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Abstract: Previously, we reported that a crude polyphenol-enriched fraction of Cyclopia intermedia
(CPEF), a plant consumed as the herbal tea, commonly known as honeybush, reduced lipid content in
3T3-L1 adipocytes and inhibited body weight gain in obese, diabetic female leptin receptor-deficient
(db/db) mice. In the current study, the mechanisms underlying decreased body weight gain in
db/db mice were further elucidated using western blot analysis and in silico approaches. CPEF
induced uncoupling protein 1 (UCP1, 3.4-fold, p < 0.05) and peroxisome proliferator-activated receptor
alpha (PPARα, 2.6-fold, p < 0.05) expression in brown adipose tissue. In the liver, CPEF induced
PPARα expression (2.2-fold, p < 0.05), which was accompanied by a 31.9% decrease in fat droplets in
Hematoxylin and Eosin (H&E)-stained liver sections (p < 0.001). Molecular docking analysis revealed
that the CPEF compounds, hesperidin and neoponcirin, had the highest binding affinities for UCP1
and PPARα, respectively. This was validated with stabilising intermolecular interactions within the
active sites of UCP1 and PPARα when complexed with these compounds. This study suggests that
CPEF may exert its anti-obesity effects by promoting thermogenesis and fatty acid oxidation via
inducing UCP1 and PPARα expression, and that hesperidin and neoponcirin may be responsible for
these effects. Findings from this study could pave the way for designing target-specific anti-obesity
therapeutics from C. intermedia.

Keywords: Cyclopia intermedia; db/db mice; brown adipose tissue; uncoupling protein 1; peroxisome
proliferator activator receptor alpha; hepatic fat accumulation; molecular docking

1. Introduction

Obesity and its associated metabolic complications such as type 2 diabetes (T2D),
non-alcoholic fatty liver disease (NAFLD), and cardiovascular disease (CVD) present
a significant global public health concern [1]. In 2016, 13% of adults worldwide were
obese [2], with projections of 20% by 2025, unless effective interventions are developed [3].
The burden of obesity is disproportionately higher in women compared to men, with
several epidemiological studies reporting higher prevalence in women than in men [3–5].
Current approaches for the treatment of obesity include dietary interventions such as
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low-calorie diets, increased physical activity such as exercise, pharmacological therapy,
and surgical procedures [6,7]. Unfortunately, their therapeutic effects against obesity have
not been satisfactory, urging the need to explore indigenous medicinal plants for their
therapeutic potential in treating modern society diseases such as obesity.

Cyclopia is an endemic South African plant genus and several of the species have
traditionally been processed and consumed as herbal tea, commonly known as honeybush
tea [8]. In addition, anecdotal evidence suggests that drinking infusions of honeybush tea
has restorative properties and can stimulate appetite [9], implying its role in improving
appetite and thus regulating energy metabolism and obesity. Over the years, this herbal
tea has gained popularity on local and global markets partly due to its pleasant aroma
and taste, and partly because of mounting scientific evidence of various beneficial health
effects [10], including potential anti-obesity properties. Accordingly, recent studies showed
that extracts of three Cyclopia species exhibit anti-obesity effects [11–13]. Aqueous extracts
of C. maculata and C. subternata were shown to inhibit lipid and triglyceride accumulation
and decrease peroxisome proliferator-activated receptor gamma 2 (PPARγ2) expression
in 3T3-L1 adipocytes [11]. These extracts also induced lipolysis and the expression of
hormone sensitive lipase (HSL) and perilipin in 3T3-L1 adipocytes [12]. More recently,
our focus shifted to a crude polyphenol-enriched fraction, prepared from C. intermedia
(CPEF), demonstrating that CPEF decreased the lipid content of 3T3-L1 adipocytes, while
also increasing Hsl and uncoupling protein 3 (Ucp3) gene expression in these cells [13].
Additionally, we showed that treatment of obese, diabetic female leptin receptor-deficient
db/db mice with CPEF inhibited body weight gain without affecting food and water
intake, nor causing changes in glucose tolerance [13]. Furthermore, CPEF did not alter the
expression of genes involved in lipid metabolism, glucose homeostasis, and thermogenesis
in subcutaneous and visceral white adipose tissue (WAT) of db/db mice [14], warranting
further studies to elucidate the mechanisms underlying its anti-obesity effects.

Increasing thermogenesis in brown adipose tissue and stimulating fatty acid oxidation
have emerged as potential therapeutic targets for anti-obesity intervention strategies [15].
A considerable amount of evidence suggests that uncoupling protein 1 (UCP1) is at the core
of brown adipose tissue thermogenesis and systemic energy homeostasis [16], while perox-
isome proliferator-activated receptor alpha (PPARα) is the key master of lipid metabolism,
mainly involved in regulating fatty acid oxidation and its key genes. As such, polyphenols
that are able to target UCP1 and PPARα, and increase their expression, thus inducing
thermogenesis or stimulating fatty acid oxidation, have attracted considerable interest as
novel strategies for the treatment of obesity [17–19]. In this study, we hypothesised that the
previously reported anti-obesity effects of CPEF in db/db mice [13] are due to the induction
of UCP1 and PPARα expression, and accordingly quantified UCP1 and PPARα expression,
and protein oxidation levels in brown adipose tissue. In addition, we measured PPARα
expression, lipid peroxidation, and protein oxidation in the liver of the CPEF-treated db/db
mice. Hepatic fat accumulation was quantified in hematoxylin and eosin-stained liver
sections. Furthermore, we used in silico molecular docking and ligand interaction plot
analysis to predict polyphenols that might be responsible for the increased UCP1 and
PPARα expression in CPEF-treated db/db mice.

