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Abstract: Alzheimer’s disease (AD) is the most frequent cause of cognitive impairment in middle-
aged and older populations. There is a lack of drugs that demonstrate significant efficacy in AD, so
the study of the pathogenesis of AD is of great importance. More efficacious interventions are needed,
as reflected by our population’s fast aging. Synaptic plasticity is the capacity of neurons to adjust
their connections, and it is strongly tied to learning and memory, cognitive function, and brain injury
recovery. Changes in synaptic strength, such as long-term potentiation (LTP) or inhibition (LTD),
are thought to represent the biological foundation of the early stages of learning and memory. The
results of numerous studies confirm that neurotransmitters and their receptors play an important
role in the regulation of synaptic plasticity. However, so far, there is no definite correlation between
the function of neurotransmitters in aberrant neural oscillation and AD-related cognitive impairment.
We summarized the AD process to understand the impact of neurotransmitters in the progression
and pathogenesis of AD, including the current status of neurotransmitter target drugs, and the latest
evidence of neurotransmitters’ function and changes in the AD process.
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1. Alzheimer’s Disease’s Histopathological Variation

Epidemiological surveys have revealed that the prevalence of cognitive dysfunction in
adults aged 65 and older is close to 40%, and that the prevalence grows exponentially with
age. AD is a progressive neurodegenerative illness, characterized by extensive brain atro-
phy, neuronal cell death, neurogenic fiber tangles, and protein amyloidosis. Eighty-seven
percent of AD patients have cognitive impairment before the onset of dementia symptoms.
Researchers found that the main cause of the cognitive deficit that characterizes AD and
aging was the loss of neurons and the hypothesis of an imbalance in the cellular and molec-
ular mechanisms of synaptic plasticity underlying this deficit is currently widely accepted.
Patients acquire cognitive dysfunction and secondary lesions in the neurological, urinary,
and motor systems as AD develops, resulting in gradual behavioral loss. It is a progressive
neurodegenerative disease, characterized by the loss of memory, multiple cognitive impair-
ments and changes in the person’s personality and behavior [1]. Several hypotheses have
been proposed to explain the pathogenesis of AD, including mitochondrial abnormalities
and inflammatory responses, and the hypotheses of the accumulation of amyloid-beta
(Aβ) and phosphorylated tau are widely accepted. The amyloid precursor protein (APP)
gene encodes Aβ, an evolutionarily conserved protein generated during normal brain
metabolism. APP is an integral type I transmembrane protein with a large extra-cellular
glycosylated N-terminal domain and a shorter cytoplasmic C-terminal domain, which is
critical for neuronal development and function [2]. Physiologically, CNS can maintain the
balance of Aβ synthesis and clearance, but when it collapses, for example, the modification
enzyme cleaves at the incorrect place, and causes alterations in the sequence and structure
of Aβ and the deposition of large amounts of amyloid in the interstitial space of neurons
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will form the classic pathological feature of AD, Aβ amyloid plaques. There are three
forms Aβ protein, which are as follows: soluble Aβ protein, oligomeric Aβ protein, and
Aβ amyloid plaques. These three variants of Aβ proteins may cause neuronal death via
diverse mechanisms, including mitochondrial apoptosis, neuroinflammatory response, and
oxidative stress response [3]. Soluble Aβ has been shown in studies to cause more serious
pathological damage to neurons; soluble Aβ may bind to neurosynaptic receptors, such
as NMDAR (N-methyl-D-aspartic acid receptor), to affect their normal signaling, cause
continuous calcium ion inward flow and neuronal hyperactivation, and form a vicious
cycle that eventually leads to synaptic dysfunction, inflammation and cell death [4]. NFTs
(neurofibrillary tangles) are primarily intra-neuronal filamentous inclusions and consist
of aggregated abnormal hyperphosphorylated tau proteins [5]. Tau tangles, the hallmark
of AD pathology, can bind to synaptic vesicle surface proteins, causing increased vesicle
aggregation at the synapse’s front, limited movement, and decreased release [6]. The tau
protein is a kind of microtubule-associated phosphoprotein predominantly expressed in
neuronal cells, mainly in axons, which is essential for the proper assembly, stabilization,
and functioning of a microtubule network. Tau also regulates axonal transport, drives
neurite outgrowth, and shapes the neuronal morphology of aberrantly misfolded and hy-
perphosphorylated tau proteins [7]. A synapse is the basic unit of information transfer and
functional connecting point between neurons. Hyperphosphorylated tau proteins in neu-
rons can cause neural dysfunction by interfering with microtubule stabilization and axonal
transport [8]. As an axonal cytoskeletal protein, synaptic tau engages in neuronal signaling
and synaptic plasticity under physiological conditions, which is produced in neurons
and attaches to axonal microtubules. However, under pathological situations, mutations
in tau or affinity alterations result in tau separation from axonal microtubules and their
subsequent mis-localization to synapses, interfering with intrasynaptic material transfer,
and the formation of protein hydrolase-insensitive neurofibrillary hyperphosphorylation
in neuronal axons [6]. Hyperphosphorylated tau is an essential pathological characteristic
of AD, and soluble Aβ protein can increase fibrillary hyperphosphorylation development
by promoting tau phosphorylation [9]. Tau has both soluble and polymeric phases, and
soluble tau can cause neurotoxicity and impair neuronal function [10]. The existing research
has generally concluded that Aβ amyloid and tau hyperphosphorylation are relatively
independent pathological changes, with soluble Aβ causing neuronal hyperexcitability
and tau inhibiting neuronal activity. Amyloid plaques form in the neocortex and spread
to deeper brain regions, whereas neurofibrillary hyperphosphorylation occurs in limbic
regions and spreads to the neocortex. However, there are studies that imply that, while
both pathogenic alterations in the neurological system of AD patients may be recognized,
their influence on the disease process and the relationship between the two should be
highly complicated, and may even result in two entirely different neuronal actions [11].
Many studies have indicated that abnormal Aβ accumulation can interfere with the GABA
inhibitory interneuron function, which can cause aberrant neuron activities and cognitive
dysfunction in animals. In addition, it can reduce synaptic transmission and overactivity of
neural networks, causing cognitive impairment in vivo. Furthermore, the current research
shows that Aβ peptides inhibit cholinergic neurotransmission [12].

