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Abstract: Head and neck squamous cell carcinoma (HNSCC), the most prevalent cancer in the
head and neck region, develops from the mucosal epithelium of the upper aerodigestive tract. Its
development directly correlates with alcohol and/or tobacco consumption and infection with human
papillomavirus. Interestingly, the relative risk for HNSCC is up to five times higher in males, so it
is considered that the endocrine microenvironment is another risk factor. A gender-specific risk for
HNSCC suggests either the existence of specific risk factors that affect only males or that females have
defensive hormonal and metabolic features. In this review, we summarized the current knowledge
about the role of both nuclear and membrane androgen receptors (nAR and mARs, respectively) in
HNSCC. As expected, the significance of nAR is much better known; it was shown that increased
nAR expression was observed in HNSCC, while treatment with dihydrotestosterone increased
proliferation, migration, and invasion of HNSCC cells. For only three out of five currently known
mARs—TRPMS, CaV1.2, and OXER1—it was shown either their increased expression in various
types of HNSCC or that their increased activity enhanced the migration and invasion of HNSCC cells.
The primary treatments for HNSCC are surgery and radiotherapy, but targeted immunotherapies
are on the rise. On the other hand, given the evidence of elevated nAR expression in HNSCC, this
receptor represents a potential target for antiandrogen therapy. Moreover, there is still plenty of room
for further examination of mARs’ role in HNSCC diagnosis, prognosis, and treatment.

Keywords: head and neck squamous cell carcinoma; HNSCC; androgen receptor; AR; membrane
androgen receptors; CaV1.2; OXER1; TRPMS

1. Introduction
1.1. Head and Neck Squamous Cell Carcinoma

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer
worldwide and the most prevalent type of cancer in the head and neck region. In 2020,
879,000 new cases and 445,000 deaths were reported worldwide [1]. The mean age at the
diagnosis is 63 years [2] with a five-year survival rate below 50% in the advanced stages of
the disease [3]. HNSCC develops from the mucosal epithelial cells of the oral cavity, larynx,
nasopharynx, oropharynx, hypopharynx, and sinonasal tract, and its development directly
correlates with several risk factors that include alcohol [4] and/or tobacco consumption [5],
long-term exposure to environmental pollutants [6], and infection with oncogenic strains of
human papillomavirus (HPV) [7] or Epstein—-Barr virus (EBV) [8]. Most of the risk factors
listed above have a cultural and geographical prevalence due to the different lifestyles. For
instance, India’s highest prevalence of oral cavity cancer is connected to tobacco and betel
nut chewing and exposure to air pollutants [9].

Furthermore, HPV-positive (HPV+) patients have the highest risk of developing
tonsillar (TSCC) and oropharyngeal squamous cell carcinomas (OPSCC), in which the HPV-
16 subtype is found in almost 90% of OPSCCs followed by HPV-18 (3%) [10]. On the other
hand, laryngeal and oral cavity carcinomas are called HPV-negative (HPV-) because they
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are associated with smoking and other non-HPYV risk factors. As with many other tumors,
the formation and progression of HNSCC from the premalignant lesion consists of several
steps that include hyperplasia, dysplasia, carcinoma in situ, and invasive carcinoma [11].

After a diagnosis, potential treatments for HNSCC are surgical resection followed by
radiotherapy and/or chemotherapy [10]. A lack of screening strategies and consequent
disease detection at advanced stages as well as the ineffectiveness of available therapies
and treatments leads to a poor prognosis. So far, several molecular biomarkers for clinical
diagnosis or prognosis of HNSCC have been approved by the United States Food and
Drug Administration (FDA), while only a few of them have proven significant in clinical
trials (such as CD44, CD133, and aldehyde dehydrogenase 1 (ALDH1)) [12]. Accordingly,
new targeted therapies and predictive, prognostic, and diagnostic biomarkers for the early
clinical detection of HNSCC are necessary. Various new biomarkers were evaluated in
clinical trials in the last decade; these included hormonal receptors [12-15].