2. Results
2.1. Treatment with CPEF Increases UCP1 and PPARα Expression in Brown Adipose Tissue

The expression of UCP1 in the brown adipose tissue was approximately 3.4-fold higher
in obese, diabetic female db/db mice treated with CPEF compared to untreated db/db
control mice (99.45 ± 65.45% vs. 29.37 ± 18.82%, p < 0.05) (Figure 1A,B). In addition, CPEF
treatment increased PPARα expression 2.6-fold compared to untreated db/db control mice
(62.74 ± 35.96% vs. 24.25 ± 15.97%, p < 0.05) (Figure 1A,C).
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Figure 1. Treatment with CPEF increased UCP1 and PPARα expression in brown adipose tissue of 
db/db mice. (A) Representative western blots of UCP1, PPARα, and β-tubulin in brown adipose 
tissue of db/+ mice, db/db mice and db/db mice treated with CPEF. (B,C) Quantitative protein ex-
pression of UCP1 and PPARα. Mice were treated with the vehicle control or CPEF (351.5 mg/kg) 
daily for 28 days. Protein expression was normalised to β-tubulin and data are expressed as a per-
centage relative to db/+ mice, which was set at 100%. Data are represented as the mean ± SD (n = 6). 
Statistical significance between the groups is denoted as * p < 0.05 compared to the db/db control 
group. 

2.2. Treatment with CPEF Decreases Hepatic Lipid Accumulation 
Histological analysis of Hematoxylin and Eosin (H&E)-stained liver sections showed 

reduced intracellular fat vacuoles in CPEF-treated db/db mice compared to their un-
treated db/db controls (Figure 2A). Quantification using Image J showed an approxi-
mately 31.9% decrease in lipid accumulation in CPEF-treated mice (17.77 ± 5.88% vs. 26.11 
± 6.37%, p < 0.001) (Figure 2B). 

Figure 1. Treatment with CPEF increased UCP1 and PPARα expression in brown adipose tissue of
db/db mice. (A) Representative western blots of UCP1, PPARα, and β-tubulin in brown adipose
tissue of db/+ mice, db/db mice and db/db mice treated with CPEF. (B,C) Quantitative protein
expression of UCP1 and PPARα. Mice were treated with the vehicle control or CPEF (351.5 mg/kg)
daily for 28 days. Protein expression was normalised to β-tubulin and data are expressed as a
percentage relative to db/+ mice, which was set at 100%. Data are represented as the mean ± SD
(n = 6). Statistical significance between the groups is denoted as * p < 0.05 compared to the db/db
control group.

2.2. Treatment with CPEF Decreases Hepatic Lipid Accumulation

Histological analysis of Hematoxylin and Eosin (H&E)-stained liver sections showed
reduced intracellular fat vacuoles in CPEF-treated db/db mice compared to their untreated
db/db controls (Figure 2A). Quantification using Image J showed an approximately 31.9%
decrease in lipid accumulation in CPEF-treated mice (17.77 ± 5.88% vs. 26.11 ± 6.37%,
p < 0.001) (Figure 2B).
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Mice were treated with the vehicle control or CPEF (351.5 mg/kg) daily for 28 days. Data are repre-
sented as the mean ± SD (n = 6–8). Fat accumulation is indicated by black arrows. Statistical signifi-
cance between the groups is denoted as **** p < 0.0001 compared to the db/db control group. 
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Figure 2. Histological assessment of the liver morphology and lipid accumulation using Hematoxylin
and Eosin (H&E) staining. (A) Representative images of H&E-stained liver sections of db/+ mice,
db/db mice, and db/db mice treated with CPEF. (B) Image J quantification of lipid content. Mice
were treated with the vehicle control or CPEF (351.5 mg/kg) daily for 28 days. Data are represented
as the mean ± SD (n = 6–8). Fat accumulation is indicated by black arrows. Statistical significance
between the groups is denoted as **** p < 0.0001 compared to the db/db control group.