There is evidence that shows the involvement of inflammation in AD, including
activated microglia within and surrounding senile plaques; the permeability of immune
cells and molecules through the blood–brain barrier (BBB) increases with aging, which leads
to the neurodegeneration observed in AD patients [13]. In physiological conditions, the
immune response is supposed to be terminated when the stimulating pathogen removed,
but this mechanism seems to be altered in AD processing and leads to chronic inflammation.

2. Neurotransmitter Abnormalities and Cognitive Dysfunction

Neurotransmitters are endogenous chemical messengers that transmit signals across
the synapse (between the neurons) and neuromuscular junctions [1]. Neurons in the CNS
can be classified by their different neurotransmitters into cholinergic, monoaminergic,
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glutamatergic or gamma-aminobutyric neurons. Monoaminergic neurons are further
classified into dopaminergic neurons and 5-hydroxytryptaminergic neurons. There is
now convincing evidence that many types of neurons contain and release two or more
different neurotransmitters called co-transmitters [14]. Neurotransmitters are stored in
vesicles within the cytoplasm of presynaptic neurons. Fast inter-neuronal signaling in
presynaptic neurons, evoked by their presynaptic action potential, can activate calcium
channel (VACC) openings and mediate Ca2+ entry into the nerve terminal. After that, the
transient intracellular uptick triggers vesicle exocytosis and neurotransmitter release [15].
Neurotransmitters bind to the postsynaptic membrane receptors and transmit signals to
next neuron [16]. Changes in the neurotransmitters’ synthesis, storage, transportation and
degradation can result in neuronal dysfunction, which contributes to AD-related dementia
(Figure 1).
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neurons that play important roles in AD. Cholinesterase inhibitors can raise the Ach level. Glutamate
receptor agonists could improve the symptoms of AD mice. Researchers have proven that monoamine
drugs and inhibitory GABAergic neuron medications can improve cognitive dysfunction in AD
patients. Aberrant mitochondria also affect neurotransmitter synthesis and release, and drugs that
target oxidative stress and apoptosis pathways reduce AD symptoms.

2.1. Cholinergic Neurons

Acetylcholine (ACh) is a neurotransmitter that is ubiquitous in both the CNS and
peripheral nervous system (Figure 1). The cholinergic system is involved in critical physio-
logical processes, such as attention, learning, memory, stress response, wakefulness and
sleep and sensory information [17]. ACh is synthetized from choline and acetyl coenzymes
by choline acetylase (ChAT) A in presynaptic neurons, which is then stored in vesicles
and broken down by acetylcholinesterase in the synaptic gap. The neurotransmitter is
transported by the vesicular acetylcholine transporter (VAChT) from the cytosol into synap-
tic vesicles [18]. ChAT’s activity is controlled by neuronal depolarization and the influx
of Ca2+, activated by the different protein kinase phosphatases. Ach can be delivered
to synaptic gaps and synaptic vesicles via VAChT. PKC can phosphorylate VAChT and
regulate its vesicle localization [19] to help deliver acetylcholine to the synaptic gap. VAChT
can attach to acetylcholine receptors in the postsynaptic membrane, where it is quickly
removed from the receptors [20]. Acetylcholine receptors are excitatory receptors that are
classified into the following two types: nicotinic acetylcholine receptors and muscarinic
receptors. Nicotinic ACh receptors are ion-gated receptor channels that are selective for
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cations. Following nicotinic receptor activation, a rapid cellular response is generated.
Muscarinic receptors are G protein-coupled receptors that are capable of modulating a wide
variety of ion channels. Acetylcholine binding to distinct subtypes of muscarinic receptors
stimulates different downstream signaling pathways, producing postsynaptic stimulation
or inhibition [21]. Cholinergic neurons can be found mostly in the limbic system of the CNS,
such as the hippocampus, amygdala, and hypothalamus, and play a key role in neuronal
growth and synaptic plasticity. Cholinergic antagonists can block human use-dependent
plasticity and are facilitated by acetylcholinesterase inhibitors [22].