Interestingly, the relative risk for HNSCC development followed by death is up to
five times higher in males compared to females [16]. The endocrine microenvironment
is considered to be another risk factor in HNSCC tumorigenesis, although the role of sex
hormones in this tumor type is still controversial. However, the gender-specific risk for
HNSCC development suggests either the existence of specific risk factors that affect only
males or that females have defensive hormonal and metabolic features as a response to
common risk factors [17] (Figure 1). In this short but comprehensive review, we present
the current knowledge about the role of androgen receptors (ARs) in HNSCC; to the best
of our knowledge, this was the first attempt to synthesize what is known about both the
nuclear and membrane types of ARs.

Annual Incidence Annual Mortality
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Figure 1. The primary risk factors and annual incidence and mortality rates in both males and females
for different subtypes of head and neck squamous cell carcinoma. The data are from Global Cancer
Statistics 2020 [1]. Created with BioRender.com.

1.2. Sex Steroid Hormones and Their Receptors

Many types of tumors depend on steroids for growth, proliferation, and survival.
Although steroid hormones control development, reproduction, and metabolism as en-
docrine molecules, they can also mediate tumor initiation and progression. The well-known
hormone-sensitive cancers are breast [18], ovarian [19], prostate [20], thyroid [21], testic-
ular [22], and uterine or endometrial cancer [23], whose progression correlates directly
with sex steroid hormones [24]. Steroid hormones are derived from cholesterol, and their
synthesis is localized in the mitochondria and smooth endoplasmic reticulum of the adrenal
cortex, gonads, and placenta [25]. The synthesis of sex hormones is under the control of
the hypothalamic—pituitary-gonadal axis. Secretion of gonadotropin-releasing hormone
(GnRH) from the hypothalamus activates the anterior pituitary production of follicle-
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stimulating hormone (FSH) and luteinizing hormone (LH), which control gametogenesis
and steroidogenesis [26]. Cholesterol-derived steroid hormones are divided into two main
subgroups: sex steroids (androgens, estrogens, and progestogens) and corticosteroids
(glucocorticoids and mineralocorticoids) [27]. The main role of steroid hormones is the
regulation of gene expression in the cell nucleus or mediation of the rapid modulation
of intracellular molecular pathways. Steroids interact with specific nuclear or membrane
receptors to accomplish their role [28]. Membrane steroid receptors are integrated trans-
membrane proteins activated by steroid binding and therefore can activate or inhibit other
proteins and modulate different signaling pathways [29]. On the other hand, nuclear
hormone receptors function as transcription factors in the nucleus and receptors on the
cell membrane. After post-translational covalent attachment of palmitic acid or association
to plasma membrane scaffold proteins, some nuclear hormone receptors can be anchored
to the cell membrane and act independently of their nuclear function [30]. Therefore,
any signaling dysregulation or unregulated production of sex steroid hormones and/or
their receptors can lead to aberrant growth and development as well as the initiation and
proliferation of hormone-sensitive cancers [31].

2. Androgen Receptors as a Potential Culprit of Sex-Related Disparities in HNSCC

Several studies have shown that the sex hormone receptors (SHRs) can be prognostic
and potential therapeutic targets of the HNSCC because they promote DNA hypermutation
and potentiate HPV integration [32]. As already mentioned, due to the high male—female
incidence and mortality rate ratios, endocrine homeostasis disruption is one of the potential
risk factors for HNSCC development together with well-established risk factors such as
alcohol and tobacco consumption. Park et al. recently published a large follow-up study
that compared sex differences in HNSCC prevalence in which they showed the most evi-
dent differences between the sexes in the incidence of the upper aerodigestive tract tumors,
primary laryngeal, and hypopharyngeal [33]. A higher prevalence of laryngeal cancer in
males might be connected to hormonal control because, during puberty, the larynx goes
through different physiological changes related to sex hormone receptors [33]. Moreover,
the destruction of liver function and metabolic processes (including steroidogenesis) re-
lated to heavy alcohol consumption is another connection between the steroid receptors
and HNSCC prevalence [34]. Therefore, the sex hormone receptors represent a potential
therapeutic target for applying hormone receptor modulators and significant predictors of
disease and treatment outcomes in some HNSCC subgroups.