2.3. Treatment with CPEF Increases Hepatic PPARα Expression

A 2.2-fold increase in PPARα expression was observed in the livers of CPEF-treated
db/db mice compared to their untreated db/db control mice (158.60 ± 35.77% vs.
72.47 ± 38.70%, p < 0.01) (Figure 3A,B).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 17 
 

 

 
Figure 3. Treatment with CPEF increases hepatic PPARα expression in db/db mice. (A) Representa-
tive western blots of PPARα and β-tubulin in the liver of db/+ mice, db/db mice, and db/db mice 
treated with CPEF. (B) Quantitative protein expression of PPARα. Mice were treated with the vehi-
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0.68 ± 0.22 µmol/mg, p = 0.07) (Figure 4). Lipid peroxidation could not be quantified in the 
brown adipose tissue due to the limited amount of tissue sample available. Protein car-
bonylation in the brown adipose tissue was 1.2-fold lower in CPEF-treated db/db mice 
compared to untreated db/db control mice (0.29 ± 0.07 vs. 0.36 ± 0.05 nmol/mg, p = 0.06) 
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Figure 3. Treatment with CPEF increases hepatic PPARα expression in db/db mice. (A) Represen-
tative western blots of PPARα and β-tubulin in the liver of db/+ mice, db/db mice, and db/db
mice treated with CPEF. (B) Quantitative protein expression of PPARα. Mice were treated with
the vehicle control or CPEF (351.5 mg/kg) daily for 28 days. Protein expression was normalised to
β-tubulin and data are expressed as a percentage relative to db/+ mice, which was set at 100%. Data
are represented as the mean ± SD (n = 6). Statistical significance between the groups is denoted as
** p < 0.01 compared to the db/db control group.
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2.4. Effect of CPEF Treatment on Lipid Peroxidation and Protein Oxidation

Lipid peroxidation levels tend to be lower in CPEF-treated db/db mice compared to
untreated db/db control mice, given a 1.6-fold lower hepatic MDA content (0.43 ± 0.22
vs. 0.68 ± 0.22 µmol/mg, p = 0.07) (Figure 4). Lipid peroxidation could not be quantified
in the brown adipose tissue due to the limited amount of tissue sample available. Protein
carbonylation in the brown adipose tissue was 1.2-fold lower in CPEF-treated db/db mice
compared to untreated db/db control mice (0.29 ± 0.07 vs. 0.36 ± 0.05 nmol/mg, p = 0.06)
(Figure 5A), whereas no differences were observed in the liver (p = 0.59) (Figure 5B).
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Figure 6 provides the binding scores of CPEF phenolic compounds and CL-316,243 
(used as a positive control for UCP1 ligand) for the UCP1-complex. When compared to 
CL-316,243 (−7.6 kcal/mol), the CPEF phenolic compounds, 3-β-D-glucopyranosyl-4-O-β-
D-glucopyranosyliriflophenone (−8.1 kcal/mol), 3-β-D-glucopyranosyliriflophenone (−8.0 
kcal/mol), hesperidin (−8.8 kcal/mol), and neoponcirin (−7.9 kcal/mol) demonstrated im-
proved binding affinities to UCP1, with the hesperidin-UCP1 complex exhibiting the 

Figure 4. The effect of CPEF treatment on lipid peroxidation in the liver of db/db mice. Mice
were treated with the vehicle control or CPEF (351.5 mg/kg) daily for 28 days. Lipid peroxidation
was assessed by quantifying the malondialdehyde (MDA) content using TBARS assay in the liver
homogenates and normalised to protein content (µmol/mg protein). Data are represented as the
mean ± SD (n = 6–8). Statistical significance between the groups is denoted as * p < 0.05 compared to
the db/db control group.
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Figure 5. The effect of CPEF treatment on protein oxidation in the brown adipose tissue and liver of
db/db mice. Mice were treated with the vehicle control or CPEF (351.5 mg/kg) daily for 28 days.
Protein oxidation in the brown adipose tissue (A) and liver (B) was quantified using the protein
carbonyl kit and normalised to protein content (nmol/mg protein). Data are represented as the
mean ± SD (n = 6–8). Statistical significance between the groups is denoted as * p < 0.05 compared to
the db/db control group.
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2.5. Prediction of Compounds Responsible for the Increased Expression of UCP1 and PPARα,
Elicited through CPEF

Figure 6 provides the binding scores of CPEF phenolic compounds and CL-316,243
(used as a positive control for UCP1 ligand) for the UCP1-complex. When compared to
CL-316,243 (−7.6 kcal/mol), the CPEF phenolic compounds, 3-β-D-glucopyranosyl-4-O-
β-D-glucopyranosyliriflophenone (−8.1 kcal/mol), 3-β-D-glucopyranosyliriflophenone
(−8.0 kcal/mol), hesperidin (−8.8 kcal/mol), and neoponcirin (−7.9 kcal/mol) demon-
strated improved binding affinities to UCP1, with the hesperidin-UCP1 complex exhibiting
the highest binding score. The mangiferin-UCP1 complex (−7.6 kcal/mol) exhibited the
same binding score as the CL-316,243-UCP1 complex (−7.6 kcal/mol), while the binding
affinities for vicenin-2 (−7.2 kcal/mol) and isomangiferin (−7.0 kcal/mol) were less than
that of CL-316,243 (Figure 6).
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Figure 6. In silico binding affinity scores and superimposed docked complexes of CPEF phenolic
compounds bound to target proteins, PPARα (left) and UCP1 (right). The experimental standard,
fenofibrate, docked to PPARα with a binding energy of −8.4 kcal/mol, while neoponcirin and
hesperidin docked with binding affinities of −9.8 kcal/mol and −8.4 kcal/mol, respectively. The
known drug, CL-316,243, bound to the active site of UCP1 with a docking score of −7.6 kcal/mol,
while hesperidin docked with a binding affinity of −8.8 kcal/mol.

