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Abstract: N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ion channels that are activated
by the neurotransmitter glutamate, mediate the slow component of excitatory neurotransmission in
the central nervous system (CNS), and induce long-term changes in synaptic plasticity. NMDARs are
non-selective cation channels that allow the influx of extracellular Na+ and Ca2+ and control cellular
activity via both membrane depolarization and an increase in intracellular Ca2+ concentration. The
distribution, structure, and role of neuronal NMDARs have been extensively investigated and it is now
known that they also regulate crucial functions in the non-neuronal cellular component of the CNS,
i.e., astrocytes and cerebrovascular endothelial cells. In addition, NMDARs are expressed in multiple
peripheral organs, including heart and systemic and pulmonary circulations. Herein, we survey the
most recent information available regarding the distribution and function of NMDARs within the
cardiovascular system. We describe the involvement of NMDARs in the modulation of heart rate and
cardiac rhythm, in the regulation of arterial blood pressure, in the regulation of cerebral blood flow,
and in the blood–brain barrier (BBB) permeability. In parallel, we describe how enhanced NMDAR
activity could promote ventricular arrhythmias, heart failure, pulmonary artery hypertension (PAH),
and BBB dysfunction. Targeting NMDARs could represent an unexpected pharmacological strategy
to reduce the growing burden of several life-threatening cardiovascular disorders.

Keywords: NMDA receptors; glutamate; cardiovascular system; cardiomyocytes; vascular smooth
muscle cells; endothelial cells; arrhythmia; pulmonary artery hypertension; neurovascular coupling

1. Introduction

Glutamate is the primary excitatory neurotransmitter in the central nervous system
(CNS), where it can activate both pre- and post-synaptic ionotropic glutamate receptors
(iGluRs) and G-protein coupled metabotropic glutamate receptors (mGluRs) [1]. iGluRs
are agonist-operated non-selective cation channels that display different biophysical and
pharmacological features and can therefore be subdivided into three structurally distinct
classes: α-amino-3-hydroxy-5-methyl-4-isoxasolepropionic acid (AMPA) receptors, kainate
receptors, and N-methyl-D-aspartate receptors (NMDARs) [1,2]. While mature AMPA
and kainate receptors are only permeable to Na+ and K+, neuronal NMDARs present
high permeability to Ca2+ and therefore control many Ca2+-dependent functions [1,2].
These include changes in synaptic strength, learning and memory consolidation during
cortical development [1–4], as well as neuronal migration and synaptogenesis during brain
development [5]. Sustained activation of NMDARs can result in cytosolic Ca2+ overload
and exert a neurotoxic effect that can be detrimental to the CNS [6]. Mutations in numerous
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genes encoding for NMDAR subunits may also result in severe neurological disorders,
including intellectual disability, autism spectrum disorders, and schizophrenia [6,7]. A
large body of evidence has been produced over the last 15 years to show that NMDARs are
expressed and fulfil crucial roles also in non-neuronal cells of the CNS, such as astrocytes [8]
and cerebrovascular endothelial cells [9], and in non-neuronal peripheral tissues [10,11], in
particular the heart and vasculature [12]. Herein, we focus our attention on the growing
role played by NMDARs in the cardiovascular system, in which they regulate heart rate and
cardiac contraction, arterial blood pressure, endothelial permeability, and neurovascular
coupling (NVC). In parallel, we describe how enhanced NMDAR activity could promote
ventricular arrhythmias, heart failure, pulmonary artery hypertension (PAH), and blood–
brain barrier (BBB) dysfunction in neurological disorders. Acknowledging the multifaceted
role played by NMDARs within the heart and blood vessels can pave the way towards
novel therapeutic strategies targeting life-threatening cardiovascular disorders. We do not
cover the molecular architecture and role of NMDARs in hematopoietic cells, since these
issues have been nicely addressed in two recent review articles [13,14].

2. Subunit Composition, Regulatory Mechanisms, and Signaling Modes of
Neuronal NMDARs

NMDARs assemble as heterotetrameric non-selective cation channels that can be
drawn by multiple subunits: GluN1, GluN2A, GluN2B, GluN2C, GluN2D, GluN3A, and
GluN3B [1,15]. Neuronal NMDARs comprise two obligatory GluN1 subunits which com-
bine with either two GluN2 subunits or a mixture of GluN2 and GluN3 subunits [9,10]. Fur-
thermore, GluN1 presents eight isoforms (GluN1-1a–GluN1-4a and GluN1-1b–GluN1-4b)
due to alternative splicing, but the functional significance of the differential expression of
GluN1 isoforms is still unclear [16]. The subunit composition of NMDARs dictates their bio-
physical and pharmacological features. Canonical NMDARs consist of two glycine-binding
GluN1 subunits and two glutamate-binding GluN2 subunits. GluN1 is also required for
correct assembly and trafficking of NMDARs to the plasma membrane [1,2]. Neuronal
NMDARs differ from AMPA and kainate receptors not only due to their Ca2+ permeability,
but also because they undergo a strong inhibition by extracellular Mg2+ at negative mem-
brane potentials and because they require the binding of two co-agonists, i.e., glutamate
and glycine (or D-serine), for channel activation [1,2,16]. Therefore, NMDARs serve as
coincidence detectors that uniquely respond to presynaptic release of glutamate, which
opens the channel pore, and postsynaptic depolarization, which relieves Mg2+-dependent
inhibition [1,2]. At central synapses, the rapid activation of AMPA receptors mediates the
inward current that depolarizes the postsynaptic neuron and enables Mg2+ unblocking of
NMDARs during fast synaptic transmission [1,2]. GluN2A- and GluN2B-containing recep-
tors present high permeability to Ca2+ (permeability ratio of Ca2+ to Cs+ (PCa/PCs) ≈ 7),
generate high-conductance single channel openings (50 pS), and are very sensitive to extra-
cellular Mg2+ (IC50 ≈ 15 µM) [16]. The incorporation of GluN2C or GluN2D dramatically
reduces the Ca2+ permeability (PCa/PCs ≈ 4.5), single-channel conductance (37 pS), and
sensitivity to Mg2+ blockade (IC50 ≈ 80 µM) [16]. The recently discovered glycine-binding
GluN3 subunit can further change the biophysical properties of NMDARs [17,18]. The
GluN3 subunit can replace one of the two GluN2 subunits in classical NMDARs dur-
ing a narrow time window of postnatal development and in particular cell types, such
as pyramidal neurons in the cortex and hippocampus, cerebellar Purkinje neurons, and
multiple types of GABAergic interneurons [17,18]. Compared to classical GluN1/GluN2
receptors, tri-heteromeric GluN1/GluN2/GluN3 receptors display lower Ca2+ permeabil-
ity (permeability ratio of Ca2+ to the monovalent ions, Na+ and K+ (PCa/PM) of 0.8) and
single-channel conductance (27 pS), and are relatively insensitive to Mg2+ inhibition at
hyperpolarized membrane potentials [18]. Therefore, GluN3A and GluN3B subunits may
serve as dominant-negative regulators of NMDARs [17,18]. Intriguingly, tri-heteromeric
GluN1/GluN2/GluN3 receptors do not require membrane depolarization to fully open in
response to glutamate release [19]. In addition, omission of the glutamate binding GluN2
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subunit can result in the assembly of di-heteromeric GluN1/GluN3A or GluN1/GluN3B re-
ceptors, which are insensitive to glutamate, extracellular Mg2+, and other classical NMDAR
inhibitors (e.g., MK-801 or memantine, see below), and function as excitatory glycine-
gated channels in heterologous expression systems [1,17]. The expression of functional
GluN1/GluN3 receptor complexes in native tissues has been confirmed by Ca2+ imaging
and electrophysiological recordings of ex vivo mouse optic nerve myelin [20].