2.1. Structure, Function, and Role of Nuclear Androgen Receptor in HNSCC

The nuclear androgen receptor (nAR) together with the estrogen, progesterone, and
corticosteroid receptors belong to the steroid hormone receptor subfamily of the nuclear
receptor superfamily. Structural elements of domains enable affinity binding to their ligands
and response elements of the target genes for direct regulation of gene transcription [35].
The AR gene is located on the X chromosome (Xp11-12) and contains eight exons and
seven introns that encode four structural domains that are common to all SHRs [36].
The prominent variability among the SHR family members is due to the amino acid
sequence differences and the size of the N-terminal domain (NTD). This domain contains
the ligand-independent activation function region AF1 and acts as a transcription driver
or repressor depending on post-translational modifications [37,38]. Further, located next
to the NTD is a highly conserved DNA binding domain (DBD) that contains two zinc
finger motifs of four cysteine residues in each of them. Zinc finger proteins recognize
DNA consensus sequences and promote the binding of the nAR to the androgen response
elements (AREs) in promoters and enhancers of AR-regulated genes [39]. The short region
between the DBD and C-terminal domain or ligand-binding domain (LBD) is the hinge
region. Like the NTD, the hinge region is poorly conserved among the nuclear steroid
receptors. Except for the nuclear localization signal, which can be contained within the
hinge region, this region is also a site of post-translational modifications [38]. The LBD



Int. J. Mol. Sci. 2023, 24, 3766

40f17

is a conserved domain amongst the nuclear receptors located at the C-terminal end of
the receptor, and its structure creates a variable hydrophobic region for ligand binding
and exhibits a ligand-dependent activation function motif (AF2) [40]. Furthermore, this
region interacts with transcriptional intermediary factors (TIFs), co-activators, and co-
repressors upon interaction with the ligand as well as with the N-terminal domain due
to the stabilization of bounded androgens [41]. Importing the receptor into the nucleus
is mediated by the nuclear localization signal (NLS) located between the DBD and hinge
region. In contrast, the nuclear export signal (NES), as a part of the LBD, is responsible for
the export of the nAR to the cytoplasm [42].

The nuclear androgen receptor is a 110 kDa ligand-inducible protein composed of
919 amino acids that is located in the cytoplasm and has two main mechanisms of action.
The binding of androgens to the nAR results in a conformational change and phosphoryla-
tion of the protein as well as translocation of the androgen/nAR complex to the nucleus in
the form of a homodimer. Once dimerized, nAR binds to the AREs within target genes and
modulates gene transcription with various co-regulators [43] (Figure 2). In addition to the
ligand binding, an alternative or noncanonical mechanism of nAR activation mediated by
the activation of secondary signaling pathways such as mitogen-activated protein kinase
(MAPK), protein kinase B (Akt), and extracellular signal-regulated kinase (ERK) also ex-
ists [44]. Interestingly, Trnski et al. recently showed the noncanonical activation of nAR via
the active form of Sonic hedgehog protein (SHH-N) binding directly to the nAR through its
cholesterol modification in androgen-independent LNCaP prostate cancer cells [45]. This
interaction is one of the possible mechanisms of nAR activation in tumors.

