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Abstract: The phenotypic and genetic links between body fat phenotypes and primary open-angle
glaucoma (POAG) are unclear. We conducted a meta-analysis of relevant longitudinal epidemiological
studies to evaluate the phenotypic link. To identify genetic links, we performed genetic correlation
analysis and pleiotropy analysis of genome-wide association study summary statistics datasets of
POAG, intraocular pressure (IOP), vertical cup-to-disc ratio, obesity, body mass index (BMI), and
waist-to-hip ratio. In the meta-analysis, we first established that obese and underweight populations
have a significantly higher risk of POAG using longitudinal data. We also discovered positive genetic
correlations between POAG and BMI and obesity phenotypes. Finally, we identified over 20 genomic
loci jointly associated with POAG/IOP and BMI. Among them, the genes loci CADM2, RP3-335N17.2,
RP11-793K1.1, RPS17P5, and CASC20 showed the lowest false discovery rate. These findings support
the connection between body fat phenotypes and POAG. The newly identified genomic loci and
genes render further functional investigation.

Keywords: primary open-angle glaucoma; obesity; genetic correlation; pleiotropy analysis; genetic
overlap; body mass index; waist-to-hip ratio; body fat measurements

1. Introduction

Obesity is a condition characterized by excess body fat. Defined by a body mass index
(BMI) of at least 30 kg/m2, it is one of the largest global health problems [1], is the most
important risk factor for chronic disease in the United States [2], and is associated with more
than 200 related complications [3], including primary open-angle glaucoma (POAG) [4,5]
and increased intraocular pressure (IOP) [6]. POAG is an ocular neurodegenerative disorder
and a leading cause of global irreversible blindness [7,8]. Under the direct influences of
IOP, patients with POAG gradually develop retinal ganglion cell (RGC) injury, retinal
nerve fiber layer thinning, characteristic optic disc cupping, and corresponding visual field
defects [7,9].

The association between obesity and POAG is more sophisticated than a linear rela-
tionship. On one hand, epidemiological and clinical data support a positive association
of POAG risk with obesity. Newman-Casey, Jung Y., and Chen W.D. reported from pop-
ulations of European and Asian ancestries that obese patients had a 6% to 54% increase
in POAG risk after multivariable adjustment [4,10,11]. Clinical evidence from two sepa-
rate groups revealed a substantial decrease in IOP after successful weight management
through bariatric surgery [12,13]. On the other hand, population-based studies also re-
ported a negative or an insignificant association between obesity/body fat measurements
and POAG. Na K.S. found 8% reduced risk of developing POAG in obese subjects [14],
while Pasquale L.R. showed a negligible association between obesity and POAG [15].
Using BMI and waist-to-hip ratio (WHR), studies also generated a mixed picture of the
POAG–obesity relationship. For the association between POAG and BMI/WHR, Jiang X.

Int. J. Mol. Sci. 2023, 24, 3925. https://doi.org/10.3390/ijms24043925 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24043925
https://doi.org/10.3390/ijms24043925
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-8352-6363
https://doi.org/10.3390/ijms24043925
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24043925?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 3925 2 of 13

reported a positive association [16], while Pasquale L.R. and Ramdas reported a negative
association [15,17]. In addition, some studies detected a significant increase in POAG risk
in underweight subjects [4,14], which further complicated the picture. Therefore, efforts
should be made to sift through the existing epidemiological evidence and determine the
true relationship between POAG risk and body fat measurements.

Obesity is multifactorial and occurs due to complex interactions between genetics
and the environment. The high heritability (h2) for different measures of obesity and body
fat—BMI (h2 = 0.4–0.7) and WHR (h2~0.45)—underlines the strong effects of genetic factors
in the phenotype [18]. Since 2006, significant associations of hundreds of single nucleotide
polymorphisms (SNPs) with obesity, BMI, and WHR have been identified by genome-wide
association studies (GWASs) [19,20]. For POAG, thus far, GWASs have mapped more than
100 gene loci that are significantly associated with POAG or IOP [21–23]. These discov-
eries have provided substantial insights into the genetic underpinnings of both disease
phenotypes. These genomic data also offer a unique opportunity to the evaluation of the
relationship between obesity/body fat measurements and POAG. For example, two studies
have reported significant causal effects of obesity [24] and BMI [25] on POAG phenotype
using two-sample Mendelian randomization methods. Therefore, further uncovering the
specific gene or genomic loci that are directly responsible for the association between both
phenotypes will improve the understanding of disease pathogenesis, classification and risk
profiling while suggesting uncharacterized biological mechanisms.