The NMDAR complex can be physiologically modulated by multiple endogenous
allosteric modulators, including extracellular H+ and Zn2+, which inhibit NMDARs by
targeting GluN1 (Figure 1) and lead (Pb2+) cations, which inhibits GluN2A-containing NM-
DARs [2,11]. Additionally, polyamines, such as spermine and spermidine, exert a voltage-
dependent inhibition of NMDARs at high concentrations, whereas they increase the affinity
for glycine and promote NMDAR channel opening at micromolar concentrations [11]. A
number of synthetic compounds can be exploited to investigate the physiological role of
NMDARs with no need for genetic manipulation (Figure 1). These include, of course, the se-
lective agonist NMDA, which recognizes the glutamate-binding site on GluN2, and a num-
ber of inhibitors: (1) the competitive antagonist, D-2-amino-5-phosphono-pentanoic acid
(AP5), which displaces the agonist from the glutamate binding site; (2) 7-chlorokynurenic
acid (7-Cl-Kyna), which is an antagonist for the glycine-binding site on GluN1; (3) MK-801
((+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate), which is an
open-channel blocker of NMDAR pores; (4) ifenprodil, which is a selective inhibitor of
GluN2B-containing NMDARs; and (5) a variety of substances that directly block NMDARs,
including memantine and ketamine [2,11].
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Figure 1. Structure of the neuronal NMDAR. Neuronal NMDARs are heterotetramers comprising
two obligatory GluN1 subunits and two GluN2 subunits. The GluN1 subunit contains the agonist-
binding site, whereas the GluN2 subunit contains the glycine (or serine) binding site. NMDARs are
permeable to intracellular K+ (outward direction) and extracellular Na+ and Ca2+ (inward direction).
The NMDAR channel pore contains a Mg2+ binding site that must be relieved by AMPA receptor-
mediated membrane depolarization to enable glutamate-induced NMDAR activation. Extracellular
Zn2+ binds to both GluN1 and GluN2, whereas ifenprodil selectively binds to GluN2B subunits to
enhance H+-mediated NMDAR inhibition. The incorporation of GluN3 subunits (not shown) confers
slightly different biophysical features to the NMDAR, including a low Mg2+-dependent inhibition, a
reduced Ca2+ permeability, and a lower single-channel conductance.
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Until two decades ago, NMDAR signaling was attributed to its ability to conduct
extracellular Ca2+ into active spines during fast synaptic transmission and thereby signal
coincidence of synaptic inputs in Hebbian plasticity [21,22]. Unexpectedly, numerous
independent studies demonstrated that NMDARs may also signal in a flux-independent
mode, i.e., without the need to mediate Ca2+ influx. It has been demonstrated that glutamate
binding to GluN2 may induce conformational changes in the cytoplasmic domain of
GluN1 that triggers diverse intracellular signaling pathways, e.g., Ca2+ release from the
endoplasmic reticulum (ER) and the lysosomal store (Figure 2), protein phosphatase 1
(PP1), and p38 mitogen-activated protein kinase (MAPK) [21,23,24]. Metabotropic NMDAR
signaling may be sufficient to induce long-term depression (LTD) and spine shrinkage in
the hippocampus [25,26], but has also been reported in rat cortical astrocytes [27,28] and is
implicated in synaptic disorders, such as Alzheimer’s disease [29] and schizophrenia [30].
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Figure 2. NMDARs may signal in a flux-independent mode to elicit intracellular Ca2+ release.
NMDARs can signal in either a flux-dependent or independent mode [24,27]. Ionotropic NMDARs
mediate the influx of extracellular Na+ and Ca2+ and induce membrane depolarization or recruit
Ca2+-dependent decoders such as nNOS (not shown). Metabotropic NMDARs can interact with
mGluR1 and mGluR5 to stimulate PLCβ and promote InsP3-induced ER Ca2+ release. In addition,
metabotropic NMDAR signaling involves the NAADP-induced mobilization of lysosomal Ca2+.
The reduction in ER Ca2+ concentration may in turn lead to the activation of SOCE on the plasma
membrane, not shown.

3. NMDAR Expression, Signaling, and Function in the Heart

Cardiac excitability and conduction are finely regulated by the autonomic branch of
the peripheral nervous system, which innervates the myocardium with both sympathetic
and parasympathetic fibers, respectively, releasing the conventional neurotransmitters nore-
pinephrine and acetylcholine [31]. Intriguingly, recent evidence has indicated that another
excitatory neurotransmitter system, based upon glutamate and NMDARs, could modulate
heart rate, cardiac conduction, and myocardial contraction [32]. Preliminary investigations
revealed that GluN1 was expressed in both monkey [33] and rat [34] hearts, in which they
were enriched in the conducting system, in atrial and ventricular cardiomyocytes, in the
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wall of coronary blood vessels, in coronary cardiac intramural nerve terminals, and in
cardiac ganglia [32]. Subsequently, GluN1 expression was confirmed in the same anatomic
sites of human myocardium [35], which can also express GluN2C [36] and GluN3 [37].
Finally, a recent transcriptomic analysis showed that all GluN subunits are expressed in
rat atria [37]. The cardiac distribution of GluN subunits has been summarized in Table 1.
These pieces of evidence fostered the view that NMDARs could play a role in the control of
cardiac rhythm and excitation.

Table 1. NMDARs in the heart.

Chamber Species Subunit
Expression

Proposed NMDAR
Composition Role References

Atrium

Human GluN1,
GluN3 Not defined Excitability and

conductivity [35,37]

Rat

GluN1,
GluN2A,
GluN2B,
GluN2C,
GluN2D,
GluN3A,
GluN3B

Not defined Excitability and
conductivity, fibrillation [34,37,38]

Monkey GluN1 Not defined Not investigated [33]

Conduction
system

Human GluN1 Not defined Not investigated [35]

Rat GluN1 Not defined Not investigated [34]

Monkey GluN1 Not defined Not investigated [33]

Ventricle

Human GluN1 Not defined [35]

Rat GluN1,
GluN2B Not defined

Delayed repolarization,
arrhythmias, fibrosis,

apoptosis,
mitochondrial
dysfunction

[34,39–47]

Monkey GluN1 Not defined Not investigated [33]

Lin et al. reported the expression of GluN2C transcript in whole cardiac lysates from human samples [36].