For the PPARα complex (Figure 6), hesperidin (−8.4 kcal/mol) showed similar binding
affinities to fenofibrate (−8.4 kcal/mol, used as a positive control for PPARα ligand), whilst
neoponcirin bound to PPARα with a docking score of −9.8 kcal/mol. The binding score
of 3-β-D-glucopyranosyl-4-O-β-D-glucopyranosyliriflophenone (−6.3 kcal/mol), 3-β-D-
glucopyranosyliriflophenone (−6.3 kcal/mol), isomangiferin (−6.0 kcal/mol), mangiferin
(−4.5 kcal/mol), and vicenin-2 (−2.9 kcal/mol) were lower than that of the fenofibrate-
PPARα complex (Figure 6).

To further validate the docking scores, ligand interaction plots were analysed (Table 1)
to elucidate the intermolecular interactions that stabilised the above-mentioned compounds
within the active sites of UCP1 and PPARα. When compared to CL-316,243, interaction plot
analysis revealed that the optimally docked UCP1 compounds of CPEF formed conserved
intermolecular interactions with Lys38, Val39, Arg140, Gly45, Pro179, and Phe240 (Table 1).
These conserved residues indicate that the compounds, hesperidin, 3-β-D-glucopyranosyl-4-
O-β-D-glucopyranosyliriflophenone, 3-β-D-glucopyranosyliriflophenone, and neoponcirin
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interact with UCP1 in a similar binding mode as CL-316,243. It was interesting to note
that hesperidin formed the greatest number of hydrogen bonds with the surrounding
residues (average bond length of 2.91 Å), thus indicating increased stability with the active
site (Table 1). It was also interesting to note that Glu46 of UCP1 formed three stabilising
hydrogen bonds with the hydroxyl groups of hesperidin (Table 1).

The PPARα interaction plot analysis (Table 1) revealed conserved intermolecular
interactions in the neoponcirin, hesperidin, and fenofibrate complexes (Thr279, Met320,
Leu321, Cys276, Ile354, Phe273, His440, Phe318, Ile317, Met355, and Ser280). The binding
affinities of hesperidin and neoponcirin were validated by the hydrophobic interactions
generated with 19 surrounding PPARα residues, compared to the 9 interacting residues
identified in the fenofibrate-PPARα complex (Table 1).

Table 1. Molecular docking scores and ligand interaction plot analysis of CPEF compounds bound to
UCP1 and PPARα.

Compound Name Hydrophobic Interactions Hydrogen Bond (Length-Å)

UCP1

CL-316,243 Lys38, Val39, Arg40, Gln44, Gly45, Val139,
Arg183, Pro179, Lys237 Glu46 (2.85), Arg140 (3.07/3.14)

Hesperidin Gly47, Ile241, Arg140, Val39, Gly176,
Asn180, Pro179, Phe240

Arg183 (2.80), Gly45 (2.78), Ala143 (2.81),
Gln144 (3.22), Glu168 (2.81), Gln48
(2.88/3.10), Glu46 (2.83/3.01/2.87)

3-β-D-glucopyranosyl-4-O-β-D-
glucopyranosyliriflophenone

Ala143, Lys38, Val39, Glu46, Arg40,
Gly45, Arg140, Thr172, Glu168, Gly47,

Phe240, Ile241

Thr36 (3.10), Gln48 (3.18), Gln144
(3.13/2.27)

3-β-D-glucopyranosyliriflophenone Lys38, Val39, Glu46, Gly45, Arg40, Gly45,
Ala143, Phe240

Gln48 (3.12/2.93), Thr36 (2.93), Arg140
(3.02), Asp35 (2.99)

Neoponcirin
Lys350, Val139, Pro179, Val39, Phe240,
Gly47, Ile241, Leu244, Thr172, Gln247,

Lys175, Val39

Arg183 (3.24), Arg140 (2.89/3.21), Arg40
(2.92), Ala143 (2.96), Glu46 (3.04)

PPARα

Fenofibrate Thr279, Met320, Leu321, Cys276, Ile354,
Phe273, His440, Phe318, Ile317 Met355 (3.35), Ser280 (3.29), Thr283 (2.79)

Neoponcirin

Phe218, Met320, Thr283, Leu321, Ile317,
Phe318, Ser280, His440, Tyr314, Ile354,

Met355, Leu347, Phe351, Ile272, Phe273,
Cyc276, Glu269, Thr279, Met330

Asn219 (2.80), Glu286 (3.05), Met220
(3.19/3.27)

Hesperidin

Phe218, Met320, Ile317, Leu321, Thr283,
Ser280, Phe318, Tyr314, Cys276, Phe273,
Glu269, Ile354, Leu347, Ile272, Leu344,

Phe351, Met355, Met330, Thr279

Met220 (3.20), Asn219 (2.83), Glu286
(3.05), His440 (3.03)

3. Discussion

Exploring the potential of plant polyphenols to serve as anti-obesity therapeutics
is attracting global interest. Previously, we reported that a crude polyphenol-enriched
fraction of C. intermedia (CPEF) exhibited anti-obesity effects in vitro and in vivo [13],
however, the mechanisms underlying these effects were not elucidated. In the present
study, we demonstrated that treatment of obese, diabetic db/db mice with CPEF increased
the expression of UCP1 and PPARα in the brown adipose tissue, which was accompanied
by decreased lipid accumulation and increased PPARα expression in the liver. Moderate
improvements in oxidative stress were also observed in these tissues.

