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Abstract: Melphalan (Mel) is an antineoplastic widely used in cancer and other diseases. Its low
solubility, rapid hydrolysis, and non-specificity limit its therapeutic performance. To overcome
these disadvantages, Mel was included in β-cyclodextrin (βCD), which is a macromolecule that
increases its aqueous solubility and stability, among other properties. Additionally, the βCD–Mel
complex has been used as a substrate to deposit silver nanoparticles (AgNPs) through magnetron
sputtering, forming the βCD–Mel–AgNPs crystalline system. Different techniques showed that the
complex (stoichiometric ratio 1:1) has a loading capacity of 27%, an association constant of 625 M−1,
and a degree of solubilization of 0.034. Added to this, Mel is partially included, exposing the NH2

and COOH groups that stabilize AgNPs in the solid state, with an average size of 15 ± 3 nm. Its
dissolution results in a colloidal solution of AgNPs covered by multiple layers of the βCD–Mel
complex, with a hydrodynamic diameter of 116 nm, a PDI of 0.4, and a surface charge of 19 mV.
The in vitro permeability assays show that the effective permeability of Mel increased using βCD
and AgNPs. This novel nanosystem based on βCD and AgNPs is a promising candidate as a Mel
nanocarrier for cancer therapy.

Keywords: melphalan; cyclodextrin; silver nanoparticle; inclusion complex; drug delivery; solid-state
formation; nanomaterial; sputtering

1. Introduction

Melphalan (Mel) is a bifunctional alkylating agent widely used at the clinical level
in the treatment of multiple types of cancer and other diseases [1–4]. The effectiveness of
killing cancer cells of this drug is based on the ability to react extensively with DNA, RNA,
and proteins to form interstrand DNA crosslinks, inducing multiple kinds of molecular
lesions [5–7]. Nevertheless, Mel presents serious therapeutic disadvantages related to
its non-specificity, the resistance of tumor cells, and the need for increasingly higher
doses during treatment, generating adverse effects that include leukopenia, mucositis,
and diarrhea [8,9]. In this sense, the administration of Mel could be optimized using
nanotechnology [10–17]. Specifically, silver nanoparticles (AgNPs) have been used for the
loading and transport of antitumor drugs, showing a synergistic effect with these drugs
and a site-specific action, which would reduce the administered dose and even reduce the
toxicity in healthy cells [18–20]. This research field is controversial; therefore, it is necessary
to expand on this point.
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The properties of AgNPs intrinsically depend on their size, shape, and surface coating;
therefore, if properly designed, they can be used in cancer therapy [21,22]. AgNPs accumu-
late specifically at tumor sites due to the enhanced permeation and retention effect (called
EPR effect); this allows drug targeting if it acts as a nanocarrier [23,24]. In addition to the
therapeutic effect of the material itself, which has demonstrated antiproliferative activity
against tumor cells of different types [25,26]. On the other hand, due to their excellent
optoelectronic properties, they exhibit a localized surface plasmon resonance that allows for
photothermal therapy [21,27]. This consists of the conversion of the irradiated energy on
these nanoparticles into local heat, which triggers hyperthermia and release of the bound
therapeutic material [28–30]; this is especially relevant for the treatment of tumors, for ex-
ample, one generated by skin cancer, where the therapy must operate on the most external
layers of the tissue [31–33]. Likewise, the therapy based on Mel laser irradiation has also
been studied by some authors with favorable results on organ transplantation [34–36].