3.1. The Role of NMDAR Activation in Ventricular Arrhythmias and Acute Myocardial
Infarction (AMI)

An initial report documented that the systemic (intravenous) infusion of NMDA
(125, 250, 500, and 1000 µg/kg) induced a dose-independent increase in rat heart rate that
persisted after pharmacological ganglion blockade with hexamethonium [48]. A subsequent
investigation evaluated the electrophysiological effects of chronic NMDAR activation [41].
Two weeks of NMDA (3 mg/mL/kg) administration caused a significant increase in heart
rate and prolonged the duration of ventricular action potential by downregulating the
expression of several K+ channels, i.e., Kv4.2, Kv4.3, Kv11.1, and the β-subunit KChIP2,
which are involved in cardiac repolarization [41]. In addition, chronic NMDAR activation
caused electrical instability, increased the susceptibility to ventricular arrhythmia, and
induced myocardial interstitial fibrosis [41]. In accord, Kv4.2 and Kv4.3 associate with
KChIP2 to mediate the fast transient outward K+ current (Ito,fast), the reduction of which
can prolong ventricular action potential duration [49,50]. Similarly, the loss of function of
Kv11.1, also known as human ERG, has long been known to result in QT syndrome [50].
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However, these pro-arrhythmic effects were reversed by MK-801 [41]. AMI is consequent
to the electrophysiological alterations in myocardial substrates caused by myocardial
ischemia and ischemia reperfusion, and leads to ventricular fibrillation and tachycardia [12].
D’Amico et al. demonstrated that bocking NMDARs with MK-801, ketamine, or memantine
did not affect the incidence of ventricular arrhythmias and mortality induced by coronary
occlusion in a rat model of AMI, but significantly reduced the pro-arrhythmic effects of
reperfusion [42]. Similar data were obtained by Sun et al., who confirmed that MK-801
mitigated reperfusion-induced ventricular arrhythmias after occlusion of the left anterior
descending coronary artery [43]. These findings suggested that cardiac NMDARs could
be hyper-stimulated during reperfusion, probably due to excessive release of glutamate
observed under these conditions [43,51]. Accordingly, Liu et al. reported that NMDA
infusion significantly increased ischemia-reperfusion-induced Ca2+ overload in isolated
rat ventricular cardiomyocytes, which was translated into a significant loss in ventricular
function, cardiomyocytes apoptosis, and myocardial damage in an ex vivo model of
AMI [44]. These adverse effects were halted by preventing extracellular Ca2+ influx through
NMDARs with MK-801 or a Ca2+-free buffer [44]. A recent series of reports confirmed
that memantine reduced cardiac arrhythmias and infarct size, alleviated cardiac fibrosis
and hypertrophy, and partially rescued cardiac contractility in rat models of isoproterenol-
induced AMI [52] and heart failure [53]. Finally, NMDARs could be responsible for the high
incidence of lethal arrhythmias that occur in healing myocardium owing to sympathetic
nerve sprouting (SNS). SNS can increase the cardiac expression of GluN1 in rats, while
the subsequent administration of NMDA induced cardiomyocyte apoptosis and triggered
ventricular tachycardia and ventricular fibrillation [45]. These effects were again rescued by
blocking NMDARs with AP5 [45], thereby confirming that ventricular NMDARs represent
a promising molecular target to treat arrhythmias.

3.2. The Role of Extracellular Ca2+ Entry in NMDA-Induced Ventricular Arrhythmia and
Cardiac Remodeling

Multiple mechanisms cooperate to mediate the pro-arrhythmic effects of NMDAR
activation in ventricles. An elevation in intracellular Ca2+ concentration ([Ca2+]i) is likely to
play a major role in NMDAR-dependent myocardial pathogenesis [41,54]. Glutamate can
increase the [Ca2+]i in rat cardiomyocytes by activating NMDARs in the presence of extra-
cellular Mg2+ and in the absence of the co-agonist D-serine (Figure 3A) [46,55]. Therefore,
NMDAR activation is able to depolarize ventricular (as well as atrial, see Section 3.3) car-
diomyocytes both directly (i.e., by conducting Na+ and Ca2+ into the cytosol) and indirectly
(i.e., through the Na+/Ca2+ exchanger (NCX), which can be activated by a subplasmalem-
mal Ca2+ rise) [56,57]. Thus, a NMDAR-dependent increase in [Ca2+]i could increase the
risk of trigger activity and arrhythmias. It is still unclear whether extracellular Ca2+ entry
through NMDARs can stimulate Ca2+-induced Ca2+ release (CICR) through type 2 ryan-
odine receptors (RyR2) (Figure 3B) or increase the sarcoplasmic reticulum (SR) Ca2+ load in
a Sarco-Endoplasmic Reticulum Ca2+-ATPase (SERCA) 2a (SERCA2a)-dependent manner,
as previously shown for lysosomal two-pore channels [58,59]. In neonatal rat ventricular
cardiomyocytes, GluN2B has been detected in the Z-disc, in which it colocalizes with
RyR2 on the juxtaposed SR cisternae (Figure 3A) [40]. Moreover, both GluN1 and GluN2B
were identified in the outer mitochondrial membrane and inner mitochondrial cristae of
rat hearts (Figure 3A) [39]. It is therefore reasonable to speculate that glutamate stimu-
lates RyR2-dependent Ca2+ release and mitochondrial Ca2+ overload (Figure 3B), which
would lead to mitochondrial depolarization and opening of the mitochondrial permeability
transition pore (mPTP) [60].
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Figure 3. NMDAR-mediated extracellular Ca2+ entry may result in mitochondrial Ca2+ overload and
caspase 3-dependent apoptosis in ventricular cardiomyocytes. (A) Extracellular Ca2+ entry through
NMDARs may result in mitochondrial Ca2+ overload by flowing through voltage-dependent anion
channels (VDAC) and mitochondrial Ca2+ uniporters (MCU), which are located in the outer and
inner mitochondrial membranes, respectively. The mitochondrial Ca2+ overload may, in turn, lead
to the formation of the mitochondria permeability transition pore (mPTP) (not shown), release of
caspase cofactors, caspase 3 activation, and cell death. In addition, NMDAR opening can induce
depolarization via the influx of Na+ and Ca2+, which could promote further depolarization via
activation of the Na+/Ca2+ exchanger (NCX). Recent evidence detected NMDARs in the Z-disc,
which is juxtaposed to the T-tubules. (B) Extracellular Ca2+ entry through NMDARs in ventricular
cardiomyocytes could either promote CICR via RyR2 (denoted by “???”) or lead to SR Ca2+ overload
in a SERCA2a-dependent manner (denoted by ???). We hypothesize that SR-dependent Ca2+ release
via RyR2 could further contribute to mitochondrial Ca2+ overload (denoted by “???”). Finally,
NMDAR-mediated extracellular Ca2+ entry could also induce an increase in nucleoplasmic Ca2+ and
thereby down-regulate the expression of Kv4.2, Kv4.3, Kv11.1, and KChIP2 through Ca2+-dependent
transcriptional regulators (denoted by “???”).