Compared to the control db/+ mice, decreased expression of UCP1 in the brown adi-
pose tissue of obese, diabetic db/db mice, was restored after CPEF treatment. UCP1 is an
inner membrane protein that uncouples the mitochondrial respiratory chain from oxidative
phosphorylation by catalysing the leak of protons across the mitochondrial inner mem-
brane, inhibiting adenosine triphosphate production and dissipating energy as heat [20].
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Decreased UCP1 expression and thermogenesis are associated with obesity [21,22], thus,
the search for compounds, including C. intermedia polyphenols, that are able to upregulate
UCP1 expression and potentially induce thermogenesis [17,18,23] is escalating. Previously,
we provided some evidence to suggest that CPEF may increase Ucp1 messenger RNA
(mRNA) in subcutaneous and visceral WAT of db/db mice, although the increase was
small and not statistically significant [14]. Thus, a follow-up study to evaluate the “WAT
browning” potential of CPEF and C. intermedia polyphenols was warranted. This entailed
quantifying the expression of beige-specific molecular markers in WAT, as previously
reported for other phenolic compounds [24].

The expression of PPARα was increased in the brown adipose tissue of CPEF-treated
db/db mice. In brown adipose tissue, PPARα agonists directly induced Ucp1 mRNA
transcription, possibly via PPARγ Coactivator 1α (Pgc-1α) induction and PRD1-BF1-RIZ1
homologous domain-containing 16 (Prdm16) gene expression [25,26]. Thus, our results
support an important role of PPARα in regulating UCP1 and thermogenesis in brown
adipose tissue [27]. CPEF treatment also increased hepatic PPARα expression in db/db
mice, accompanied by decreased lipid accumulation. Low expression levels of PPARα
are associated with non-alcoholic fatty liver disease (NAFLD) in obese subjects [28–31].
Hepatocyte-specific knockdown of PPARα leads to hepatic steatosis by impairing hepatic
and whole-body fatty acid homeostasis and increasing hepatic and plasma triglyceride, free
fatty acid, and cholesterol levels [32]. Fenofibrate, a selective PPARα agonist, stimulates
hepatic β-oxidation and reverses hepatic steatosis in high-cholesterol and fructose-enriched
diet fed models [33,34].

Others have similarly reported that plant polyphenols may offer potential to ameliorate
NAFLD by reducing fat storage in the liver, inhibiting inflammation, activating autophagy,
increasing the expression of genes involved in lipid oxidation including PPARα, and
modulating mitochondrial bioenergetics and lipogenesis [35–42]. The xanthone, mangiferin,
and the flavanone, hesperidin, both present in substantial quantities in CPEF [13], have
been shown to improve hepatic steatosis by reducing the accumulation of lipid droplets
and increasing the expression of genes and proteins involved in lipid oxidation [39,41,42],
further supporting the ameliorative properties of CPEF against obesity and hepatic lipid
accumulation. Future studies measuring hepatic steatosis using techniques such as Oil Red
O staining or hepatic triglyceride quantification [43] in response to CPEF treatment are
warranted.

The antioxidant properties (i.e., decreased intracellular reactive oxygen species pro-
duction, increased antioxidant enzyme activity, and reduced oxidative DNA damage,
protein oxidation, and lipid peroxidation) of Cyclopia, mangiferin and hesperidin, are
widely reported [44–49]. In our study, CPEF moderately improved lipid peroxidation
and protein oxidation, the markers of oxidative stress damage. Similarly, other studies
reported improvements in lipid peroxidation in the liver of obese rodents treated with
hesperidin [50,51], while there are no reports on brown adipose tissue.