Although Mel vectorization on AgNPs could optimize their transport and syner-
gize at the therapeutic level, solubility and stability in water remain an issue. Current
formulations must be prepared in situ as hydrolysis decomposes Mel into a non-active
molecule completely within 8 h at 37 ◦C [37]. In addition, the poor aqueous solubility, less
than 1 mg/mL, severely limits the dose administered [3,4,9]. In this sense, a promising
approach to overcome these limitations has been the loading of this type of drug into
β-cyclodextrin (βCD), forming inclusion complexes [38–40]. βCD is a cyclic oligosaccha-
ride macromolecule, approved by FDA (Food and Drug Administration), composed of
7 glucose units polymerized that have a shape similar to a truncated cone. The use of βCD
has a wide range of applications ranging from pharmaceutical formulations, food products,
and cosmetics, among others. It has a hydrophobic interior and a hydrophilic exterior that
allows non-polar molecules of certain dimensions to be included in its interior, forming
a stable complex, preventing hydrolysis, and increasing solubility [41,42]. In general, the
toxicity of cyclodextrins depends on the route of administration; by the oral route, they are
practically non-toxic; by the parenteral route, they are considered safe; however, increas-
ingly higher doses and their accumulation could be harmful, although if it is administered
intravenously, they rapidly disappear from the systemic circulation and are excreted via
the kidneys [39,43]. Notably, the inclusion of Mel in cyclodextrin derivatives has been stud-
ied, with encouraging results regarding toxicity, stability, and solubility of the unloaded
drug [44–46]. In recent years, a research line on cyclodextrin–drug complexes combined
with plasmonic nanoparticles has been developed with promising results. The crystals
formed by the drug included in the macromolecule acquire an arrangement that allows
the stabilization of gold nanoparticles in the solid state, creating new nanosystems with
optimal release and performance parameters [13–15,17,47]. A solid formulation containing
the drug is a strategy that could optimize its physicochemical properties, such as chemical
and physical stability, solubility, and bioavailability, among others. In addition, it allows
the development of formulations for different routes of administration, which is especially
relevant for Mel.

In this work, two tools were combined synergistically aimed at optimizing the use of
Mel in chemotherapy. First, the βCD matrix was used to form the βCD–Mel complex in a
solid state. Subsequently, AgNPs were formed and immobilized directly on these crystals
by the physical method of magnetron sputtering, thus avoiding the use of agents considered
toxic for biomedical applications. Finally, the system was solubilized to obtain a colloidal
solution of AgNPs covered by the complex. A schematic representation of the nanosystem
formation process at each stage is shown in Figure 1. During its development, this new
βCD–Mel–AgNPs crystalline system was characterized using techniques such as powder
X-ray diffraction, one and two-dimensional NMR, UV-vis spectroscopy, and scanning elec-
tron microscopy. Then, the βCD–Mel crystals with AgNPs on their surface were dissolved,
forming the new βCD–Mel–AgNPs colloidal nanosystem, which was characterized using
dynamic light scattering, zeta potential, and transmission electron microscopy. The study
of relevant pharmaceutical parameters, such as association constant, loading capacity, and
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nanosystem size, among others, were included. In addition, the effective permeability of
Mel in βCD and with AgNPs was evaluated in an in vitro membrane model. Our research
is the first report of Mel complexation in βCD and its interaction with AgNPs in a solid state
and surfactant-free, where both components work to solve some therapeutic drawbacks of
this drug and as a potential nanocarrier.
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Figure 1. Schematic representation of nanosystem formation: inclusion process of the drug in βCD
(a,b), formation of the crystals (c), obtaining and stabilization of AgNPs by magnetron sputtering
(d), formation of the βCD–Mel–AgNPs crystalline system, (e) and solubilization process forming the
βCD–Mel–AgNPs colloidal nanosystem (f).

2. Results and Discussion
2.1. Formation of the Complex in Solid State

The diffraction patterns of the βCD, Mel, and the complex formed were obtained
using PXRD (see Figure 2). The formation of the complex in the solid state causes the
disappearance of the Mel peaks, especially in the region above 25◦ 2θ, maintaining a peak
corresponding to βCD at 2θ angle of approximately 12◦. The crystal packing arrangement
of the complex was different from that of its pure species and represents a new crystalline
phase, confirming the effective inclusion of the drug in the βCD matrix. Three intense
peaks were observed at approximately 4◦, 12◦ and 20◦ 2θ in the βCD–Mel pattern. It
has been reported that the formation of complexes with a P21-type structure for βCD
matrices hosting aromatic rings at 1:1 (host–guest) molar ratios also exhibit three intense
peaks at equal locations. In addition, the geometrical arrangement and thus the respective
diffraction pattern varies according to the type of molecular structure of the aromatic
guest, according to the region partially exposed to the outside of the βCD cavity and to
the water molecules contributing to the new crystalline packing [48–50]. Regarding the
physical mixture of pure components, (Figure 2d), it was observed that its diffractogram
corresponds to a superposition between the traces of the pure species.
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Figure 2. Powder diffractograms of (a) βCD, (b) Mel, (c) βCD–Mel, and (d) physical mixture of βCD
and Mel.