In addition, NMDAR-mediated intracellular Ca2+ signals could modulate gene ex-
pression and thereby drive the down-regulation of Kv4.2, Kv4.3, Kv11.1, and KChIP2 [41],
as well as SERCA2a [43] and proteins (Figure 3B). In agreement with this hypothesis,
activation of the Ca2+-dependent transcription factor NF-κB [61,62] can reduce Ito,fast by
down-regulating the expression of Kv4.2, Kv4.3, Kv11.1, and KChIP2 in neonatal rat ven-
tricular cardiomyocytes [63]. The reduction in SERCA2a levels in hypertrophic and failing
hearts could also involve Ca2+-dependent regulatory pathways [64]. Finally, NMDA-
induced myocardial fibrosis, which may predispose ventricles to arrhythmias [57], can also
by triggered by intracellular Ca2+ overload. In accord, many reports have demonstrated
that NMDAR stimulation can induce mitochondrial depolarization, reactive oxygen species
(ROS) production, and caspase-3-mediated apoptosis in rat ventricular cardiomyocytes
(Figure 3A) [46,47]. Similarly, NMDARs promoted Ca2+ influx and Ca2+-dependent apopto-
sis by enhancing p38 MAPK activity in primary human neonatal cardiomyocytes cultured
under ischemic conditions [65]. In line with these findings, infusion of MK-801 at the
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beginning of the reperfusion strongly attenuated oxidative stress in a rat model of AMI [66],
whereas co-administration of glutamate and glycine dampened the cardioprotective effects
of verapamil by increasing ROS production [67]. Intriguingly, a recent report showed that
the anthracycline anticancer drug, pirarubicin, induced Ca2+ overload, oxidative stress,
and apoptosis through GluN2D-containing NMDARs in HL-1 (mouse) and H9C2 (rat)
cardiomyocytes [68].

3.3. The Role of NMDARs in Atrial Excitability and Conductivity and Their Involvement in
Atrial Fibrillation

A recent series of studies have focused on the effect of NMDAR activation in the
atria, where they are quite abundant, particularly in the sino-atrial node [35]. In addi-
tion, glutamate concentration was found to be enhanced in the left atrial appendages
of patients [69]. In agreement with these observations, Xie et al. demonstrated that an
intrinsic glutamatergic system is present in rat atrial cardiomyocytes [37]. They found
that glutamate-containing vesicles are abundantly located beneath the plasma membrane.
Moreover, these cells express glutaminase, which generates glutamate from glutamine; the
excitatory amino acid transporter, EAAT1; and many iGluR isoforms, including GluN1 [37].
Accordingly, both glutamate and NMDA elicit transient inward currents and reduce the
action potential threshold in rat atrial cardiomyocytes [37]. Furthermore, MK-801 and AP5
attenuate the atrial conduction velocity both ex vivo and in vivo [37]. Finally, an intrinsic
glutamatergic system was also detected in human atria, and NMDARs were found to medi-
ate transient inward currents and control also the conduction velocity in cultured human
induced pluripotent stem cell (hiPSC)-derived atrial cardiomyocyte monolayers [37].

The evidence described above led to the hypothesis that exaggerated NMDAR activa-
tion could also contribute to abnormal excitability and conductivity in atrial fibrillation. In
accord, a transcriptomic analysis conducted on a canine model of atrial fibrillation revealed
that several genes encoding for glutamate signaling components were targeted by the
differentially expressed microRNAs (miRNAs) of the DLK1-DIO3 locus [70]. Furthermore,
Shi et al. has previously shown that intraperitoneal injection of NMDA (3 mg/kg) in rats
reduced heart rate variability, which is associated with higher adverse outcome of AMI [71],
by causing a dramatic sympathovagal imbalance, with a depressed vagal tone and an
enhanced sympathetic activity in rats [38]. In addition, NMDA administration caused atrial
electrical remodeling and atrial fibrillation by inducing atrial fibrosis and down-regulating
connexin 40 through an increase in metalloproteinase 9 (MMP-9) expression [38]. Notably,
Xie et al. confirmed that blocking NMDARs with MK-801 and AP5 prevented the occur-
rence and halted the progression of atrial fibrillation in vivo [37]. Thus, atrial NMDARs
could provide a novel molecular target to design novel therapeutic strategies to treat atrial
fibrillation, which is the most widespread persistent cardiac arrhythmia [32].

3.4. The Endogenous Agonist of Cardiac NMDARs: Is There A Role for Homocysteine (Hcy)?

Given the evidence that NMDARs are expressed in the heart and control cardiac
excitation and conduction, the question as to their physiological agonist is obviously raised.
A functional glutamatergic signaling system has been uncovered in atria (see Section 3.3),
but not in ventricles. No evidence has been provided in favor of glutamate release from
sympathetic nerves, as initially proposed by some authors [46]. It has been suggested that
the peripheral organs, including the heart and peripheral vasculature, are exposed to base-
line extracellular levels [10], which fluctuate between 5 and 100 µM/L in the plasma and
150 and 300 µM/L in the whole blood [72]. As anticipated above, glutamate concentrations
ranging between 10 and 200 µM/L elicit robust Ca2+ signals in cardiomyocytes [55], thereby
suggesting that cardiac NMDARs could be stimulated by circulating glutamate. However, it
has long been known that astrocytes release glutamate via multiple mechanisms, including
exocytosis, connexin 43 hemichannels, P2X Purinoreceptor 7 receptors, and bestrophin-1, to
regulate neuronal activity [73]. Future work might explore the possibility that ventricular
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cardiomyocytes release glutamate not only during myocardial ischemia, but also during
evoked activity or in response to β-adrenergic stimulation.

Alternately, cardiac NMDARs could be sensitive to the endogenous levels of Hcy, a
derivative of the hepatic L-methionine metabolism that may serve as an NMDAR agonist
by associating with the glutamate binding sites when glycine concentrations are raised
beyond 50 µM [54,74]. Intriguingly, hyperhomocysteinemia (HHcy), which results from
excessive serum levels of Hcy, can lead to coronary artery disease, AMI, ventricular arrhyth-
mias, sudden cardiac death, and atherosclerosis [54,75]. The following pieces of evidence
support the emerging notion that circulating Hcy could target cardiac NMDARs. First, a
pharmacological blockade of NMDARs with MK-801 [76] or a genetic deletion of cardiac
GluN1 [77] reduced the mitochondrial production of ROS and reactive nitrogen species,
thereby impairing MMP9 activation and mPTP opening and halting the decline in myocyte
contractility. Second, a genetic deletion of cardiac GluN1 also inhibited mitophagy [78],
which can become extremely harmful to cardiac tissue when it becomes chronic [79]. Third,
the combined application of Hcy, or Hcy thiolactone, NMDA, and glycine, caused a de-
crease in mechanical cardiac function and an increase in oxidative stress that were rescued
by intracoronary infusion of memantine [80,81]. Quinolinic acid, a downstream metabolite
of tryptophan that activates NMDARs in the CNS, has also been proposed as endogenous
agonist of peripheral NMDARs [10], but its effect on cardiac NMDARs is still unknown.
Thus, while the endogenous agonist (i.e., glutamate) engaging atrial NMDARs is coming
of age, the signaling molecules that physiologically gate ventricular NMDARs still await to
be fully elucidated.