In this study, we first confirmed the significantly increased risk of POAG in obese
and underweighted populations using the existing longitudinal data and meta-analysis.
We then found positive genetic correlations of POAG phenotypes with BMI and obesity
phenotypes. Finally, we identified more than 20 genomic loci jointly associated with
POAG and BMI. Based on epidemiological and genomic data, this study provided new
evidence supporting the link between body fat phenotypes and POAG. Moreover, new
target genomic loci and genes were highlighted for further functional investigations.

2. Results
2.1. Both Obesity and Underweight Increases POAG Risk in Longitudinal Epidemiology Studies

The literature search yielded 940 records. Among them, we identified 12 independent
longitudinal cohorts in nine studies (Figure S1 and Table S2) [4–6,10,11,14–17]. Seven of
the cohorts were of European ancestries [6,11,15–17], and five were recruited from Asian
populations [4,5,10,14].

Association of obesity and incidence of POAG was tested in seven large cohorts
(Table S2) [4,10,11,14,15]. Subsequent meta-analysis supported a significantly increased
risk of developing POAG in the obese population (HR = 1.10, 95% CI 1.00–1.21, p = 0.03)
(Figure 1A). Opposite to obesity, we further tested the associations of underweight
(BMI < 18.5 kg/m2) with the development of POAG. In contrast to obesity, a meta-
analysis of two independent cohorts from the Korean population [4,14] also linked under-
weight to a significantly increased risk of developing POAG (HR = 1.13, 95% CI 1.10–1.16,
p < 0.001) (Figure 1B). These results partially explained the inconclusive correlations be-
tween BMI/WHR and POAG risk that have been reported in five large cohorts, where two
were positive correlations (p < 0.03) [5,16], one negative correlation (p = 0.03) [17], and two
insignificant findings [15]. Our meta-analysis of BMI’s effect on glaucoma risk, with BMI as
a continuous variable, showed no significant relationship (p = 0.79). This refuted a simple
linear link between BMI and POAG risk (Figure 1C).

All meta-analyzed studies had a Newcastle Ottawa Scale (NOS, accessed via http://
www.ohri.ca/programs/clinical_epidemiology/oxford.asp, accessed on 1 December 2022)
score of six and above (Table S3), suggesting a low risk of biases in the pooled outcomes. In
sensitivity analysis, the pooled results remained unchanged after removing the two studies
that scored six in NOS [4,14] and the relative risk/risk ratio (RR) outcomes [15].

http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
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These results suggested that risk of developing POAG may have a U-shaped correla-
tion with BMI, which corresponded to the raised POAG risk at the lower (underweight)
and the upper (obesity) end of the BMI range.
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Figure 1. Associations of obesity, underweight, and BMI with incidence of open-angle glaucoma.
(A) Incidence of POAG was significantly higher in obese subjects (BMI ≥ 30 kg/m2) when compared
to individuals with normal BMI (p = 0.04) [4,10,11,14,15]. (B) Incidence of POAG was significantly
higher in underweight individuals (p < 0.001) [4,14]. (C) The association of BMI with the risk of POAG
was negligible when BMI was analyzed as a continuous independent variable (p = 0.79) [5,15,17].
BMI, body mass index; CI, confidence interval; IV, inverse variance; POAG, primary open-angle
glaucoma; SE, standard error. * In Pasquale LR’s study, the incidence of POAG was <1% during
the follow-up period [15]. Therefore, we included the reported relative risk in our meta-analyses of
obesity and BMI outcomes, assuming that the risk ratio, odds ratio, and hazard ratio were comparable
under a very low incidence of POAG [26,27]. In sensitivity analysis, the results remained unchanged
after excluding the risk ratios reported in Pasquale LR’s report [15].