Brain tissue from AD patients shows the reduction of ChAT, acetylcholine synthesis,
choline uptake and release, which are markers of cholinergic neuron degeneration and
cholinergic neurotransmission [23]. Cholinesterase inhibitors increase the availability of
acetylcholine at synapses in the brain and are one of the few drug therapies that have
been proven to be clinically useful in the treatment of AD dementia, thus validating the
cholinergic system as an important therapeutic target in the disease [17]. One of the first
theories that was proposed to explain the etiology of AD was the cholinergic hypothesis.
A multitude of cognitive processes, including exploration, rapid eye movement sleep,
learning, and memory, depend on the processing of the information needed by Ach.

The results of positron emission tomography demonstrated that nicotinic choline
receptors were dramatically diminished in the brains of AD patients, along with the severe
loss of cholinergic neurons and decline in ChAT activity and acetylcholine neurotransmitter
production [24]. Cognitive impairment is caused by a decrease in the body’s supply
of acetylcholine and disruption of the central cholinergic nerve system. Nearly all the
patients’ cortexes contained abnormal cholinergic neurons. Recent research implies that the
loss and dysfunction of cholinergic neurons are the initial signs of AD pathogenesis and
that these neurons are particularly vulnerable to amyloid accumulation [25]. Insufficient
amounts of Ach in the synaptic cleft can result from the death of cholinergic neurons and
decrease in ChAT activity. Changes in the acetylcholine levels in the synaptic cleft can
also directly affect Ca2+ levels in postsynaptic neurons because nicotinic receptors in the
hippocampus are extremely permeable to calcium. Ca2+ influx encourages postsynaptic
neuron excitement and accelerates synaptic plasticity, but the mechanism by which Ca2+

regulates synaptic plasticity is not yet fully understood [26].
Cholinesterase inhibitors and cholinergic receptor agonists are two types of medi-

cations that have been created based on the cholinergic hypothesis. Cholinergic neuro-
transmission is essential to impaired cognitive function in AD and adult-onset dementia
disorders. Cholinesterase inhibitors, such as donepezil and galantamine, can stop the
breakdown of Ach in the synaptic cleft and raise the amount of Ach [27]. The main drugs
currently used for the treatment of AD are acetylcholinesterase and cholinesterase inhibitors
(ChE-Is). The first ChE-I licensed for symptomatic treatment of AD was tacrine. The ChE-Is
currently available on the market are donepezil [28], rivastigmine and galantamine, as
tacrine is no longer in use, due to its hepatotoxicity [29–35], as we summarized in Table 1.

Table 1. Cholinesterase Inhibitors’ Pharmacotherapy in AD patients.

Author Type
Study Design and Patients

Dosage ConclusionNumber of
Patients Group

Stephen Z.
Levine et al.,

2021 [26]
Donepezil 2191 AD

patients
1339 female

and 852 male

Control group: 760
and experimental
group: 1431

Logistic modeling showed that
donepezil compared to placebo was
significantly positively associated
with membership in the improvers
class, and negatively with
high scorers.
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Table 1. Cont.

Author Type
Study Design and Patients

Dosage ConclusionNumber of
Patients Group

Jianping Jia et al.,
2019 [27] Donepezil 241 AD

patients
Mild to

moderate AD

Donepezil
5 mg/day for at
least 4 weeks.
All patients
received donepezil
10 mg/day for
20 weeks

Single-arm, prospective, multicenter
trial. Donepezil 10 mg/day treatment
can be tolerated and is also effective
in Chinese patients with
mild-to-moderate AD, and thus can
be used to treat these patients when
their response to donepezil 5 mg/day
treatment diminishes.

Litao Wang et al.,
2021 [25] Donepezil 90 AD patients

Control group (CG)
and experimental
group (EG).
Patients in CG
received donepezil
hydrochloride
treatment, and on
this basis, those in
EG received
additional RES
treatment

Compared with the CG after
treatment, the EG obtained
significantly higher rates, MMSE
scores, and FIM scores (p < 0.05) and
evidently lower clinical indicators
and ADAS-cog scores (p < 0.001), and
between the CG and EG, no obvious
difference in the total incidence rate
of adverse reactions was observed
after treatment (p > 0.05). Conclusion:
combining RES with donepezil
hydrochloride has significant clinical
efficacy in treating AD, which can
effectively improve patients’
inflammatory factor indicators,
promote their cognitive function, and
facilitate patient prognosis.

M. Gaudig et al.,
2014 [30] Galantamine 75 patients

55% women;
mean

ADAS-cog:
22.3; mean

age:
70.2 years

Total daily dose of
24 mg galantamine
at final visit

ADAS-cog/11, Bayer-ADL scale (self-
and caregivers’ ratings), 10-item NPI
and CGI-change, safety and
tolerability measures.
Galantamine was generally safe and
well tolerated during the 3-year
observation period. Cognition,
behavior, and activities of daily living
improved during the 12 months of
treatment. At the 3-year follow-up,
worsening of all outcomes was
measured; however, cognition
remained improved compared with
an untreated population.