2.2. Stability of the Complex in Solution
1H-NMR was conducted to study the conformation and stoichiometry of βCD–Mel

and to evaluate the stability of Mel included in the complex. The latter was chosen
because, in therapy, Mel has poor solubility in water and is unstable on reconstitution
and dilution [44]. In 1978, Chang et al. proposed that the hydrolysis of Mel occurs in
three phases where chloroethyls, one by one, are transformed into hydroxyethyls by a
three-component cyclic intermediate mechanism with the tertiary amine. This process is
completed after 8 h [37].

Once the complex was formed in the solid state, it was dissolved, 1H-NMR spectrum
of βCD–Mel in solution was registered and then compared with the free βCD and Mel
spectra (see Figure 3).
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Table 1 shows the chemical shifts of βCD–Mel compared to its pure species. The shifts
of the 2′/6′, 3′/5′ protons of the ring and the 1′′ and 2′′ protons of the drug chain towards
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lower fields demonstrate interaction with the CD matrix; while the chemical shifts of the
H′-3 a and b protons of Mel suggest interactions with the OH groups present on the surface
of the βCD cavity. The internal H-3, H-5, and H-6 matrix protons demonstrate that the
drug remains included. The OH-6 groups move to higher fields due to the proximity of
electronegative groups such as COOH and NH2 that are close to one of the CD openings.
Considering the changes observed in Mel upon hydrolyzing and the signals observed in the
spectrum, it is confirmed that through the formation of the complex, the drug can remain
stable within the matrix, considerably increasing its applicability in therapy.

Table 1. Chemical shifts of the βCD–Mel complex and free species.

H of βCD δ βCD (ppm) δ βCD–Mel (ppm) ∆δ (ppm) H′ of Mel δ Mel (ppm) δ βCD–Mel (ppm) ∆δ (ppm)
H-3 3.648 3.653 0.005 H′-1′′/2′′ 3.699 3.702 0.003
H-5 3.555 3.570 0.015 H′-3a 2.736 2.814 0.078
H-6 3.617 3.625 0.006 H′-3b 3.017 3.012 −0.005

OH-2 5.735 5.766 0.031 H′-2′/6′ 7.087 7.093 0.006
OH-3 5.680 7.719 0.039 H′-3′/5′ 6.671 6.683 0.012
OH-6 4.479 4.464 −0.015

Integrating the proton signals of βCD and Mel in the 1H-NMR spectrum of the complex
allowed for the determination of the host:guest stoichiometric ratio in solution, according to
a methodology used for different CD complexes [51,52]. The integrations of the H-1 proton
of the βCD with H′-2′/6′ and H′-3/5′ protons of the aromatic ring of Mel were compared.
The results show that the complex was formed in a 1:1 stoichiometric ratio, being relevant for
potential applications (more details are given in the Supplementary Materials, Section S1).

2.3. Drug Loading and Complexation Efficiency

In pharmaceutical concepts, knowing the stoichiometric ratio allows us to obtain
important parameters for potential formulation production [13–16,53]. The 1:1 drug/βCD
molar ratio means that the 0.75 g of cyclodextrin can load 0.20 g of drug, so the loading
capacity of the matrix was 27%. The solubility of βCD in water is 18.5 g/L [54], so to
completely dissolve the inclusion complex, about 40.5 mL is needed, where 200 mg of the
drug would be found. This means that the formation of the complex increases the practical
solubility of Mel almost five times.