2.2. Genome-Wide Association Studies

In subsequent genetic analysis, we included 10 GWAS summary statistics datasets
from eight GWASs, representing the target phenotypes POAG (open-angle glaucoma [28],
IOP [29], and vertical cup-to-disc ratio (VCDR) [30]) and body fat measurements (obe-
sity [31,32], BMI [33,34], and WHR [35]). GWAS summary datasets for the phenotype
underweight—the lower end of the BMI measurement—were not available. Therefore, we
were not able to analyze this phenotype. Features of the included GWASs and correspond-
ing datasets are summarized in Table S4.
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2.3. Genetic Correlation

Linkage disequilibrium score regression was performed to evaluate the genetic cor-
relation between POAG phenotypes and body fat measurements. We found suggestive
positive genetic correlations of POAG, IOP, and VCDR with BMI and obesity, but not with
BMI-adjusted WHR in either gender (p > 0.05) (Figure 2). The statistical significance was
segregated between POAG and BMI/adult obesity (p values ranged from 0.03 to 0.002)
(Figure 2). The average genetic correlation coefficient between adult obesity and POAG/IOP
was higher than that between adult BMI and POAG/IOP (0.18 vs. 0.061; Pt-test = 0.0016).
These results supported the existence of shared genetic factors between BMI/obesity and
POAG phenotypes. Moreover, the lower correlation coefficient between adult BMI and
POAG/IOP than that between POAG/IOP and obesity might be partially explained by the
U-shaped correlation between POAG and BMI when both obese and underweight subjects
were analyzed in the BMI GWAS datasets.
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Figure 2. Genetic correlations of primary open-angle glaucoma-related phenotypes and body fat
measurements. Obesity and BMI were positively correlated with POAG, IOP, and VCDR with
suggestively significant p values. Glaucoma phenotypes and body fat measurements showed strong
genetic correlations within their own cluster, which suggested that the genetic correlation results
were valid and robust. The larger the correlation coefficient’s absolute value was, the larger the
circle. The direction and value of the correlation coefficients were indicated by the color bar below
the plot. BMI, body mass index; IOP, intraocular pressure (corneal-compensated, OD and OS); OD,
right eye; OS, left eye; POAG, primary open-angle glaucoma; VCDR, vertical cup-to-disc ratio; WHR,
waist-to-hip ratio * p < 0.05, ** p < 0.01, *** p < 0.001.

In addition, expectedly, the POAG, IOP, and VCDR phenotypes significantly correlated
with each other (p < 0.001), and most of the body fat measurements, including BMI, obesity,
and WHR, also significantly correlated with each other (Figure 2). These results supported
the validity of the genetic correlation results.
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2.4. Shared Genetic Factors between Body Fat and POAG
2.4.1. Conditional Q-Q Plot

Based on the above results, we further focused on identifying the specific genetic over-
laps between body fat measurements and POAG. We used the GWAS summary statistics
datasets of the POAG [28], IOP (OS) [29], and adult BMI [33] phenotypes.

We generated a conditional Q-Q plot to visualize the cross-trait enrichment between
POAG/IOP and BMI. If there was cross-trait enrichment, successive leftward deflections
can be seen in conditional Q-Q plots as levels of SNP associations with the BMI phenotype
increase. Our conditional Q-Q plots showed noticeable cross-trait enrichment of genetic
variants between POAG/IOP and BMI (Figure 3).
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Figure 3. Conditional Q-Q plots showed cross-trait enrichment between POAG/IOP and BMI.
(A) Conditional Q-Q plot of nominal—log10(p) for SNPs association with POAG as a function of
statistical significance for SNPs association with BMI at the predefined stratum of p values. The
lines with sharp leftward deviated tails showed the true associations between POAG and BMI.
(B) Conditional Q-Q plot of nominal—log10(p) for SNPs association with BMI as a function of
statistical significance for SNPs association with POAG at the predefined stratum of p values. The
lines with sharp leftward deviated tails showed the true associations between BMI and POAG.
(C) Conditional Q-Q plot of nominal—log10(p) for SNPs association with IOP as a function of
statistical significance for SNPs association with BMI at the predefined stratum of p values. The lines
with sharp leftward deviated tails showed the true associations between IOP and BMI. (D) Conditional
Q-Q plot of nominal—log10(p) for SNPs association with BMI as a function of statistical significance
for SNPs association with IOP at the predefined stratum of p values. The lines with sharp leftward
deviated tails showed the true associations between BMI and IOP.
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2.4.2. Shared Genetic Loci between POAG/IOP and BMI