U Richarz et al.,
2014 [30] Galantamine

661 AD
patients; 554

were assessed
for efficacy

Patients with
mild-to-moderate
AD received
flexible dosing of
galantamine
(16–24 mg/day)
during this study

Galantamine was regarded as
generally safe. Importantly, this study
revealed that galantamine improved
cognitive function above the
predicted level in 70% of the patients.
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Table 1. Cont.

Author Type
Study Design and Patients

Dosage ConclusionNumber of
Patients Group

Martin R.
Farlow et al.,

2013–2015
[31–42]

Rivastigmine 1014
patients

716 were
randomized to
13.3 mg/24 h
(N = 356) or
4.6 mg/24 h
(N = 360)
patch group

Severe Impairment Battery (SIB) and
AD Cooperative Study Activities of
Daily Living scale, Severe
Impairment Version and ADCS. The
13.3 mg/24 h patch demonstrated
superior efficacy to the 4.6 mg/24 h
patch on SIB and ADCS-ADL-SIV, a
without marked increase in AEs,
suggesting the higher dose patch has
a favorable benefit-to-risk profile in
severe AD.

Rivastigmine 1014
patients

716 were
randomized to
13.3 mg/24 h
(N = 356) or
4.6 mg/24 h
(N = 360)
patch group

A significant therapeutic effect of the
high- dose rivastigmine patch on
ADCS-CGIC response was observed.
The 13.3 mg/24 h patch was
identified as a predictor of
“improvement” or “improvement or
no change”. Patients with minimal
worsening/improvement/no change
after treatment initiation may be
more likely to respond to the
treatment following
long-term therapy.

Lifelong choline supplementation significantly reduced amyloid-β plaque load and
improved spatial memory in APP/PS1 mice, which were linked to the decrease in the amy-
loidogenic processing of APP, the reductions in disease-associated microglial activation, and
the downregulation of the α7nAch and σ1 receptors [36]. Memantine was potentiated by
acetylcholine agonists, either alone or in conjunction with it, which reversed scopolamine-
induced short-term memory deficits both in mono-treatments and in co-administration [37].
Although these drugs are the only available pharmacological treatments for dementia,
many controversies exist about the use of cholinesterase inhibitors in AD for their potential
risks regarding clinical treatment, including limited effectiveness and adverse events. In
the past two decades, most clinical trials have been stopped due to their serious adverse
effects and lack of therapeutic efficacy in Phase III [38], and up to 35% of trials are halted
due to adverse events. In addition, AChEI medications cannot alter the history of dementia,
and they can only delay the cognitive and functional decline [39]. Taking these situations
into account, several European countries no longer support drugs for dementia, hoping
the researchers and clinicians pay more attention to non-pharmacological approaches to
dementia care [40].

2.2. Glutamatergic Neurons

Researchers show that there is a link between the glucose and glutamate alterations
with age (Figure 1). The downregulation of the glucose utilization reduces the glutamate
levels in AD patients. Alterations in cerebral glucose and glutamate levels precede the
deposition of Aβ plaques. Glutamate is the most important excitatory neurotransmitter in
the CNS, a non-essential amino acid and the major excitatory neurotransmitter synthesized
from glucose [42]. The presynaptic terminal contains synaptic vesicles where glutamate is
stored and glutamate is released to the synaptic cleft upon electrical stimulation. The post-
synaptic compartment contains glutamate receptors, which are transmembrane proteins
responsible for transducing the glutamate signal from extracellular space [43]. Glutamate is
transported and released by vesicular glutamate transporters. The glutamate transporters-1
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(glutamate transporter-1) and glutamate–aspartate transporter are released into the synaptic
cleft by astrocytes [44], and a small part of them is re-taken into the presynaptic membrane,
where glutamine is synthesized under the action of glutamine synthetase. Glutamine
synthesized in astrocytes can be transported to the synaptic cleft through SNAT3/5, and
then transported to neurons by SNAT1/7/8, where glutaminase in neurons can convert it
into glutamic acid [45].

There are two kinds of glutamate receptors, metabotropic glutamate receptors (mGluRs)
and ionotropic glutamate receptors (iGluRs). iGluRs are ligand-gated ion channels that
produce excitatory glutamate-evoked currents, while metabotropic mGluRs are G protein-
coupled receptors (GPCRs) that control cellular processes via G protein signaling cascades.
iGluR and mGluR signaling has been well studied in isolation, which has revealed the
astonishing complexity within both systems [46]. AMPA-type receptors and NMDA-type
receptors are transmembrane proteins assembled from four large subunits, with each sub-
unit consisting of an extracellular N-terminal and ligand-binding domain, a transmembrane
pore-forming domain and an intracellular C tail. The subunits aggregate in the center to
form a channel for ion-selective permeability [47]. The majority of excitatory synaptic
transmission in the CNS is mediated by AMPA receptors (AMPARs). AMPARs are the
first receptors that react to glutamate, mediating fast excitatory transmission by allowing
the depolarization of the postsynaptic neuron through the entry of sodium and the exit of
potassium [48]. The most common forms of long-term synaptic plasticity at glutamatergic
synapses are triggered by the NMDA receptor, which can produce an influx of Ca2+ and
Mg2+, related to the excitement of synaptic plasticity. Hybrid tetramers of five core subunits
called kainate-type receptors can also contribute to both the induction and expression of
long-term and short-term forms of synaptic plasticity [49].