On the other hand, the phase solubility method allows knowing parameters such as
the degree of solubilization, association constant, and complexation efficiency [53] (further
details of the procedure and figures are provided in the Supplementary Materials, Section
S2). Linear increases in the aqueous solubilities of Mel versus βCD used were observed,
with a 0.034 degree of solubilization. In general, the recommendable Ka values of drug:CD
complexes are between 50 and 2000 M−1, because at values below 50 M−1, the pharma-
ceutical formulation may be limited by its low stability, not favoring a controlled release,
e.g., an early liberation into the blood and not into the desired tissue. On the other hand,
at high Ka values (>2000 M−1), the ability to release the drug by gradient or by stimulus
can be affected by the high degree of inclusion of the drug in the βCD cavity, excessively
delaying its pharmacokinetics, among other possible therapeutic drawbacks [55,56]. The
Ka of βCD–Mel was 625 M−1, being located in an adequate range, with stable host–guest
interactions, which prevent its early release and could allow its delivery to the site of
action. Furthermore, the complexation efficiency can be used to probe the feasibility of
using cyclodextrins in the formulation of drugs. In the βCD–Mel system, the complexation
efficiency value was 0.035, being suitable for a potential formulation based on this complex.

2.4. Molecular Interaction and Geometry of the Inclusion Complex

Whereas the formation, stability, and loading parameters of Mel on the complex were
in the desired range, for the formation of the nanovehicle by stabilizing AgNPs directly
on its surface using βCD, it was necessary to know the availability of adequate exposed
functional groups. The rotational overhauser enhancement spectroscopy (ROESY) technique
enables observation of interactions between hydrogen nuclei of non-chemically bonded
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structures separated by a maximum distance of 5 Å; therefore, it is possible to determine
in solution the geometrical structure of supramolecular complexes accurately [51,52]. The
ROESY spectra of the βCD–Mel complex are shown in Figure 4a,b. A model showing the
proposed geometry of βCD–Mel is shown in Figure 4c (full ROESY spectra are shown in
the Supplementary Materials, Section S3).
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The analysis reveals that the H′-2′/6′ and H′-3′/5′ protons, corresponding to the
aromatic ring of Mel, exhibit a correlation with the H-3 and H-5 protons of βCD (Figure 4a).
This indicates that the aromatic ring is located in the wider region of the matrix. The
exact orientation of the drug can be elucidated from the cross-peaks observed between the
internal protons of βCD with the H′-3a proton of Mel (Figure 4b). This reveals that Mel is
exposed toward the major opening, and thus, the chloroethyl chains are oriented toward
the minor opening of the matrix. These results explain the chemical shifts of Mel in the
1H-NMR spectrum, where shifts towards lower fields of the OH-6 and the H′-1′′ and H′-2′′

protons were observed. This confirms that it is the interaction of the primary hydroxyl
groups of βCD with the chloroethyl chains of Mel that causes this effect. Accordingly, by
the dimensions of both molecules, the NMR and ROESY result strongly suggests that the
COOH and NH2 functional groups of Mel are oriented outside the cavity of the matrix,
thus making it a suitable candidate to stabilize AgNPs.

2.5. Deposition of Silver Nanoparticles on the βcyclodextrin–Melphalan Complex

AgNPs were obtained and deposited using the physical method of magnetron sputter-
ing in vacuum. The technique consists of the detachment of atoms from a thin metallic film,
which agglomerate and stabilize on a substrate, reaching a nanometric size [13–15,57,58].
As we have confirmed, Mel was partially included within βCD, exposing the amine and
carboxylic acid functional groups towards one of its openings. This arrangement allowed
the solid-state complexes to act as substrates and the crystalline faces that expose these func-
tional groups to interact specifically with silver atoms allowing its accumulation, forming,
and stabilizing nanoparticles. Figure 5a shows a schematic representation of this process.
The new βCD–Mel–AgNPs crystalline system was characterized using UV-vis diffuse
reflectance spectroscopy, SEM, EDX, and FE-SEM. Figure 5b corresponds to the absorbance
spectra of AgNPs deposited on the βCD–Mel complexes. The maximum absorbance peak
in the SPR of the nanoparticles was located at 450 nm (see the UV-vis spectra of Mel in solid
state in the Supplementary Materials, Section S4).
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It has been reported that AgNPs with an average diameter of 10 nm show an SPR with
a maximum absorbance peak at 400 nm [59]. There are reports of AgNPs formation on dif-
ferent substrates using this method. In these studies, it is argued that the bathochromic shift
of the band above 400 nm is probably due to an increase in the size of the formed nanopar-
ticles (above 10 nm), to the change in the dielectric environment or to an interparticle
plasmon coupling [57,60–62].