4. The Role of NMDARs in VSMCs and Vascular Endothelial Cells

The main role of peripheral vasculature is to carry oxygen and nutrients to distant
organs and tissues, from which carbon dioxide and catabolic waste are then removed and
disposed through the urinary, respiratory, or gastrointestinal systems [82]. Large conduit
arteries deliver oxygenated blood to the branched capillary networks that effect the ex-
changes of respiratory gaseous and nutrients/catabolites between circulating blood and
the surrounding tissues. Resistance arteries (lumen diameter ∼150–250µm) and arterioles
(<150µm) convey the blood from large conduit arteries to downstream capillaries and
represent the major site of vascular resistance [82]. The vascular wall is mainly composed
of endothelial cells, which line the inner lumen of blood vessels and are directly exposed
to blood stream, and a surrounding layer of VSMCs. Capillaries comprise only a mono-
layer of endothelial cells, while VSMC contraction in resistance arteries and arterioles is
a crucial determinant of blood pressure [82,83]. However, endothelial cells release multi-
ple vasoactive mediators that are able to control VSMC contractility and thereby induce
vasorelaxation (e.g., NO, prostaglandins, and hydrogen sulfide) or vasoconstriction (e.g.,
endothelin) [82,83]. A preliminary report showed that GluN1 was present both in rat aorta,
the largest artery in the body, and in rat mesenteric resistance arteries [48]. Then, GluN1
was detected in rat carotid arteries and GluN1, GluN2A, GluN2B, GluN2C, and GluN2D
were identified in rat aortic endothelial cells (RAECs) (Table 2) [84] and in rat aortic smooth
muscle (A7r5) cells (Table 2) [85]. GluN1, GluN2A, GluN2B, GluN2C, and GluN2D were
also found in human pulmonary arterial smooth muscle cells (hPASMCs) (Table 2) and
human pulmonary microvascular endothelial cells (hPMVECs) in combination with the
postsynaptic density protein-95 (PSD-95) (Table 2) [86]. In agreement with these observa-
tions, NMDA induced AP5-sensitive inward currents in the presence of glycine and in
the absence of extracellular Mg2+ in hPASMCs, thereby confirming that NMDARs were
functional [87]. Multiple GluN subunit- and NMDAR-mediated intracellular Ca2+ signals
were also recorded in mouse [9,88,89] and human [24,90] cerebrovascular endothelial cells,
as more widely discussed in Section 5.
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Table 2. NMDARs in the vascular system.

Cell Type Species Subunit
Expression

Proposed NMDAR
Composition Role References

Aortic VSMCs Rat

GluN1,
GluN2A,
GluN2B,
GluN2C,
GluN2D

Not defined

Proliferation,
vasoconstriction,

MMP-9 and IL-1β
expression, reduction in

basal NO release

[48,85]

hPASMCs Human

GluN1,
GluN2A,
GluN2B,
GluN2C,
GluN2D

Not defined

Proliferation,
hypoxia-induced

pulmonary hypertension
and vascular remodeling

[86,87]

Aortic
endothelial

cells
Rat

GluN1,
GluN2A,
GluN2B,
GluN2C,
GluN2D

Not defined Proliferation [85]

Abbreviations: hPASMCs: human pulmonary arterial smooth muscle cells; IL-1β: interleukin-1β; MMP-9:
metalloproteinase 9; NO: nitric oxide; VSMCs: vascular smooth muscle cells.

4.1. The Hemodynamic Effect of NMDAR Activation in Peripheral Vasculature

The role of peripheral NMDARs in the regulation of blood pressure is yet fully un-
raveled [12]. Systemic infusion of NMDA (125, 250, 500, and 1000 µg/kg) induced a
dose-dependent increase in rat mean arterial pressure (MAP) that was not affected by hex-
amethonium (see also Section 3.1) and was therefore mediated by vascular NMDARs [48].
In accord, the hemodynamic response to NMDA was sensitive to AP5 and HA-966, which
are antagonists of the glycine binding site on GluN1. It was then found that NMDARs
activate neuronal, rather than endothelial, NO synthase (nNOS) to generate NO, and that
NO release drives NMDA-dependent vasoconstriction [48]. These unexpected findings
suggested that peripheral NMDARs also engage NADPH oxidase (NOX), as described in
neurons [91], so that nNOS-derived NO reacts with NOX-derived ROS to form peroxyni-
trite and induce vasoconstriction [12]. A follow-up study showed that ethanol attenuates
an NMDAR-mediated increase in ROS production and MAP [92]. A recent series of studies
demonstrated that nNOS is also expressed and contributes to NO signaling in VSMCs and
endothelial cells and that it is quite abundant in the mesenteric bed [93]. Intriguingly, NM-
DARs recruit the endothelial NO synthase (eNOS) and mediate vasodilation in mouse brain
microcirculation [94,95], and NMDAR-dependent vasorelaxation has also been reported in
rat coronary circulation [66,80]. These findings suggest that NMDARs could be coupled to
different NOS isoforms in different vascular districts, e.g., nNOS in aorta and mesenteric
resistance arteries and eNOS in brain and coronary microvessels. The hypothesis that
peripheral NMDAR signaling could be exaggerated in essential hypertension, as suggested
for PAH (see below), cannot be discounted [12]. Future work will have to assess whether
dysregulated NMDARs are located in VSMCs, in vascular endothelial cells, or both.

4.2. The Role of Peripheral NMDARs in Vascular Remodelling during HHcy-Induced
Atherosclerosis and in PAH

Vascular cells are exposed to circulating glutamate, which could directly target en-
dothelial cells and may easily reach VSMCs. In addition, vascular cells can be directly
stimulated by plasma Hcy and HHcy can induce endothelial dysfunction and accelerate my-
ointimal hyperplasia and luminal narrowing, thereby resulting in atherosclerosis [54,75,96].
A preliminary study showed that HHcy increased NMDAR expression and stimulated
proliferation in A7r5 cells [85]. These effects were mediated by MMP-9 and interleukin-1β,
which support VSMC proliferation and migration, and rescued by MK-801 [85]. A sub-
sequent study confirmed that HHcy stimulated human VSMCs to release MMP-2, which
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is involved in remodeling and destabilization of the atherosclerotic plaques by recruit-
ing the phosphatidylinositol 3-kinase (PI3K) and MAPK phosphorylation cascades [97].
These pro-atherosclerotic effects were again alleviated by MK-801 and L-glycine, which
favors NMDAR internalization [97]. It was further demonstrated that HHcy stimulates
the expression of C-reactive protein (CRP), which also promotes VSMC proliferation and
migration by inducing ROS production, MAPK activation, and the nuclear translocation of
NF-κB in rat aortic VSMCs [98]. The primary role of NMDARs in HHcy-dependent CRP
expression and secretion was underpinned by the inhibitory action of MK-801 [98]. Future
work will have to assess whether endothelial NMDARs are involved in HHcy-induced
endothelial dysfunction, as suggested in [12]. Nevertheless, peripheral NMDARs stand
out as novel molecular targets to interfere with HHcy-induced vascular remodeling and
atherosclerotic progression.