The damage of glutamatergic neurons is particularly evident in AD brains. Gluta-
matergic neurons are crucial for memory, synaptic plasticity and neuronal development.
Pathological accumulation of Glu makes it a potent neurotoxin. This is in part due to the
time-related exposure, overstimulating the postsynaptic response to cause an increase in the
entry of calcium into neurons [50]. The constant activation of AMPA and NMDA receptors
causes the continuous influx of Ca2+ into neurons, which induces calcium overload in
in vitro experiments [51]. In contrast to wild-type mice, AD model animals display lower
glutamate aminotransferase activity. Glutamate transporter expression was also downregu-
lated in the brains of AD patients. Glutamate and the metabolite N-acetyl-aspartamine were
shown to be reduced in the cortex and hippocampus of AD patients, affecting glutamate
metabolism and interfering with the repair and production of myelin [52]. At supraphys-
iological levels in neurons, glutamate may mediate its degenerative effects through the
hyperstimulation of the NR 2B subunit of NMDA receptors, causing the dysregulation
of the receptor and resulting in the upregulation of apoptotic regulatory proteins [53].
Increased NFT and amyloid deposition in the CA1 area have been linked to the increase
in glutamate levels in mouse cerebrospinal fluid. According to the electrophysiological
findings of a previous study, LTP was compromised in the experimental group [54]. The
hippocampus is the locus of synaptic plasticity and a critical location for the pathological
alterations associated with AD [55]. Synaptic Ca2+ influx in hippocampal pyramidal neu-
rons is decreased by Aβ oligomers, which accelerate neuronal cell death [56] and affect
neuronal synaptic plasticity by reducing dendritic spine density in the hippocampus and
impairing cognitive function in AD patients [57].

Clinical antidepressant and anxiolytic medications that operate on glutamate receptors
are frequently utilized. These medicines can act on ionotropic receptors such as NMDA
receptors or metabotropic receptors [41]. Numerous studies have demonstrated that these
two classes of medications can somewhat alleviate cognitive impairments. Memantine is a
moderate-affinity, non-competitive NMDA receptor antagonist that is voltage-dependent.
Studies have demonstrated that compared to the placebo group, the memantine adminis-
tration group of AD patients showed dramatically improved cognitive impairment and
behavioral abnormalities [58,59]. Memantine injection boosted synaptic transmission in the
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hippocampus of APP/PS1 mice, encouraged the regeneration of neuronal dendritic spines,
and enhanced the mice’s capacity for learning and memory [60]. Ketamine, as a common
antidepressant drug, is a non-competitive NMDA receptor antagonist. In six-month-old
rats, long-term low-dose ketamine treatment increased tau deposition and neuronal activity
in the prefrontal cortex and PV interneuron of the hippocampus [61]. The intraperitoneal
administration of mGluR agonists to mice improved their hippocampal synaptic plasticity
by regulating endogenous cannabinoids to activate GABAergic neuron activity [62], and
promote LTP in the mouse brains. The administration of mGluR antagonists can improve
the performance of mice in water mazes and new object recognition studies and lower
amyloid accumulation, which promotes cognition [63].

2.3. GABAergic Neurons

The primary inhibitory neurotransmitter in the CNS is GABA (Figure 1), which is
crucial for the temporally precise activity of neuronal circuits and synchronized oscillatory
activity of neuronal populations [64], and is synthesized through the decarboxylation of
glutamate by glutamic acid decarboxylase (GAD). GAD exists in two isoforms, GAD65
and GAD67, which have different molecular weights (65 and 67 KDa), catalytic and kinetic
properties, and subcellular localizations. The majority of the glutamate required for GABA
synthesis comes from astrocytes [65]. Astrocytes are crucial to the enrichment, synthesis
and degradation of GABA, which is taken up by the surrounding astrocytes, transformed
into glutamine by the astrocyte-specific enzyme glutamine synthetase and released into
the extracellular space from which it is retaken by the neurons and transformed back to
glutamate by phosphate-activated glutaminase [66]. Synthetic GABA is concentrated in
vesicles by the γ-aminobutyric acid transporter (GAT), stored in the presynaptic cleft and
released into the synaptic cleft upon depolarization and Ca2+ influx. The GAT is one of the
main GABA transporters in the CNS, which principal physiological role is to retrieve GABA
from the synapse and transport it to the neurons and astrocytes, thus swiftly terminate
the neurotransmission [67]. GABA in the synaptic cleft is broken down by being recycled
into presynaptic neurons or being taken up by the surrounding astrocytes, where it is
broken down to succinate by the combined action of GABA transaminase and succinate
semialdehyde dehydrogenase and enters the tricarboxylic acid cycle or is resynthesized
into glutamate with acetyl coenzyme and oxaloacetic acid.