Figure 6 corresponds to SEM images showing directly the nanoparticles deposited on
crystals of the complex, together with an elemental analysis performed on a section of the
crystal using EDX (see more FE-SEM images and EDX table information in Supplementary
Materials, Section S5).
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The phenomenon of the inclusion of molecules on βCD generates crystalline arrange-
ments different from that of their pure species. In this case, it was observed that the crystalline
morphology of the βCD–Mel complex is different with respect to the pure compounds βCD
and Mel (see SEM images information in Supplementary Materials, Section S6).

This corroborates what was previously discussed in the analysis of the samples by
XRD. Figure 6a,b shows a high concentration of AgNPs of homogeneous size, preferentially
accumulated on one side of the crystal, where NH2 and COOH functional groups of Mel
are exposed, allowing its stabilization and confirming that the phenomenon of aggregation
is widely suppressed. The EDX spectra obtained from the surface area analyzed show the
atomic and weight elemental composition of the sample (see Figure 6c). The main components
were carbon and oxygen; chlorine is also included, coming from the drug, and silver from the
nanoparticles that remain stable in the solid state on the surface of the crystals.

2.6. Formation of βcyclodextrin–Melphalan–Silver Nanoparticles Nanosystem

The βCD–Mel crystals with deposited AgNPs were solubilized in water, promoting the
formation of a colloidal solution of AgNPs stabilized by the βCD–Mel complex, as schema-
tized in Figure 7a. The new βCD–Mel–AgNPs colloidal nanosystem was characterized by
DLS, zeta potential, and TEM. The results are summarized in Table 2.
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Table 2. Hydrodynamic diameter, polydispersity index (PDI), zeta potential, and TEM size of
βCD–Mel–AgNPs colloidal nanosystem.

System Hydrodynamic Diameter (nm) PDI Zeta Potential (mV) TEM Size (nm)

βCD–Mel–AgNPs 116 ± 63 0.40 19 ± 5 15 ± 3

The solvation sphere diameter of the nanosystem was 116 nm with a polydispersity of
0.4, characteristic of βCD-based nanosystems [12,16,17,63–65]. Therefore, the dissolution
process causes the metal nanoparticles to be surrounded by multiple layers of the complex,
as has been previously reported for analogous nanosystems using gold nanoparticles
[13–15]. In addition, the drug remains partially included in the cavity of the βCD, and
its functional groups interact with the surface of Ag atoms. The above was confirmed
by the positive surface charge of the βCD–Mel–AgNPs colloidal nanosystem, which was
attributed to the NH2 groups of Mel [66–68]. The size of spherical AgNPs was determined
using micrographs obtained by TEM (see Figure 7b). A high concentration of AgNPs very
close to each other was observed, homogeneous in size and shape, mostly in the range
of 10 to 20 nm. Through the analysis of the respective histogram, an average diameter
of 15 ± 3 nm was reported. The difference between the TEM size and the hydrodynamic
diameter is explained by the multiple layers of βCD–Mel, which cover the nanoparticles
and maintain the stability of the colloid. Interestingly, for metal nanoparticles above 5 nm,
the size is not a critical parameter in the toxicity profile of a nanosystem, since it has no
disruptive effects on healthy cells and can be rapidly excreted by the body [24,69]. Once
they accumulate in fenestrated tissue, such as tumors, the expected long-term toxicity of
AgNPs is due to the oxidative release of Ag+ that could act synergistically for potential
treatment [26]. Accordingly, the average size of the nanoparticles and the hydrodynamic
diameter of the βCD–Mel–AgNPs colloidal nanosystem new open the way to possible
applications in therapy, in addition to being a stable nanocarrier for Mel. In this sense, one
of the relevant tests to validate this new system as a nanocarrier in solution is to evaluate its
permeability in membranes. For this, studies using the PAMPA method were performed.