At conjFDR <0.01, we identified 23 distinct genomic loci jointly associated with POAG
and BMI (Figure 4 and Table S5). Moreover, we found 11 independent genomic loci jointly
associated with IOP and BMI (Figure 4 and Table S6). Among the identified genomic loci,
six showed association with POAG, IOP, and BMI (Figure 4, Tables S5 and S6). Seventeen of
the identified genomic loci were not reported in previously published GWASs of glaucoma
or IOP (Tables S5 and S6).
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Figure 4. Common genetic variants jointly associated with POAG/IOP and BMI at conjFDR <0.01.
(A). Twenty-three independent genomic loci were identified to be jointly associated with POAG and
BMI. (B). Ten independent genomic loci were identified to be jointly associated with IOP and BMI.
* There were six overlapping genomic loci that were jointly associated with POAG, IOP, and BMI.
The nearby genes included RP3-335N17.2, RP11-793K1.1, MADD, CADM2, LMX1B, and SMG6.

2.4.3. Functional Annotations to the Identified Genomic Loci

We first obtained the expression profiles and known gene functions of the nearby
genes to the independently significant SNPs (Table S7 and Figure S2). In subsequent
GO enrichment analysis, none of the GO terms survived correction for multiple testing
(corrected p values >0.05).

3. Discussion

In this study, we first established that obese and underweight populations have a
significantly higher risk of POAG using existing longitudinal data and meta-analysis. We
also discovered positive genetic correlations between POAG, BMI, and obesity phenotypes.
Finally, we identified over 20 genomic loci that are jointly associated with POAG and BMI.
Our study, which combines both epidemiological and genomic data, strongly supports
the connection between body fat phenotypes and POAG. Additionally, we identified new
genomic loci and genes that are worthy of further functional investigation.

In the GO term enrichment analysis, we did not identify a significant functional cluster
from the list of potential genes prioritized by our analysis, which suggested that each
genomic loci/gene could play a different role that links POAG/IOP and BMI. Noticeably,
half of the prioritized genes are also expressed ubiquitously in different human tissue types,
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which is in line with their association with BMI, a systemic parameter, but their specific
effects on the ocular condition—POAG—should be further studied.

ATXN2, for example, is important for multiple cellular processes [36], including
(1) repressing mTORC1 signaling pathway to limit cell size, protein synthesis, fat and
glycogen utilization; (2) assisting mitochondrial autophagy and maintaining mitochondrial
precursors, etc. One possibility that ATXN2 may alter glaucoma risk is through causing
mitochondrial dysfunction, because one of the significant aspects in glaucoma pathogenesis
is the structural and functional impairment of mitochondria in retinal ganglion cells and
their axons and synapses [37]. In addition to its role in glaucoma, ATXN2 has been linked
to body fat regulation. Animal studies in mice have shown that ataxin-2 is involved
in the regulation of energy metabolism including fatty acid metabolism [38]. However,
more research is needed to fully understand the molecular mechanisms underlying the
involvement of ATXN2 and the other potential genes/genomic loci in body fat control
and glaucoma.

There are some limitations in our study. First, the available GWAS summary statistics
datasets were limited for underweight phenotype and obesity. Although we included two
GWAS datasets for obesity, the sample size and statistical power of the two GWASs were in-
comparable to the datasets for POAG, IOP, BMI or WHR. This limited our ability to identify
shared genomic loci for these two phenotypes and to test if obesity and underweight would
have different shared loci with POAG. Second, in our pleiotropy analysis, we employed
GWASs with potential overlapping samples, causing FDR inflation. To minimize the risk of
false enrichment from population stratification or relatedness, we employed methods such
as an established genomic control procedure with intergenic SNPs to control FDR inflation.
Third, the discoveries were made using the GWASs conducted mainly in populations of
the European ancestries. The results should be further verified in populations of other
ancestral origins.

4. Materials and Methods
4.1. Meta-Analysis

We searched for original studies evaluating the association between obesity pheno-
types and POAG in the PubMed database on 20 December 2022. Search strategies are
shown in Table S1 [39,40]. In addition, we manually scanned the citations of relevant
articles and reviews. We summarized the studies met the following criteria: (1) longitu-
dinal study design–incident of POAG was reported; (2) evaluated the risk of developing
open-angle glaucoma or its progression under exposure to obesity, different BMI levels, or
WHR levels; (3) reported outcomes in odds ratio (OR), hazard ratio (HR), or relative risk
(RR); (4) written in English. We excluded animal studies, case reports, reviews, abstracts,
conference proceedings, editorials, and studies with incomplete data. All records were
reviewed, and data were extracted/cross-checked by two reviewers (S.S.R. and X.T.Y.).
We used the Newcastle–Ottawa Scale (NOS, accessed via http://www.ohri.ca/programs/
clinical_epidemiology/oxford.asp, accessed on 1 December 2022) to assess the quality of
the cohort studies (Appendix A) [41,42], which informed our risk of bias assessments.