The GABA effects are linked to two different types of GABA receptors, ionotropic
and metabotropic GABA receptors, which can be found on the postsynaptic membrane.
Upon interaction with GABA, the ligand-gated chloride ion channel of the ionotropic
GABA receptor opens, resulting in the Cl- influx and depolarization of neurons. Ionotropic
GABA receptors in the CNS are key players in signaling between neurons and can regulate
phasic and tonic inhibition in neurons [68]. The G protein-coupled receptor family includes
metabotropic GABA receptors, which activate G proteins after binding to GABA and control
intricate downstream chemical networks. Metabotropic GABA receptors are distributed
in the presynaptic and postsynaptic regions. Presynaptic metabotropic GABA receptors
can activate G proteins to bind Gα to Gi/o, which lowers the cAMP levels. In contrast,
Gβγ subunits can induce the influx of Ca2+ by directly binding to voltage-gated Ca2+

channels, which can stop both vesicle fusion and neurotransmitter release. In addition,
postsynaptic metabotropic GABA receptors can also activate Gβγ, which inhibits the
release of Ca2+-dependent neurotransmitters by directly binding to voltage-gated Ca2+

channels. The released Gβγ can also directly open G protein-activated inward rectifying
K+ channels (GIRK), shunting excitatory currents, producing slow inhibitory postsynaptic
potentials (IPSP), as well as back-propagating action potentials (APs) to interrupt excitation
transmission [69].

The GABAergic system plays an important role in regulating the ratio of neuronal
excitation to inhibition as a crucial inhibitory neurotransmitter in the CNS [69]. Alzheimer’s
dementia has been linked to GABAergic system disorders, including altered GABAergic re-
ceptors and the malfunction of GAD enzymes. A loss of GABAergic neurons in the cerebral
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cortex, decreased GAD enzyme activity in the hippocampal neurons and increased concen-
tration of GABA in cortical astrocytes were all discovered in AD autopsies. According to
in vitro research, the downregulation of GAT3 expression might prevent astrocytes from
reabsorbing GABA and disrupt the GABA metabolism, which may cause an imbalance
between excitatory and inhibitory transmission in AD patients’ brains and pathological
modifications caused by the disease [70]. GABA was markedly downregulated at both the
protein and mRNA levels in the hippocampus and cortex of six-month-old APP/PS1 mice,
and the density of GABA receptors was reduced near amyloid deposits [71]. hTau down-
regulated the local level of GABA, presumably by dysregulating GABA synthesis through
suppressing GAD67 phosphorylation and inhibiting GABA’s production. Insufficient
GABAergic inputs could result in dendrite differentiation and integration impairments of
immature neurons, which affect the excitation and inhibition of local neurons in specific
functional brain areas, and hippocampal neuronal production [72]. Since the rate-limiting
step in GABA biosynthesis is the decarboxylation of glutamate by GAD, it is important
to understand how GAD is regulated [73]. Researchers have extensively demonstrated
that GAD autoimmunity interferes with GABAergic synaptic transmission. The decreased
synthesis of GABA in GAD65 knockout mice can cause GABAergic transmission, which
would lead to neuronal hyperexcitability [74].

Gamma oscillations rely on GABAergic inhibition to balance excitation and control
spike timing [75]. The primary neuron spikes and neural inhibition can be synchronized
by GABAergic neurons. Distinct GABAergic neuron subtypes are involved in mediating
rhythmic oscillations in different ways. The primary cells for coordinating the excitation
and inhibition of pyramidal neurons include PV+ neurons with a unique basket shape
and CB1+ neurons [76]. Studies have revealed that the number of PV+ neurons in the CA1
and CA3 areas of the hippocampus increased in three-month-old APP mice comparing
to the WT mice, which might be a result of the diminished inhibitory role of GABAergic
neurons with the increase in inhibitory neuron numbers as a compensation mechanism [77].
Additionally, tau fiber tangles in transgenic mice lessen theta and gamma wave rhythm
oscillations [78]. Enhancing the gamma rhythm oscillation of AD model animals with
light/acoustic stimulation and other techniques can lessen tau protein fibrillary tangles and
improve cognitive impairment [79]; studies have shown that after 14 days of transcranial
alternating magnetic stimulation in APP mice, these improvements were observed. Flicker
stimulation at 40 Hz reduced Aβ in multiple mouse models, including 5 × FAD, APP/PS1,
and WT mice, and reduced phosphorylated tau staining in a mouse model of tauopathy,
TauP301S, showing that the protective effects of gamma stimulation can be generalized to
other pathogenic proteins [80]. The rhythmic oscillations of theta and gamma rhythmic
oscillation in mice were restored, and the activity of GABAergic neurons was increased [81].