2.7. Permeability Assays on Artificial Membranes

The PAMPA method is used to predict the passive permeability of biologically relevant
species, such as drugs, across the membrane. The assay is performed on a donor and
acceptor plate, in which the ability of a compound to diffuse between the two plates
separated by a phosphatidylcholine filter is measured, which acts as a lipid membrane
and simulates the lipid bilayer of different types of cells. Since artificial membranes
do not contain active transport systems, only passive diffusion can be studied [70,71].
Cyclodextrins can enhance the permeability of drugs through an artificial membrane under
certain conditions. However, cyclodextrin-based complexes increase the total amount of
drug in the solution and the concentration gradient. The molecule excess can decrease
penetration, especially lipophilic drugs that could permeate the membrane. Other factors
such as agitation speed, pH, type of cyclodextrin, or the association constant of each
inclusion complex are variables to be considered [72,73].

Figure 8 shows the effective permeability of Mel, βCD–Mel complex, and βCD–Mel–
AgNPs colloidal nanosystem analyzed by PAMPA. The controls used behaved as expected,
indicating that the membranes were well constructed. In the case of Mel, as part of the
complex, its effective permeability increased with respect to Mel alone, which was con-
sistent with the role of βCD, maintaining drug stability and, in turn, altering membrane
properties [74,75]. In addition, Mel, in the presence of AgNPs, also increases its effective
permeability with respect to Mel alone, probably because the colloid is surrounded by mul-
tiple layers of the βCD–Mel complex [76,77]; however, it does not exceed the permeability
of the complex. This is explained by the interaction of the NH2 functional group of Mel with
the surface of the AgNPs, decreasing their migration into the membrane. The foregoing
suggests that AgNPs maintain the stability and composition of the nanosystem under the
experimental conditions studied, which qualifies the system as a promising candidate for
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site-directed drug transport [18,26,78–80] since it would avoid its non-specificity or early
action in healthy cells during systemic circulation. On the other hand, it conditions the
nanocarrier to release the drug through an activation with external stimuli to the biological
environment, such as laser irradiation [11,15,17,19,47,81].
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Figure 8. (a) Effective permeabilities of free Mel, Mel included in βCD and Mel in βCD–AgNPs
nanosystem. Thiopental and Evans Blue solutions were used as negative and positive controls, respec-
tively. The assays were performed at 37 ◦C for 24 h, using PBS as solvent, (n = 3); (b) representation
of a transwell plate used in PAMPA with a scheme of permeation of the drug through an artificial
membrane.

3. Materials and Methods
3.1. Reagents and Solvents

In the preparation of the complex, the following reagents were used: βCD hydrate
(98%, 1134.98 g/mol), Mel (>95%, 305.2 g/mol), Dimethyl sulfoxide (DMSO)-d6 (99.99% D,
84.17 g/mol), Phosphatidylcholine (99%), Dodecane (99%, 170.33 g/mol), Phosphate
buffered saline (PBS) tablets, Thiopental (99%, 242.34 g/mol), and Evans Blue (75%, 960.81)
provided by Sigma-Aldrich (Saint Louis, MO, USA). As solvents, ethanol p.a. and water
for chromatography LiChrosolv® brand Merck (Darmstadt, Germany) were employed. To
obtain the AgNPs via magnetron sputtering, a silver foil of high purity (99.9%) was used as
a precursor.

3.2. Synthesis of the βCD–Mel Complex

To synthesize the βCD–Mel complex, the saturated solutions method was employed
[13–15,17,82,83]. In total, 0.2025 g of Mel were dissolved in ethanol and then added to a
solution of βCD (0.7530 g dissolved in water) at 4 ◦C with gentle and constant stirring,
allowing the temperature to rise slowly up to room temperature. The new solution was kept
motionless under a hood for one week until the evaporation of the solvents. Finally, small
crystals precipitated at the bottom of the crystallizer were extracted and washed with a 50% v/v
solution (ethanol/water) at 4 ◦C and vacuum filtered for one hour in a kitasate with a Büchner
funnel equipped with a double layer of filter paper, to remove the excesses of cyclodextrin,
drug or solvents that moisten the complex. The crystals were then pulverized and dried in
a vacuum line to remove the water or ethanol, which may remain occluded in the powder,
then stored in amber vials with a Teflon seal. The new βCD–Mel complex was characterized
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by powder X-ray diffraction (PXRD), NMR of one (1H) and two (ROESY) dimensions, UV-
vis spectroscopy for calculating the loading capacity, degree of solubilization, complexation
efficiency, and association constant. The complex was also used for a permeability study
called PAMPA (parallel artificial membrane permeability assay).