Meta-analysis of longitudinal studies was conducted following our previously pub-
lished methodologies [43–45]. Briefly, we combined study outcomes of comparable defi-
nitions using RevMan 5 (https://training.cochrane.org/online-learning/core-software/
revman/, accessed on 1 December 2022). Obesity and underweight were defined as
BMI ≥ 30 kg/m2 and BMI < 18.5 kg/m2, respectively. We treated each cohort as an inde-
pendent record when one study reported multiple cohorts. Only fully adjusted outcomes
were combined using a random-effects model—the DerSimonian and Laird method [46].
In all the cohorts, the incidence of POAG was <5% during the follow-up period. There-
fore, we included relative risk or OR in our meta-analyses of obesity and BMI outcomes,
assuming the relative risk, odds ratio, and hazard ratio were comparable under a very low
incidence of POAG [26,27]. In sensitivity analysis, we recalculated the combined outcomes

http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
https://training.cochrane.org/online-learning/core-software/revman/
https://training.cochrane.org/online-learning/core-software/revman/
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by excluding the RR results, or via leaving each cohort at a time. Heterogeneity between
studies was evaluated using Q-statistic and I2 [47,48]. Funnel plots were generated [49–51].

4.2. GWAS Quality Control and Imputation

The study-specific design for each GWAS [28–35], including sample collection, quality
control procedures, and criteria for inclusion or exclusion of SNPs, was described in the
corresponding publication. In general, SNPs with call rates less than 95% and a minor
allele frequency of less than 0.5% were excluded. Software used for imputation included
Minimac3 and SNP2HLA, etc.

4.3. Genetic Correlation Analysis Using Linkage Disequilibrium Score Regressions

Linkage disequilibrium score regression (LDSR) regresses LD scores on the χ2 statis-
tics of the SNPs from a GWAS to infer SNP-based heritability. Genetic correlations are
estimated from the LDSR slope between two phenotypes [52]. To test genetic correla-
tion between POAG and body fat measurements, GWAS summary statistics datasets of
European ancestries for POAG, IOP [53,54], VCDR [30], obesity [31,32], BMI [33,34], and
BMI-adjusted WHR [35] were curated. LD scores were computed using 1000 Genomes Euro-
pean data [55]. The LDSR analysis was completed using the ldsc tool kit and the following
published guidelines (https://github.com/bulik/ldsc, accessed on 1 December 2022) [56].

4.4. Pleiotropy Analysis

In general, we performed pleiotropy analysis following established protocols and
tools [57–59]. To reduce the risk of spurious enrichment due to population stratification or
relatedness [60], we applied a genomic inflation control procedure using intergenic SNPs,
which are relatively depleted of true associations [61]. This procedure was used to correct
all test statistics. Moreover, we used n = 20 iterations of random pruning with an LD
threshold r2 = 0.1 to define LD-blocks throughout the genome. We also excluded the major
histocompatibility complex (MHC) region in the analysis due to strong SNP associations
within the long-range LD region [62].

4.4.1. Conditional Quantile-Quantile Plots

Conditional Q-Q plots depict the differential enrichment between pre-specified strata
of SNPs. Conditional Q-Q plot was constructed by creating subsets of SNPs based on the
level of association with the BMI phenotype (i.e., p < 0.1, p < 0.01, and p < 0.001). The
data points on the Q-Q plot were weighted according to the LD structure around the
corresponding SNP.

If there was no cross-trait enrichment, the nominal p values of POAG associations will
form a straight line shown as a function of their empirical distribution. With the existence
of cross-trait enrichment, successive leftward deflections can be seen in conditional Q-Q
plots as levels of SNP associations with the BMI phenotype increase, i.e., p ≤ 1, p < 0.1,
p < 0.01, and p < 0.001. We created Q-Q plots by considering BMI as the primary phenotype
and POAG/IOP as the conditional phenotype and then by reversing the roles of the primary
and conditional phenotypes.