By influencing GABAergic neurons, drugs can effectively treat epilepsy, sleep prob-
lems, and other symptoms. Pharmacological modulation of synaptic or extra-synaptic
GABAergic signaling mediated by GABAA and GABAB receptors could restore pyramidal
neuronal inhibition to normalize aberrant cortical and hippocampal neuronal oscillations
in schizophrenia patients. This could ameliorate cognitive impairments such as episodic
memory, working memory and executive function in schizophrenia and other neuropsycho-
logical disorders [82]. It has been demonstrated that a number of GABAergic medications
have specific therapeutic effects on cognitive impairment in AD patients, such as homo
lignin, a GABA analog, which can influence GABA receptors. According to various studies,
homo lignan can prevent the buildup of amyloid and reduce mild to moderate cognitive
dysfunction symptoms of patients. A GABA receptor allosteric modulator can improve cog-
nitive dysfunction in AD patients when combined with other medications. Thus, neurons
are activated at the transcription level of the GABAA receptor. In a previous study, it was
reported that after using a low-dose GABA receptor allosteric agonist such as lorazepam,
the elderly study group had enhanced brain signal variability shown by functional mag-
netic resonance imaging (fMRI), which was more similar to that reported for younger
people [83].
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2.4. Monoaminergic Neurons

Monoamine neurotransmitters are a subclass of small compounds that cannot cross
the blood–brain barrier and are produced through a straightforward metabolic process by
rate-limiting enzymes, using amino acids as substrates. In contrast to the quick neurotrans-
mission mediated by GABA and glutamate, monoamine neurotransmitters often act as
metabotropic receptors and move more slowly.

The majority of monoaminergic neurons in the brain are 5-HT neurons (Figure 1). A
small amount of 5-HT can also be created in the CNS from the substrate tryptophan, al-
though the majority of 5-HT is produced in the gastrointestinal tract. Enterochromaffin cells
express tryptophan hydroxylase-1 (TPH1), whereas neurons express TPH2. Tryptophan
can be transformed by these two enzymes into the intermediate molecule, L-5 hydrox-
ytryptophan. L-amino acid decarboxylase converts the molecule into 5-hydroxytryptamine
(5-HT), then monoamine oxidase on the mitochondrial membrane breaks it down into
5-hydroxyindoleacetic acid [84]. There are seven types of 5-HT receptors, of which six
types are G protein-coupled receptors, while the 5-HT3 receptors are ligand-gated ion
channels. In addition to indirectly opening G protein-coupled inwardly rectifying K+

channels (GIRKs) to hyperpolarize neurons and produce neuronal hyperpolarization, 5-
HT1 receptors can activate G proteins and modify downstream signaling cascades. The
remaining metabotropic 5-HT receptors shut potassium channels on the basis of activating
G proteins, to cause neuronal depolarization and inhibit the opening of voltage-gated Ca2+.
Ionotropic 5-HT receptors are selectively permeable to K+, Na+ and Ca2+ after interacting
with ligands, which can activate neurons [85]. 5-HT receptors are widely distributed in the
cortex, thalamus and hippocampus, and ionotropic 5-HT receptors are also distributed in
the periphery [86].

Dopamine (DA) neurons are also monoaminergic neurons, which are distributed in
the cortex and striatum to regulate motor function, motivation and drive, and cognition.
As is the case with 5-HT, DA neurons are produced by the sequential hydroxylation and
decarboxylation of tyrosine, and can also be synthesized indirectly from phenylalanine.
DA synthesized at the presynaptic terminal of neurons is loaded into synaptic vesicles by
monoamine transporter 2 (VMAT2/SCL18A2) [87] when the presynaptic neurons are ex-
cited, which is mainly caused by Ca2+ influx, leading to neuronal depolarization. Changes
in membrane potential cause exocytosis and release into the synaptic cleft, and after the
end of the action, they are mediated by dopamine transporters (DAT) or monoamine trans-
porters (MAT), taken back to presynaptic neurons and degraded by monoamine oxidase on
the mitochondrial membrane [88]. DA receptors belong to G protein-coupled receptors,
which can produce different downstream effects when combined with different GPCRs,
and can be roughly divided into D1 receptors and D2 receptors. D1 receptors, coupled to
Gαs, activate adenylyl cyclase, generate higher levels of second messenger cAMP, and en-
hance the activity of protein kinase A (PKA); D2 receptors, coupled to Gαi, inhibit adrenal
glycyl cyclase and reduce the intracellular cAMP concentration, thereby inhibiting PKA
activity. Dopamine receptors can also catalyze the production of inositol triphosphates
(IP3) and diacylglycerols (DAG) by coupling Gαq through regulating phospholipase C,
thereby increasing the intracellular calcium levels and activating protein kinase C (PKC),
which are involved in the regulation of various signaling pathways. They can also partici-
pate in the regulation of other neurotransmitter systems by forming complexes with other
neurotransmitter receptors, such as GABA receptors [89].

AD patients exhibit 5-HT neuron loss and reduced 5-HT levels in the cerebral cortex.
The levels of 5-HT in the cortical, limbic, sensory, motor, striatal, and thalamic regions of
the brain in AD patients with severe cognitive impairment are also lower, coupled with
decreased levels of transporter proteins. In addition, 5-HT receptors also couple with
GABA receptors, glutamate receptors and acetylcholine receptors to form heterodimers
and interact with other neurotransmitter networks [90].