3.3. Formation of Silver Nanoparticles

AgNPs were obtained using magnetron sputtering under a high vacuum, depositing
them onto crystalline powder of the βCD–Mel complex acting as a substrate [57,84–86].
In total, approximately 20 mg of this complex was dispersed on a glass slide, which was
placed inside the chamber of the equipment, together with a silver foil serving as a cathode.
The chamber was evacuated to 0.5 mbar; then, Argon was injected together with a current
of 25 mA to ionize the gas, which hit the metal foil, releasing silver atoms that afterward
were deposited and stabilized on the complex. The accumulation of atoms on specific
crystalline faces of βCD–Mel forms AgNPs in a process that lasts for 20 s. βCD–Mel–AgNPs
was characterized by UV-vis spectroscopy, field emission scanning electron microscopy
(FE-SEM), energy-dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS),
zeta potential, transmission electronic microscopy (TEM), and PAMPA.

3.4. Powder X-ray Diffraction (PXRD)

The analysis of the complex and pure species βCD and Mel was performed using a
Siemens D-5000 diffractometer with graphite-monochromated Cu K-α radiation at 40 kV
and 30 mA with a wavelength of 1.540598 Å.

3.5. 1H-NMR and ROESY

Measurements for the complex and pure species βCD and Mel were performed at 300 K
in DMSO-d6 (99.99%) on a Bruker Advance 400 MHz superconducting NMR spectrometer.
All 2D NMR spectra were acquired using pulsed-field gradient-selected methods during a
mixing time of 12 h. Additionally, the stoichiometry of the complex was evaluated using the
integration of the signals of the protons of βCD and Mel in the spectrum of βCD–Mel.

3.6. Loading Capacity

The loading capacity of the βCD–Mel was calculated from the weights of βCD and
drug obtained using Equation (1) [87].

Loading capacity =
Weight o f drug in βCD

Weight o f βCD
× 100 (1)

3.7. Phase Solubility Studies

Studies were performed following the Higuchi and Connors method [53]. The Beer–
Lambert law was used to quantify Mel, considering its absorbance at 301 nm. First,
known concentrations (C) of Mel were measured by UV-vis. From the UV-vis spectra, the
absorbance maxima at 301 nm (Amax) were extracted. The slope from the Amax vs. C graph,
corresponded to the ε of the drug (For details, graphs, and tables, see Supplementary
Materials, Section S2). Then, the βCD concentration versus the loaded Mel concentration
(calculated by Beer–Lambert law) was plotted. The value of the slope of the graphs related
to the amount of βCD added to the amount of solubilized drug, indicating the degree of
solubilization. The degree of solubilization was used to calculate the association constant
(Ka) and complexation efficiency of the βCD–Mel system using Equations (2) and (3),
respectively [16].

Ka(1:1) =
Degree o f solubilization

[Co](1− Degree o f solubilization)
(2)

Complexation e f f iciency = Ka(1:1)[Co] =
Degree o f solubilization

(1− Degree o f solubilization)
(3)



Int. J. Mol. Sci. 2023, 24, 3990 12 of 17

[Co] corresponds to the concentration of the free drug in the absence of βCD.

3.8. UV-Vis Spectroscopy in Solid State

The AgNPs deposited onto βCD–Mel were characterized using UV-vis spectroscopy
in a solid state [88–90]. First, the diffuse reflectance was measured using a Shimadzu
UV 2450 spectrophotometer with barium sulfate as a baseline. In addition, the spectrum
of the complex was used as a second baseline. Then, the absorbance of the AgNPs was
determined using the Kubelka–Munk transformation.