AREs contain a pair of conserved sequences of 5-GGTACAnnnTGTTCT-3’ that of-
ten are arranged as inverted repeats separated by a three-nucleotide spacer (5'-CGG-
3’) [46,47]. According to the JASPAR 2022 database (https:/ /jaspar.uio.no/matrix/MAOQ
007.2 accessed on 21 December 2022), there are 11,206 AREs in the human genome (build
GRCh37/hg19) [48]. However, so far fewer than 2000 human genes have been char-
acterized as androgen-responsive (those whose transcription could be regulated either
positively or negatively by nAR) [49]. The development of next-generation sequencing
techniques—especially whole transcriptome sequencing (RNA-Seq) and chromatin im-
munoprecipitation followed by sequencing (ChIP-seq)—has enabled the examination of
nAR-mediated transcriptional regulation at the genomic scale. Despite some differences
in sets of discovered genes, which was due to the use of different sequencing platforms
and experimental conditions, a core set of androgen-responsive genes has been repeatedly
identified [50]. According to the Molecular Signatures Database (MSigDB), there are 101
hallmark androgen-responsive genes (MsigDB systematic name M5908) (Figure 2) [51].
These genes belong to several general gene families such as those that encode proteins
involved in the secretory pathway, polyamine synthesis and lipogenesis, transcription,
splicing, ribosomal biogenesis, mitogenesis, bioenergetics, and redox processes [52]. Dys-
regulation of those pathways is related to cancer etiopathology, so in addition to the
well-known role of nAR in prostate cancer [53], nAR’s connection with breast [54], blad-
der [55], hepatocellular [56], ovarian [57], endometrial [58], uterine [59], and many other
tumor types [60] is also known.
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Figure 2. Nuclear and membrane androgen receptors and different types of antiandrogen therapy.
The nuclear form of the androgen receptor (AR) is activated by binding of dihydrotestosterone
(DHT), the 5x-reduced metabolite of testosterone (T), in the cytoplasm and then translocation into
the nucleus. There, it serves as a transcription factor of many target genes that contain the androgen
response element (ARE) in their promoters and enhancers. Many AR-regulated genes are related to
carcinogenesis. Nonsteroidal antiandrogens block androgen-induced activation of AR and prevent
its nuclear translocation and thus inhibit AR-mediated transcription in both the hypothalamus
and target tissues. Steroidal antiandrogens, like abiraterone acetate, block enzymes involved in
androgen biosynthesis, thereby stimulating the negative feedback loop in the hypothalamus, which
results in lowering the plasma T concentration. Antiandrogens are often used in combination
with a gonadotropin-releasing hormone (GnRH) agonist or luteinizing hormone-releasing hormone
(LHRH). The currently known membrane androgen receptors are a group of five proteins: Ca®* ion
channels TRPMS8 and CaV1.2, G-protein-coupled receptors OXER1 and GPRC6A, and zinc transporter
ZIP9, which activate different signaling pathways through the second messengers. FSH—follicle-
stimulating hormone; LH—luteinizing hormone. Created with BioRender.com.
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Currently, there is limited evidence of the significance of nAR expression in differ-
ent subtypes of head and neck cancers. For example, immunohistochemical staining
determined the nAR expression in 64% of laryngeal carcinoma cases; the expression was
higher in well-differentiated cases and lower in poorly differentiated cases and those with
lymphatic invasion [61]. Similarly, Fei et al. determined the significantly upregulated
expression of nAR mRNA in laryngeal squamous cell carcinoma compared to the healthy
tissue; in addition, AR-positive (AR+) nuclear immunostaining was observed in 77.1% of
the samples [62]. Therefore, AR+ cytoplasmic staining in the neoplastic oral squamous
cell carcinoma (OSCC) epithelium greater than 20% was significantly correlated with the
increased risk of OSCC progression [63] and frequency of VEGF-positive lymphocytes
and Ki67 in metastases [64]. In addition, in nonsquamous salivary duct carcinoma (SDC),
nAR is one of the potential diagnostic immunohistochemical markers [65]. Furthermore,
several studies have reported significantly increased nAR expression as well as the expres-
sion of androgen-responsive genes and an enhanced growth rate of the SCC-4, SCC-25,
OECM-1 and SAS OSCC cell lines after treatment with dihydrotestosterone (DHT) [66].
Likewise, the nAR knockdown resulted in a 75% lower growth rate, significant apoptotic
cell death, and inhibition of tumorigenicity in the above-mentioned cells [66]. Similarly,
the DHT stimulation of nAR promoted cell migration and aggressiveness by increasing
phosphorylation of the epidermal growth factor receptor (EGFR) and Akt in AR+ OSCC
tumors. At the same time, this effect was not observed in an AR-negative (AR-) SCC-25 cell
line, which suggested that nAR promotes the EGFR signaling pathway in head and neck
tumors, therefore making it a perfect target for targeted therapy in this tumor type [67].
On the other hand, Collela et al. showed contradictory results; in fact, they found a lower
expression level of nAR in OSCC than in the control samples [68]. Furthermore, the alter-
ations in the [CAG], repeats of the AR gene are also associated with poor outcomes in male
patients with oral cavity or oropharyngeal cancers; shorter repeats (<20) were correlated
with a more aggressive tumor subset [69]. Taken together, in HNSCC patients, nuclear
AR+ staining generally prevails and is associated with well- and moderately differentiated
tumors without lymphatic invasion, while cytoplasmic AR+ staining is correlated with
metastases. Table 1 summarizes the current knowledge about the role of the nuclear and
currently known membrane ARs in HNSCC.

Table 1. Currently known androgen receptors and their significance in head and neck squamous
cell carcinoma.