About 50% of AD patients show varying degrees of depressive symptoms, and autopsy
results show that the numbers of 5-HT neurons in the brains of AD patients are reduced [91].
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The loss of dopaminergic neurons also occurs in the hippocampus and prefrontal regions
of AD patients, and the use of dopaminergic antidepressants significantly alleviates the
depressive symptoms of AD patients [92]. Using monoamine oxidase inhibitors reduced
the level of reactive oxygen species in neurons, avoided oxidative damage, and improved
cognitive dysfunction in AD patients [93]. 5-HT receptor-targeted drug can improve the
cognitive function in AD rat models. The 5-HT selective reuptake inhibitor fluoxetine can
inhibit amyloid deposition and reduce neuronal damage [92]. In vitro experiments show
that citalopram, a 5-HT selective uptake inhibitor, reduced Aβ amyloid deposition and APP
precursor protein levels in APP gene-overexpressing cells, and improved synaptic protein
expression levels [94]. Clinical experiments showed that citalopram improved behavioral
patterns in AD patients. 5-HT receptor agonists ameliorated scopolamine-induced spatial
learning deficits and increased Ach levels in vivo [95].

2.5. Other Factors Affecting Neurotransmitter Synthesis and Release

Animals and humans with AD frequently display morphologically aberrant mito-
chondria in their brains. Amyloid deposition and tau protein fibrillary tangles, which are
the hallmark neuropathological markers of the illness, as well as the AD risk gene (Apo
E), cause mitochondrial abnormalities, which lead to pathology alterations and possibly
mitochondrial metabolic malfunction (Figure 1) [11]. In severe circumstances, modifica-
tions to the nervous system’s metabolic pathways might result in neuronal death, which
impairs cognition. The neurons’ synaptic terminal vesicles and cell membranes are fused
together by Ca2+, which affects neurotransmitter activity in two ways [96]. Neurotransmit-
ter synthesis, processing, modification and secretion all demand a significant amount of
energy, which mitochondria must provide. Additionally, concentration fluctuations and
mitochondrial activity are associated with one another [97]. Mitochondrial abnormalities
have been reported in many different neurodegenerative illnesses besides AD (AD). The
activity of several oxidative energy-supplying enzymes decreases, including the pyru-
vate dehydrogenase complex and ketoglutarate dehydrogenase complex, which affects
the mitochondria’s ability to provide energy for the production of neurotransmitters [98].
Additionally, mitochondrial metabolites can take part in the production of neurotrans-
mitters. Furthermore, mitochondria control synaptic vesicle release and neuronal Ca2+

concentration by regulating changes in mitochondrial permeability to Ca2+. Cyclosporine
blocks the Ca2+ channels on mitochondria and impairs synaptic plasticity [99]. Drugs that
target mitochondria are largely centered on oxidative stress and apoptosis pathways [100],
such as MitoQ, which has been proven to reduce tau and Aβ accumulation and synaptic
loss in AD mice. Other drugs, for example, MitoTEMPO and MitoApo, are all ubiquinone
derivatives, which can preserve neuron function by detoxifying ROS.

3. Conclusions

Neurotransmitters are crucial for the survival and upkeep of the physiological func-
tions of neurons. When the neurotransmitter system is compromised, neurons no longer
carry out their typical physiological tasks and this also has an impact on synaptic plasticity
and cognitive function. Pathological alterations in aberrant neurotransmitter activity or
metabolism occur during the development of AD disease, including the loss of choliner-
gic neurons, dysfunction of glutamatergic neurons, decreased GABA levels and loss of
monoaminergic neurons and decreased monoamine levels. Memantine, donepezil, galan-
tamine, and other medications that target the neurotransmitter system are utilized in the
clinical treatment of AD. The patients’ cognitive impairment can be greatly improved
by this medicine combination. Other neurodegenerative illnesses, such as Parkinson’s,
epilepsy and others, are also frequently associated with abnormalities of the neurotransmit-
ter system.

Neurotransmitters have a crucial role in the CNS and they are widely distributed in the
CNS. As a result, understanding neurotransmitter production, transport, and metabolism,
as well as the control of neurotransmitter networks, helps us to identify new therapeutic
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targets and investigate the processes underlying the aberrant neurobehavior of AD. This
review brings into focus the contribution of neurotransmitter receptors to the pathogenesis
of cognitive impairment. We describe the possible mechanisms associated with how
neurotransmitters work during the pathological process of AD, in which these changes in
neurotransmitters play a compensatory role. In addition, we note the relationship between
gamma oscillation in GABAergic neurons and cognitive impairment in AD, which may lead
us to the development of an innovative therapeutic method to prevent cognitive decline.
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93. Korábečný, J.; Nepovimová, E.; Cikánková, T.; Špilovská, K.; Vašková, L.; Mezeiová, E.; Kuča, K.; Hroudová, J. Newly Devel-
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