from the fish gastrointestinal tract-derived fungus Trichoderma sp. CMB-F563 [112]. Such
furans are exceptionally rare among natural products, so this compound is the only example
of a natural C6-furanic compound at this oxidation level.
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2.8. Oxidation Levels of 5-Formylfuran-2-carboxylic Acid and Furan-2,5-dicarboxylic Acid
(OL = 83% and 100%)

5-Formylfuran-2-carboxylic acid 61 (FFCA) and furan-2,5-dicarboxylic acid 62 (FDCA)
are the most oxidized C6-furanic derivatives. To the best of our knowledge, there are no
natural C6-furanic derivatives at these oxidation levels. Since biofurans, in many cases, are
the products of partial dehydration of hexoses and their derivatives, it could be assumed
that the absence of FDCA and related compounds are caused by the lack of corresponding
aldaric acids in natural sources. The absence of FFCA derivatives is more challenging to
explain because the corresponding uronic acids, including fructuronic acid, are well known.
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3. Conclusions and Outlook

Exploring the occurrence of C6-furanics in nature, several features come into con-
sideration. Predominantly, such derivatives could be found in different parts of plants
(Figures 2 and 3), especially in the roots, rhizomes and fruits. It is logical considering that
furan derivatives metabolically originate from carbohydrates, while roots and fruits are
parts of plants that are richest in metabolically active carbohydrates. Additionally, several
examples of furanic compounds isolated from fungi have been described, as well as a few
bacteria-derived furans.
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Since 5-HMF is a main product of the dehydration of hexoses, it is not surprising that
HMF derivatives (esters, ethers, acetals, etc.) are the most common type of C6-furanics in
nature. While HMF derivatives are predominantly located in plants, more oxidized as well
as more reduced C6-furans are usually associated with fungi and bacteria. Therefore, it can
be concluded that the chemical type of produced furanic metabolites strongly depends on
the natural source.

The examples of naturally occurring C6-furanic compounds highlight a number of
possible new opportunities. We believe that this review will inspire synthetic work on the
preparation of biofurans and biological studies, which will establish the biological role of
biofurans since, for many furanic compounds, it remains unclear.
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published version of the manuscript.
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