On the other hand, a recent study has undoubtedly unveiled the pathogenic role of
vascular NMDARs in PAH [86]. Early reports had already shown that tissue-type plasmino-
gen activator (tPA) [99] and urokinase plasminogen activator (uPA) [100] increase lung
arterial contractility and promote lung vascular permeability by activating NMDARs in
mice. These studies showed that preventing the interaction between pulmonary NMDARs
and tPA or between uPA and a docking peptide that binds either of these enzymes and
interferes with their occupancy of the NMDAR binding site can mitigate pulmonary in-
jury [99,100]. More recently, Dumas et al. documented that glutamate levels were enhanced
in pulmonary arteries isolated from PAH patients as compared to control arteries, and that
glutamate accumulation was more robust in medial lesions [86], which are featured by
VSMC hyperplasia. The increase in glutamate production was secondary to the accumula-
tion of glutamine, which is the glutamate precursor in the glutaminase reaction, and was
more evident in pulmonary arterioles (<150 µm) [86], which represent the main target of
current therapies [101]. This study also showed that GluN1 protein was up-regulated and
hyperphosphorylated at Ser-896 in PAH pulmonary arteries, particularly in VSMC lesions.
This latter feature was rather relevant since phosphorylation of Ser-896 increases the surface
expression of GluN1 in neurons [102]. Furthermore, many components of the neuronal
glutamatergic system were identified in hPASMCs and hPAMECs, including glutaminase 1
(GLS1) and GLS2, which catalyze glutamate production from glutamine [103]; the vesicular
glutamate transporter, VGLUT1; and the scaffolding protein, PSD-95. Interestingly, GLS1
and VGLUT1 were enhanced in PAH arteries and both hPASMCs and hPMVECs were
able to release glutamate in a Ca2+-dependent manner. Additionally, both endothelin-1
and platelet-derived growth factor-BB (PDGF-BB), which accelerate vascular remodeling
in PAH, stimulated GluN1 phosphorylation and induced hPASMC proliferation. GluN1
phosphorylation was spatially confined within the regions of cell-to-cell contact between
hPASMCs [86]. Therefore, the authors speculated about a quasi-synaptic mode of gluta-
matergic communication via NMDARs between adjacent hPASMCs in both culture and
PAH pulmonary arteries (Figure 4). In line with these findings, hypoxia failed to pro-
mote pulmonary vascular remodeling and pulmonary hypertension in transgenic mice
selectively lacking GluN1 in VSMCs. Moreover, blocking NMDARs with MK-801 in a rat
model of monocrotaline-induced PAH alleviated remodeling of pulmonary arteries and the
corresponding decrease in right ventricle contractility [86]. A follow-up study showed that
PDGF-BB could increase the surface expression of GluN2B in hPASMCs via Src-dependent
phosphorylation, thereby resulting in the assembly of antiproliferative and antimigratory
NMDARs [104]. However, GluN2B expression was down-regulated in PAH pulmonary
arteries, which further highlights the crucial role played by VSMC NMDARs in medial
hyperplasia and vascular obstruction [104]. Therefore, this study could pave the way for
novel therapeutic avenues to treat PAH by targeting pulmonary NMDARs [101]. A crucial
issue that remains to be solved concerns the requirement for complete Mg2+ unblocking
to measure NMDAR-mediated inward currents in hPASMCs [87]. NMDAR activation
exacerbates phenylephrine-induced contractile responsiveness of human pulmonary arter-
ies under hypoxic, but not normoxic, conditions [87]. However, the membrane potential
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of hypoxic pulmonary arterial SMCs is more depolarized as compared to normoxic cells
due to the reduced expression and activity of voltage-gated K+ channels [105] and to the
activation of the acid-sensing ion channel 1 [106]. The persistent depolarization of hypoxic
pulmonary arterial SMCs could be involved in the glutamate-dependent activation of
NMDARs and support vascular remodeling and vasoconstriction in PAH.
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Figure 4. Model of NMDAR-mediated quasi-synaptic communication between adjacent VSMCs
in pulmonary circulation. A recent investigation by Dumas and coworkers [86] proposed a quasi-
synaptic mode of glutamatergic communication via NMDARs between adjacent VSMCs in human
pulmonary circulation. According to this mode, glutamate (Glu) is formed directly from glutamine
(Gln) by glutaminase (GLS1 and/or GLS1) and is thereafter released in the extracellular space through
the vesicular glutamate transporter (VGLUT). Herein, Glu binds to juxtaposed NMDARs that are
located on adjacent VSMCs and stimulates the influx of extracellular Ca2+, which in turn promotes
VSMC contraction, proliferation, and migration. It has been suggested that the PDZ scaffolding
protein, PSD95, contributes to recruit, anchor and cluster NMDARs on the plasma membrane.

5. The Role of NMDARs in Cerebro-Microvascular Endothelial Cells (CMVECs)

Glutamate is the major excitatory neurotransmitter in the CNS and modulates neuronal
excitability and synaptic plasticity via iGluRs and mGluRs. It is therefore not surprising
that AMPA receptors and NMDARs, as well as the Gq/11-protein coupled mGluR1 and
mGluR5, are widely expressed also in the other main components of the neurovascular unit,
i.e., astrocytes and microvascular endothelial cells [8–10,107–111]. Cerebral microvessels,
i.e., arterioles and capillaries, receive an extensive glutamatergic innervation [112,113] and
CMVECs can respond to neuronal activity via NMDARs [94,114,115]. In accord, NMDAR
subunits have been detected in human [24,90,115] and rodent [95,114,115] CMVECs, in
which GluN1 is preferentially located to the basolateral membrane surface to directly
perceive synaptically released glutamate [116]. As illustrated in Table 3, CMVECs express
GluN1, GluN2A, GluN2C, and GluN3A in mouse cortical arteries [94,116], whereas GluN1,
GluN2B, and GluN3A were detected in spinal cord microvascular endothelial cells [90].
The molecular architecture of endothelial NMDARs in human CNS microvessels has been
investigated by exploiting primary CMVECs, which express GluN1 [115,117], and in the
hCMEC/D3 cell line, which has been established from the human temporal lobe microves-
sels [118] and express GluN1, GluN2C, and GluN3B subunits (Table 3) [24]. Therefore,
the molecular configuration of endothelial NMDARs in cortical vessels is enriched with
GluN2C and GluN3 subunits, which are likely to yield a low sensitivity to extracellular
Mg2+, low single-channel conductance, and sensitivity to glycine [10,24,119].