As mangiferin and hesperidin were previously shown to potentially increase UCP1
expression and induce thermogenesis, it would be worthwhile to evaluate the efficacy of the
other CPEF polyphenols on inducing UCP1 expression and thermogenesis. However, using
high performance counter-current chromatography (HPCCC) fractionation to separate
CPEF into four major fractions, predominantly containing 3-β-D-glucopyranosyl-4-O-β-D-
glucopyranosyliriflophenone (fraction 1), hesperidin (fraction 2), mangiferin (fraction 3),
and neoponcirin (fraction 4), we previously showed that these fractions exhibited varying
anti-obesity effects, but they were less effective than CPEF [52]. As such, the elucidation of
the phenolic compounds that might be responsible for the increased expression of UCP1
and PPARα in CPEF-treated db/db mice was assessed, using molecular docking analysis.
Hesperidin and neoponcirin had the highest binding affinities for UCP1 and PPARα, respec-
tively. The docking scores of hesperidin and neoponcirin were even higher than CL-316,243
and fenofibrate, which are commonly used as experimental controls to activate UCP1 and
PPARα expression, respectively [53,54]. This was validated by stabilising intermolecular
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interactions within the active sites of UCP1 and PPARα, when complexed with these com-
pounds. Based on the molecular docking and ligand interaction plot analyses it can be
deduced that hesperidin and neoponcirin might be responsible for exerting the increased
UCP1 and PPARα expression in response to treatment with CPEF. 3-β-D-glucopyranosyl-
4-O-β-D-glucopyranosyliriflophenone and 3-β-D-glucopyranosyliriflophenone also had
higher binding affinities for UCP1 than CL-316,243. Further investigations, such as biolog-
ical experiments to validate in silico molecular docking analysis data are necessary and,
in this case, to deduce that the increased expression levels of UCP1 and PPARα by CPEF
treatment are mediated by hesperidin and neoponcirin.

A strength of our study is the use of obese, diabetic female db/db mice. Despite the
disproportionally higher rates of obesity in females compared to males [3,4], the major-
ity of obesity studies in rodents are conducted in males due to concerns that the female
estrous cycle makes female models intrinsically more variable than male models [55,56].
Gender-specific metabolic profiles in response to treatment have been reported in animal
models [56], therefore it is important that the effects of the CPEF extract observed in this
current study should be confirmed in male db/b mice. The lack of positive controls such
as β3-adrenergic receptor (CL-316,243), PPARα (fenofibrate), and PPARγ (rosiglitazone)
agonists with known potential to activate UCP1 and PPARα expression, induce thermoge-
nesis and fatty acid oxidation, and demonstrate anti-obesity effects in rodents is another
limitation [57–59]. Future studies to assess brown adipose tissue morphology and eluci-
date the mechanisms that underlie UCP1 induction in BAT are warranted. In addition to
UCP1 expression, quantification of other thermogenic markers such as PRDM16, PGC-1α,
neuregulin 4 (NRG4), and fibroblast growth factor 21 (FGF21) is warranted.

4. Materials and Methods
4.1. Preparation of CPEF

CPEF is the organic fraction, obtained by liquid-liquid partitioning between n-butanol
and water of a freeze-dried, 40% methanol-water extract of unfermented Cyclopia intermedia,
as described previously [13]. This includes quantification of the major phenolic compounds
in CPEF; the benzophenones, 3-β-D-glucopyranosyl-4-O-β-D-glucopyranosyliriflophenone,
and 3-β-D-glucopyranosyliriflophenone; the xanthones, mangiferin, and isomangiferin; the
flavanones, hesperidin, neoponcirin, and eriodictyol-O-deoxyhexose-O-hexose; and the
flavone, vicenin-2. The xanthones and flavanones were present at the highest concentrations
(≥ 2 g/100 g CPEF) [13].

4.2. Animals and Treatment Protocol

The animal study has been described previously and only the highest CPEF treatment
dose (351.5 mg/kg body weight) was used in this study, as it significantly reduced body
weight gain compared to the lower dose (70.5 mg/kg body weight) [13]. Briefly, six-to-
seven-week-old female homozygous C57BL/KsJ-Leprdb/db mice and their lean heterozy-
gous counterparts, C57BL/KsJ-Leprdb/+ mice were purchased from Jackson Laboratory
(Bar Harbor, ME, USA) and housed at the Primate Unit and Delft Animal Centre (PUDAC)
of the South African Medical Research Council (Tygerberg, South Africa), in individual
cages, under controlled environmental conditions (23–25 ◦C; ± 55% humidity; 15–20 air
changes per hour; 12-h light/dark cycle). The animals were provided with a standard labo-
ratory diet and water, ad libitum. A total of 21 mice were divided into three groups (n = 6–8)
as follows: normal control (db/+) and the obese, diabetic control (db/db) mice, which were
treated with a vehicle control (1% DMSO solution prepared in distilled water); as well as
the db/db mice group administered with CPEF (351.5 mg/kg body weight prepared in
1% DMSO) by oral gavage (0.2–0.5 mL volume per body weight) for 28 days [13]. On com-
pletion of the treatment period, the mice were anesthetised by inhalation of 2% fluothane
and 98% oxygen (AstraZeneca Pharmaceuticals, Johannesburg, South Africa). Liver tissue
was collected for histological analysis, while interscapular brown adipose tissue (iBAT) [60]
and liver tissue were snap frozen in liquid nitrogen for analysis of protein expression and
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oxidative stress markers. The study was approved by the Ethics Committee for Research
on Animals, South African Medical Research Council (ECRA approval number: 10/13) and
the Research Ethics Committee: Animal Care and Use of Stellenbosch University (approval
number: SU-ACUM13-00028), and experiments were conducted in accordance with the
internationally accepted principles for laboratory animal use and care.