4.4.2. Conditional and Conjunction False Discovery Rates

To identify the specific pleiotropic SNPs that were significant for both POAG and
body fat phenotypes, we applied conditional and conjunctional false discovery rates (FDRs)
analysis (condFDR and conjFDR, respectively). FDR is a statistical method for correcting
for multiple hypothesis testing and was used in pleiotropy analysis to account for the
possibility of non-pleiotropy for a particular SNP [58]. To increase the power of detecting
pleiotropy associated with the primary phenotype (e.g., POAG) while leveraging the
association with the second phenotype (e.g., a body fat phenotype), we used the Bayesian
conditional FDR method (condFDR) [57,63].

https://github.com/bulik/ldsc


Int. J. Mol. Sci. 2023, 24, 3925 9 of 13

CondFDR is a modified version of FDR that takes into account the associations between
genetic variants and the secondary phenotype to recalculate the P values for the primary
phenotype. In our study, we used condFDR analysis to identify genetic variants associated
with POAG that are dependent on the body fat phenotype. If the primary phenotype
(e.g., POAG) and the second phenotype (e.g., body fat phenotype) are genetically correlated,
the condFDR will rearrange the SNPs in a different order from the ranking obtained when
considering the primary phenotype alone [59]. The condFDR of the primary phenotype
(e.g., POAG) conditioned on body fat phenotype (POAG|body fat phenotype) and the
reversing condFDR (body fat phenotype|POAG) were calculated as follows [64]:

cFDR
(

pi
∣∣pj

)
= Pr(H(i)

0

∣∣∣Pi ≤ pi, Pj ≤ pj)

where pi is the association of a specific SNP with the principal disease, pj is with the
conditional disease. Pi is the random variable of the p value for trait i among all SNPs.
H0

(i) represents the null hypothesis that a specific SNP is not associated with trait i.
To identify pleiotropic SNPs that are jointly significant for both phenotypes, we

calculated conjFDR, which is an extension of condFDR [65]. ConjFDR is defined as the
larger of the two condFDR values and serves as a conservative estimate of the FDR for
a pleiotropic SNP associated with both phenotypes. In our study, we used conjFDR
analysis to identify shared SNPs between POAG and body fat phenotypes based on the
previously calculated condFDR. The threshold for conjFDR was set at <0.01, and p values
were corrected using the genomic inflation control procedure as described in previous
studies [57,64,66]. For SNPs with multiple conjFDR values, we used the average values.

4.5. Functional Annotation of Shared Loci and Genes

We used FUMA [67] and DAVID [68] tools for functional annotation of the target genes.
GO enrichment analysis was conducted using the PANTHER classification system [69].

5. Conclusions

Primary open-angle glaucoma and body fat have significant phenotypic and genetic
overlaps. The shared genomic loci by POAG and body fat phenotypes render further
functional investigation.
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Appendix A. Newcastle–Ottawa Quality Assessment Scale for Cohort Studies

Note: A study can be awarded a maximum of one star for each numbered item
within the Selection and Outcome categories. A maximum of two stars can be given
for Comparability.

Selection

(1) Representativeness of the exposed cohort

(a) Truly representative of the average _______________ (describe) in the
community *

(b) Somewhat representative of the average ______________ in the community *
(c) Selected group of users (e.g., nurses, volunteers)
(d) No description of the derivation of the cohort

(2) Selection of the nonexposed cohort

(a) Drawn from the same community as the exposed cohort *
(b) Drawn from a different source
(c) No description of the derivation of the non exposed cohort

(3) Ascertainment of exposure

(a) Secure record (e.g., surgical records) *
(b) Structured interview *
(c) Written self-report
(d) No description

(4) Demonstration that outcome of interest was not present at start of study

(a) Yes *
(b) No

Comparability

(1) Comparability of cohorts on the basis of the design or analysis

(a) Study controls for _____________ (select the most important factor) *
(b) Study controls for any additional factor * (these criteria could be modified to

indicate specific control for a second important factor)

Outcome

(1) Assessment of outcome

(a) Independent blind assessment *
(b) Record linkage *
(c) Self-report
(d) No description

(2) Was follow-up long enough for outcomes to occur

(a) Yes (select an adequate follow-up period for outcome of interest) *
(b) No

(3) Adequacy of follow-up of cohorts

(a) Complete follow-up—all subjects accounted for *
(b) Subjects lost to follow-up unlikely to introduce bias—small number

lost—>____% (select an adequate %) follow-up, or description provided
of those lost) *

(c) Follow-up rate <____% (select an adequate %) and no description of those lost
(d) No statement
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