NMDARs regulate multiple functions of the BBB [10]. The BBB is mainly formed
by CMVECs that line brain microvessels and is therefore instrumental to maintain CNS
homeostasis and ensure proper neuronal signaling. In addition, the BBB protects brain
parenchyma from blood-borne pathogens and toxins and its restrictive nature represents a
major obstacle for drug delivery to the CNS [120,121]. Hogan-Cann and Anderson have re-
cently surveyed the involvement of endothelial NMDARs in the control of the BBB in health
and disease [10]. In this section, we focus our attention on the latest investigations describ-
ing the role of endothelial NMDARs in the fine regulation of BBB permeability and NVC,
i.e., the mechanism whereby an increase in neuronal activity is translated into an increase
in cerebral blood flow (CBF) [112,122], and their implication in neurological disorders.



Int. J. Mol. Sci. 2023, 24, 3914 13 of 22

Table 3. NMDARs in cerebrovascular endothelial cells.

Cell Type Species Subunit
Expression

Proposed NMDAR
Composition Role References

Endothelial cell Human
GluN1,

GluN2C,
GluN3A

Not defined

NO release, increase in
transcellular and

paracellular
permeability

[24,90,115]

Endothelial cell Mouse

GluN1,
GluN2A,
GluN2B,
GluN3A

Not defined

NO release, increase in
transcellular and

paracellular
permeability, monocyte
transmigration, GABA
interneuron migration

[90,94,95,114–
116,123,124]

5.1. Endothelial NMDARs Control BBB Permeability

The movement of solutes across the BBB between circulating blood and brain parenchyma
can occur through a paracellular or transcellular route [120,121]. Glutamate can induce the
opening of the BBB and thereby increase paracellular permeability via NMDAR-mediated
intracellular Ca2+ signals [120,125–128]. In accord, NMDA-induced elevation in BBB perme-
ability was sensitive to MK-801 [125–127] or AP5 [126,128] and an NMDA-evoked increase in
[Ca2+]i was recorded in both human [24,115,126] and mouse [129,130] CMVECs and in mouse
cerebral artery endothelial cells [88]. Intriguingly, NMDA-induced intracellular Ca2+ signals
in hCMEC/D3 cells are sensitive to AP5 and genetic knockdown of GluN1, but not to MK-801
and to removal of extracellular Ca2+ [24]. In addition, whole-cell patch-clamp recordings
showed that NMDA did not elicit any detectable inward current both in the absence and in the
presence of extracellular Mg2+ [24]. Nevertheless, this investigation revealed that NMDARs
may operate in a flux-independent mode to signal the increase in [Ca2+]i in hCMEC/D3
cells. In accord, NMDARs interact with mGluR1 and mGluR5 to mobilize lysosomal Ca2+

via TPCs and ER-stored Ca2+ via InsP3 receptors and to induce store-operated Ca2+ entry
(Figure 2) [24,131]. Conversely, NMDA-induced intracellular Ca2+ signals in mouse CMVECs
disappear in the absence of extracellular Ca2+ and in the presence of the pore-blocking antago-
nist, MK-801 [88]. Therefore, NMDARs can signal the increase in [Ca2+]i in a flux-dependent
manner in mouse CMVECs and in a flux-independent (i.e., metabotropic manner) in human
CMVECs. NMDAR-mediated intracellular Ca2+ signals can increase the BBB permeability by
inducing NO release [24,108,128] and myosin light chain (MLC) phosphorylation through the
Ca2+-dependent recruitment of Rho-kinase (ROCK) and MLC kinase (MLCK) [108]. Finally,
extracellular Ca2+ entry through NMDARs also controls the transcellular route across the
mouse BBB by recruiting Ca2+/calmodulin-dependent protein kinase II (CaMKII), protein
kinase C (PKC), and RhoA [115].

5.2. Endothelial NMDARs Control NVC

The mechanism whereby an increase in neuronal activity may lead to a local eleva-
tion in CBF to match the high energy demand of active neurons with a supply of oxygen
and nutrient supply from the blood is known as NVC or functional hyperemia [112,113].
According to the canonical model, NVC is triggered by the release of vasoactive media-
tors, such as NO, arachidonic, potassium ions (K+), from neurons and astrocytes. These
signals target the contractile cells, i.e., VSMCs and pericytes, of brain microvessels to
induce vasorelaxation and increase CBF [112,113]. A series of recent studies, reviewed
in [9,10,89,132–134], demonstrated that CMVECs may sense neuronal activity and thereby
elicit a robust increase in CBF through a blend of ion channels that are located in the plasma
membrane and include the inward rectifier K+ (Kir2.1) channel [135], Transient Receptor
Potential Ankyrin 1 (TRPA1) channels [136], and NMDARs [10]. In accord, the Anderson
group demonstrated that the stimulation of endothelial NMDARs with glutamate induced
arteriolar relaxation in ex vivo mouse middle cerebral arteries through the Ca2+-dependent



Int. J. Mol. Sci. 2023, 24, 3914 14 of 22

release of NO [94,95,116]. Astrocytes contribute to the activation of basolateral endothelial
NMDARs by releasing the co-agonist D-serine in response to an increase in [Ca2+]i [95,116].
As expected (see Section 5), glutamate-evoked arteriolar vasodilation was not sensitive to
Mg2+-dependent blockades [94]. In agreement with these observations, the hemodynamic
response to sensory stimulation was largely compromised in a transgenic mouse model
selectively lacking endothelial NMDARs [114] and eNOS [137]. In addition, the full hemo-
dynamic response to somatosensory stimulation in mouse arteries and arterioles requires
the stimulation of luminal NMDARs by circulating tPA [138]. Intriguingly, in the human
cerebrovascular endothelial cell line hCMEC/D3, NMDARs may signal in a flux-dependent
manner to induce NO release, do not require the presence of D-serine, and are not sensitive
to Mg2+-dependent inhibition [24].

The evidence that endothelial NMDARs at the NVU are stimulated during glutamater-
gic transmission is also relevant for synaptic events that go beyond the hemodynamic
response. Early work has shown that the hippocampal long-term potentiation (LTP) is
inhibited in eNOS-deficient mice [139,140]. Intriguingly, eNOS is not expressed in CA1
pyramidal cells [141], which clearly indicates the crucial role of endothelium-derived NO
in synaptic plasticity and memory formation. Future experiments should assess whether
LTP is impaired in transgenic mice selectively lacking endothelial NMDARs and eNOS
not only in the hippocampus, but also in other brain areas, such as the cortex, amygdala,
and cerebellum. The role of vascular NMDARs in endothelial-to-neuronal communica-
tion has been suggested by a recent study showing that the vessel-associated migration
of GABA interneurons along the pial migratory route is finely regulated by endothelial
NMDARs [124].