4.3. Histology

After termination and excision, liver tissue sections were immediately fixed in 10%
formalin (Merck-Millipore, Billerica, MA, USA), processed overnight using a Leica TP
1020 automated processor (Leica Biosystems, Buffalo Grove, IL, USA), and thereafter,
embedded in paraffin wax blocks. Paraffin-embedded tissues were sliced into 5-µm sections,
fixed onto aminopropyltriethoxysilane coated glass slides (Sigma-Aldrich, St. Louis, MO,
USA), then deparaffinised, rehydrated, and stained with hematoxylin and eosin (H&E)
(Merck-Millipore). Ten stained liver sections were randomly captured using a Nikon
Eclipse Ti inverted microscope (Tokyo, Japan) and NIS Elements imaging software at 20×
magnification. The lipid droplets in H&E-stained liver sections were quantified using
ImageJ software (Version j 1.52r, US National Institutes of Health, Bethesda, MD, USA) [61],
which calculates the area occupied by the fat vacuoles relative to the total area of the
liver section.

4.4. Protein Extraction and Western Blot Analysis

Approximately 100 mg of the snap frozen iBAT and liver tissues were homogenised
in tissue lysis buffer (Tissue Extraction Reagent I, Invitrogen, Carlsbad, CA, USA) sup-
plemented with 1 mM phenylmethane sulfonyl fluoride (PMSF), protease (2 tablets per
100 mL lysis extraction reagent) and phosphatase (10 tablets per 100 mL lysis extraction
reagent) inhibitor tablets (Roche Diagnostics, Basel, Switzerland), using a Tissue lyser and
pre-cooled adapters (Qiagen, Hilden, Germany) at 25 Hz for 1 min. Cells were homogenised
by alternating between 1 min in the Tissue lyser and 1 min on ice, repeated 5 times for
the iBAT and 3 times for the liver tissues. Homogenates were centrifuged at 15,890 × g
for 15 min at 4 ◦C, whereafter the supernatants were collected. This step was repeated
twice. Protein concentrations were measured using the RC DC kit (BioRad Laboratories
Inc., Hercules, CA, USA), which is compatible with reducing agents and detergents present
in the tissue lysis buffer. Thirty micrograms of heat denatured proteins were resolved by
12% sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and transferred to
polyvinylidene fluoride (PVDF) membranes using a Trans-Blot® Turbo™ Transfer System
(BioRad). Membranes were blocked, using 5% fat-free milk in Tris-buffered saline (pH 7.2)
supplemented with 0.1% Tween® 20 (TBST) applied at room temperature for up to 3 h,
and incubated with anti-UCP1 (1:10,000) and anti-PPARα (1:1000) antibodies (Abcam,
Cambridge, MA, USA) at 4 ◦C overnight, according to the manufacturer’s instructions.
Thereafter, membranes were incubated with a 1:4000 dilution of horseradish peroxidase
labelled anti-rabbit (Santa Cruz, Dallas, TX, USA) conjugated secondary antibody at room
temperature for 90 min. Beta (β)-tubulin (1:1000) (Cell Signalling Technology, Beverly, CA,
USA) was used as a loading control to normalise protein expression. Proteins of interest
were detected using a Clarity Western ECL Substrate kit (BioRad) and Chemidoc-XRS
imager and quantified using Quantity One® software Version 4.4 (Bio-Rad).

4.5. Protein Oxidation

Protein oxidation was quantified using a protein carbonyl kit (Sigma-Aldrich) accord-
ing to the manufacturer’s instructions. Briefly, samples were diluted to a protein concentra-
tion of 10 mg/mL and the carbonyl content was measured by quantifying dinitrophenyl
hydrazone adducts, which form through the derivatisation of protein carbonyl groups with
2,4-dinitrophenylhydrazine. Absorbance was measured at 375 nm on a SpectraMax® i3x
Multi-Mode Microplate reader using the SoftMax Pro 7 Software (Molecular Devices, San
Jose, CA, USA). The Bradford and RC DC protein assays are not compatible with this assay
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due to interference of guanidine in the samples; therefore, protein carbonyl content was
normalised to protein content using the Pierce™ Bicinchoninic Acid (BCA) protein assay
kit according to the manufacturer’s instructions (Thermo Fisher Scientific™, Rockford, IL,
USA), and results were expressed as nmol carbonyl/mg protein.

4.6. Lipid Peroxidation

Lipid peroxidation in the liver was assessed using the OxiSelect™ thiobarbituric acid
reactive substances (TBARS) assay kit according to the manufacturer’s instructions (Cell
Biolabs, San Diego, CA, USA). Briefly, approximately 100 mg of tissue was suspended in
phosphate buffered saline (PBS) containing 0.05% butylated hydroxytoluene solution (to
prevent tissue oxidation) and homogenised at 25 Hz using a Tissue lyser and pre-cooled
adapters (Qiagen), by alternating between 1 min in the Tissue lyser and 1 min on ice, and
repeated 3 times, followed by centrifugation at 10,000 × g for 5 min at 4 ◦C to collect the
supernatant. The malondialdehyde (MDA) content, a marker of lipid peroxidation, was
quantified at 490 nm using a BioTek® ELx800 plate reader equipped with Gen 5® software
(BioTek Instruments Inc., Winooski, VT, USA). The MDA content was normalised to protein
content, quantified using the Bradford reagent (BioRad), and results were expressed as
µmol MDA/mg protein.