3.9. (Field Emission-) Scanning Electron Microscopy and Energy Dispersive Spectroscopy

SEM images were obtained using an LEO 1420VP equipment with an Oxford 7424
energy dispersive spectrometer coupled at an accelerating voltage of 25 kV. FE-SEM images
were obtained using a Zeiss Leo Supra 35-VP at an accelerating voltage of 15 kV and 20 kV.

3.10. Dynamic Light Scattering and Zeta Potential Measurements

Dynamic light scattering and zeta potential measurements were performed at 25 ◦C
using a Zetasizer model Nano ZS. The size distribution of the samples was determined
from the results of the intensity distribution values using the cumulant method. The
Smoluchowski approximation was used to calculate zeta potentials based on measured
electrophoretic mobility.

3.11. Transmission Electron Microscopy

TEM images were obtained using a JEOL JEM 1200 EX II instrument. The samples
with AgNPs were prepared by dispersing approximately 0.5 mg in 100 µL of isopropanol
(30%). Then, 20 µL of the solution was deposited onto a copper grid with a continuous film
of Formvar, the excess solution was removed, and the grid was dried. The acceleration
voltage used was 80 kV. More than two thousand nanoparticles were counted to produce
the size distribution histogram. The average diameter was obtained from the peak of the
Gaussian fit performed on the graph.

3.12. Parallel Artificial Membrane Permeability Assay (PAMPA)

The PAMPA studies require two types of well, a donor and an acceptor (Transwell
plates); in addition, the acceptor well has a semipermeable membrane of PVDF (polyvinyli-
dene fluoride). On the PVDF membranes were deposited 4.0 µL of a solution of phos-
phatidylcholine in dodecane (20 mg/mL) for 5 min until complete evaporation of the
organic solvent. Subsequently, 300 µL of PBS (pH = 7.4) was added. In the donor well
were deposited 300 µL of each sample dissolved in PBS, which are: Mel, βCD–Mel, and
βCD–Mel–AgNPs (all concentration data in Supplementary Materials, Section S7). As
positive and negative controls, a solution of Thiopental (10 mg in 100 mL of PBS 10 mM)
and a solution of Evans Blue (200 mg in 100 mL of PBS 10 mM) were used, respectively.
After loading the donor well with the samples and the controls, and the acceptor well
with PBS, they were assembled, covered, and sealed using parafilm. Each PAMPA was
performed in triplicate (n = 3) for 24 h at 37 ◦C with constant agitation to 280 rpm.

The effective permeability (Pe) was determined by the following formula:

Pe =
−218.3

t
· log

[
1− 2 · CA(t)

CD(0)

]
· 10−6 cm/s (4)

t = measurement time in hours.
CA = concentration in acceptor plate at time t.
CD = concentration in donor plate at time zero.
To calculate the concentrations in the acceptor plate, the absorbances of the different

plates were measured using a UV-vis spectrophotometer and the respective calibration
curve of Mel in PBS [70,71].
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4. Conclusions

In summary, a βCD–Mel crystalline solid complex was formed reproducibly in a 1:1
molar ratio. The hydrophobic cavity of βCD allowed the inclusion of Mel, which prevents
hydrolysis and subsequent degradation of the drug. The exhaustive characterization of
the complex confirmed that Mel partially exposes the -NH2 and COOH functional groups,
allowing the crystals to act as a substrate for the stabilization of silver atoms, and the
consequent formation of AgNPs using magnetron sputtering. In turn, the solubilization of
the βCD–Mel–AgNPs crystalline system generates a colloidal solution, where the AgNPs
are covered in multiple layers by the complex. The loading capacity, the stability of the
drug, and the association constant of the complex, together with the size achieved of the
nanoparticles and the effective permeability examined for βCD–Mel and βCD–Mel–AgNPs
are promising results that validate this nanosystem as a new drug nanocarrier for Mel.
Accordingly, the effective and stable Mel loading in this new nanosystem based on βCD
and AgNPs shows potential as a novel alternative to traditional cancer therapeutics.

As a future perspective, evaluating the synergistic effect of the components of the
nanosystem, together with studies of cytotoxicity and laser-triggered controlled release of
Mel in in vitro and in vivo models, are considered necessary to position this nanosystem as
a useful tool in drug delivery applied to cancer.
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