5.3. The Pathogenic Role of Endothelial NMDARs in the CNS

Disruption of the BBB is a hallmark of many neurological disorders that are associ-
ated to hypersynchronized neuronal activation and/or excessive glutamate release, such
as traumatic brain injuries (TBI), epilepsy, multiple sclerosis, and stroke [120,121,142].
Furthermore, the BBB permeability is significantly increased in vascular dementia and
other neurodegenerative disorders such as Alzheimer’s disease (AD) due to the enhanced
oxidative stress imposed to cerebrovascular endothelial cells [143]. Early studies con-
ducted on cultured CMVECs showed that endothelial NMDARs could contribute to the
disruption of BBB integrity through a variety of mechanisms, including the altered ex-
pression of BBB efflux transporters (e.g., ABCG2) [117,144], the decreased expression and
relocalization of tight junctions protein (e.g., occludin and claudin-5) [108,111], MMP-2,
and MMP-9 release [129]. In addition, excessive doses of glutamate (1 mM) induced en-
dothelial dysfunction through NMDAR-mediated production of ROS [125,127,145] and
peroxynitrite [146], thereby disrupting the BBB integrity in vitro. In accord, an increase in
endothelial [Ca2+]i not only engages the eNOS, but it can also stimulate ROS generation
through the Ca2+-dependent NOX4 [147], which is widely expressed in CMVECs [130].

A recent series of investigations confirmed that excessive stimulation of endothelial
NMDARs can increase the BBB permeability in several animal models of neurological
disorders. Aberrant glutamate release during epileptic seizures increased vascular per-
meability in the rat cerebral cortex via endothelial NMDARs (Table 4) [128]. Similarly,
endothelial-specific deletion of the regulator of G-protein signaling 5 (RGS5) enhanced
endothelial NMDAR signaling in a mouse model of brain stroke, which exacerbated the
increase in the BBB permeability and the severity of the ischemic damage (Table 4) [108].
The serin-protease tPA has been shown to disrupt the BBB integrity and favor monocyte
infiltration in mouse models of multiple sclerosis (Table 4) [148]. Blocking NMDARs with
a monoclonal antibody (known as Glunomab) that selectively targets GluN1 inhibited
tPA-induced leukocyte transmigration in vitro and halted the progression of neurological
impairments in a mouse model of multiple sclerosis (i.e., autoimmune encephalomyelitis)
in wild-type but not in tPA-deficient animals [149]. Moreover, NMDARs were found to
mediate tPA-dependent monocyte transmigration through the human BBB via extracel-
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lular signal-regulated kinase 1 activation [123]. In addition, the endovascular infusion of
Glunomab reduced the incidence of intracellular aneurysms by blocking tPA-dependent
activation of endothelial NMDARs in mice (Table 4) [150]. These preliminary findings
strongly support the notion that targeting endothelial NMDARs could represent a promis-
ing therapeutic strategy to attenuate BBB dysfunction in neurological disorders as severe
as epilepsy, multiple sclerosis, and stroke [151]. In addition, intraluminal infusion of
amyloid-β(1–40) reduced extracellular Ca2+ entry through endothelial NMDARs and at-
tenuated endothelium-dependent dilation in mouse cerebral arteries (Table 4) [88]. Thus,
defective endothelial NMDAR signaling could contribute to the impaired hemodynamic
response (and possibly to loss in neuronal regulation by endothelium-derived NO) in
neurodegenerative diseases such as AD. Finally, anti-NMDAR autoimmune encephalitis is
a rare neurological disorder that is caused by autoreactive anti-NMDAR autoantibodies
targeting GluN1 and produced by B lymphocytes [151,152]. This in turn results in NMDAR
hypo-responsiveness and leads to a decline in cognitive function and neuropsychiatric
symptoms [153]. Future work should assess whether anti-NMDAR autoantibodies also
target the endothelial NMDARs, as suggested by the defect in BBB integrity that has been
reported in both animal models [152] and patients [154] affected by this disease.

Table 4. The involvement of endothelial NMDARs in cerebrovascular disorders.

Disease Altered Function Pharmacological
Targeting References

Epilepsy BBB disruption AP5 [128]

Stroke BBB disruption MK-801 [108]

Intracerebral
aneurysm BBB disruption Glunomab [150]

Multiple sclerosis BBB disruption and
monocyte infiltration Glunomab [148,149]

HHyc BBB disruption Memantine [155]

AD Reduced arterial
vasodilation Not assessed [88]

Abbreviations: AD: Alzheimer’s disease; BBB: blood–brain barrier; HHyc: hyperhomocysteinemia.

6. Conclusions

A burgeoning body of evidence has demonstrated that NMDARs do not only fulfil a
crucial function in the CNS, but also in the peripheral organ systems. The regulatory role
of NMDARs in the cardiovascular system is also coming of age. In the heart, NMDARs are
located within the conduction system and in the working myocardium. Therefore, they
can regulate both the cardiac rhythm and cardiac excitability in a healthy heart, while exag-
gerated NMDAR signaling could contribute to atrial fibrillation, ventricular arrhythmias,
and heart failure. In the peripheral vasculature, NMDARs are expressed in VSMCs and
endothelial cells, but it is still unclear whether and how they regulate MAP. Preliminary
evidence suggests that the regulation of local blood flow could be differentially affected
by peripheral NMDARs, depending on the vascular bed and on their location in VSMCs
vs. vascular endothelial cells. In pulmonary circulation, VSMC NMDARs are certainly
involved in the pathogenesis of PAH, although their role in hPMVECs is still unclear. The
role of endothelial NMDARs has been clearly unveiled in cerebral microcirculation, where
they regulate NVC and BBB permeability. Conversely, it is still unknown whether they
are expressed in cerebral VSMCs and pericytes. As various neurological disorders depend
on NMDAR subunit mutations [6,7], the possibility that also endothelial NMDARs are
involved in such genetic diseases cannot be discounted. Importantly, pre-clinical studies
demonstrated that the pharmacological blockade of NMDARs could represent an effective
strategy in treating life-threatening cardiovascular pathologies, ranging from arrhythmic
disorders to PAH and neurological/neurodegenerative diseases. The molecular compo-
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sition of NMDARs in cardiomyocytes (Table 1), VSMCs and vascular endothelial cells
(Table 2), and in CMVECs (Table 3) is yet to be fully elucidated. The complement of ion
channels endowed to VSMCs and endothelial cells may extensively vary depending on the
vascular district [156–159]. Thus, it is likely that distinct GluN subunits will be found to
contribute to vessel-associated NMDARs in different vascular beds. Understanding the
molecular make-up of NMDARs is mandatory to decipher the diverse array of biophysical
features they present in the multiple cellular components of the cardiovascular system
(e.g., Mg2+-dependent inhibition in hPASMCs but not in ventricular cardiomyocytes and
CMVECs) and to fully exploit their therapeutic potential.
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