4.7. Molecular Docking

Molecular docking studies were conducted to further elucidate the phenolic com-
pounds that might be responsible for the increased expression of UCP1 and PPARα in
CPEF-treated db/db mice. Seven of the eight major phenolic polyphenols identified in
CPEF were used for the molecular docking procedure. The flavanone, eriodictyol-O-
deoxyhexose-O-hexose, was excluded due to the unknown position and the identities of the
sugar moieties in the molecular structure. The 2-D structures of the compounds were then
drawn using ChemDraw (Version 8.0, PerkinElmer Informatics, Waltham, MA, USA) and
optimised using Avogadro (Version 1.2) [62], in which partial charges were added using
the Ghemical force field, followed by energy minimisation to obtain the optimal geometry
for each compound.

The 3-D models of Mus-musculus UCP1 and PPARα were modelled using the Swiss-
Model online tool [63]. Both UCP1 and PPARα were homology modelled for this study
due to the lack of Mus-musculus crystal structures. The template used to generate the UCP1
model was PDB ID 2LCK, whilst the templates used for the PPARα model were PDB ID’s
3DZY and 1K7L. Models were validated using the MolProbity online server [64]. Using
UCSF Chimera (Version 1.15) [65], the protein structures were optimised for molecular
docking by removing the water molecules and all non-standard residues. The molecular
docking simulation was then carried out using Autodock Vina software Version 1.2.0 [66],
with the docking grid box co-ordinates presented in Table 2. Based on the Autodock Vina
scoring technique, the docked complexes were ranked on binding affinity score and the root
mean square deviation from the original structural pose of each compound. All complexes
were superimposed to ensure the validation of the docking procedure and binding site
(Figure S1). Following the molecular docking procedure, the predicted intermolecular
interactions, stabilising the compound within the active site of each protein, were assessed
using the ligplot application of the Ligplus software Version 2.2 [67]. The intermolecular
interactions identified in each docked complex, comprising hydrophobic interactions and
hydrogen bonds, were analysed and compared to CL-316,243 and fenofibrate (experimental
control standards), which are compounds previously reported to experimentally activate
UCP1 and PPARα expression, respectively [53,54].
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Table 2. Gridbox coordinates of the molecular docking simulation.

Target Protein Description Centre (X, Y, Z) Dimensions of Grid Box (X, Y, Z)

UCP1 27.286, 34.659, 28.111 68, 72, 62
PPARα 12.619, −11.582, −29.582 24, 20, 36

4.8. Statistical Analysis

Data are presented as the mean ± standard deviation (SD) for 6–8 mice per group.
Statistical analysis was conducted using Graph Pad Prism software (Graph Pad Software
Inc. Version 7.03, San Diego, CA, USA). Statistical differences between the groups were
determined by one-way analysis of variance (ANOVA) followed by Tukey multiple com-
parisons post-test. Non-parametric data were analysed using the Kruskal–Wallis test
followed by Dunn’s multiple comparisons post-test. For all statistical tests, p < 0.05 were
considered significant.

5. Conclusions

The study showed that CPEF increased UCP1 and PPARα expression in the brown
adipose tissue, and increased PPARα expression in the liver of obese, diabetic female
db/db mice. These results suggest that CPEF may exert its anti-obesity effects as previously
reported [13] by promoting thermogenesis and fatty acid oxidation via increased UCP1 and
PPARα expression. Further mechanistic studies are needed to fully elucidate the potential
of CPEF to induce UCP1 and PPARα expression, and subsequently activate thermogenesis
and fatty acid oxidation. Based on molecular docking and ligand interaction plot analyses,
the CPEF flavanones, hesperidin and neoponcirin, showed the optimal binding affinities
with UCP1 and PPARα, suggesting that the two polyphenols might be responsible for the
increased UCP1 and PPARα expression exerted by CPEF. Thus, our findings support further
investigations to explore the potential of developing CPEF and its major polyphenols as
nutraceuticals for target-specific anti-obesity therapeutics.
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Abbreviations
BAT brown adipose tissue
CPEF crude polyphenol enriched fraction of C. intermedia
CVD cardiovascular disease
DMSO dimethyl sulfoxide
H&E hematoxylin and eosin
HSL hormone-sensitive lipase
iBAT interscapular brown adipose tissue
MDA malondialdehyde
PMSF phenylmethane sulfonyl fluoride
PPARα peroxisome proliferator-activated receptor alpha
PPARγ peroxisome proliferator-activated receptor gamma
PVDF polyvinylidene fluoride
SDS sodium dodecyl sulfate
T2D type 2 diabetes
TBARS thiobarbituric acid reactive substances
TBST tris-buffered saline Tween 20
UCP1 uncoupling protein 1
UCP3 uncoupling protein 3
WAT white adipose tissue
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