Type of
Androgen Receptor Receptor Function Significance in HNSCC Reference
Receptor
Expressed in 64% of LSCC cases; higher in
Nuclear AR Transcription factor well-differentiated, lower in poorly differentiated [61]

and those with lymphatic invasion
AR mRNA upregulated in LSCC; AR+ nuclear
staining observed in 77.1% of samples
AR+ cytoplasmic staining in OSCC epithelium
greater than 20% correlated with metastases as well
as the frequency of VEGF positive lymphocytes and
Ki67 expression in metastases
DHT treatment increased proliferation, migration,
and invasion of OSCC cells by increasing EGFR
phosphorylation, which was reversed by AR
knockdown or observed only in AR+ cells
Lower expression in OSCC samples [68]
In male oral cavity or oropharyngeal cancer patients,
a lower number of AR gene [CAG], repeats (<20)
correlated with shorter disease-free survival and
more frequent recurrence or metastasis
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Table 1. Cont.

Type of
Androgen Receptor Receptor Function Significance in HNSCC Reference
Receptor
Menthol-induced Ca?* influx through TRPMS
. . enhanced migration and invasion of OSCC cells via [70]
TRPMS8 Calcium ion channel gelatinase activity of MMP-9
Higher TRPM8 mRNA expression was a negative (71]
prognostic biomarker for HNSCC
Decreased CACNA1C mRNA expression observed
CaVio Calcium ion channel in OSCC cells; CACNAIC amphﬁce'ltlonoand /or [72,73]
Memb mRNA upregulation observed in 10% of
embrane HNSCC cases
; o Upregulated OXERI mRNA expression observed in
OXER1 G-protein-coupled receptor HPV+ oropharyngeal and oral cancers [74]
Upregulated OXERI mRNA expression observed in
human normal oral epithelial cells exposed to [75]
water-pipe smoking
GPRC6A G-protein-coupled receptor Unknown /
ZIP9 Zinc transporter Unknown /

AR+—androgen receptor-positive; DHT—dihydrotestosterone; HNSCC—head and neck squamous cell carcinoma;
HPV+—human papillomavirus-positive; LSCC—laryngeal squamous cell carcinoma; OSCC—oral squamous
cell carcinoma.

2.2. Structure, Function, and Role of Membrane Androgen Receptors in HNSCC

In contrast to the nuclear receptors, membrane steroid receptors mediate the rapid
nongenomic effects of steroids through the activation of secondary messengers, different
signaling pathways, and calcium ion flux. Immediate androgen actions have been described
in various cell and tissue types. Research on membrane androgen receptors (mARs)
has accelerated after rapid intracellular signaling pathway activation in AR- cells was
observed [76]. So far, five multifunctional proteins have been described as plasma mARs:
Ca?* ion channels TRPMS8 and CaV1.2, G-protein-coupled receptors OXER1 and GPRC6A,
and zinc transporter ZIP9 (Figure 2).

2.2.1. Transient Receptor Potential Cation Channel Subfamily M Member 8 (TRPMS)

TRPMS is the first of two calcium ion channels and androgen-related receptors at
once located at the plasma membrane and endoplasmic reticulum of the cells. Due to its
expression in the peripheral nervous system, in pain- and temperature-sensing neurons,
respectively, it was shown that TRPMS responded to cold physical stimulations, menthol,
and icilin [77]. In addition, testosterone was shown to increase intracellular Ca2* influx
and activate the TRPMS8 channel in PC-3 prostate cancer cells, dorsal root ganglion and
hippocampal neurons, and the human embryonic kidney cell line HEK293 with almost the
same affinity and specificity as for the nAR [78]. On the other hand, in the HEK293 cell
line, which stably expresses recombinant TRPMS, testosterone did not cause significant
Ca?" oscillations. However, even that effect was partially reversed using AR siRNA or
the nAR antagonist hydroxyflutamide, thereby indicating the importance of nAR in the
absence of TRPMS [79]. Furthermore, sustained exposure of the TRMPS to testosterone
caused channel desensitization—especially in men—due to higher circulating levels of
testosterone [79]. TRPMS is a potential early-stage prostate cancer biomarker because it
is significantly upregulated in early stages and decreased in advanced stages of prostate
tumors [80]. Likewise, TRPMS is also a predicted diagnostic indicator of breast cancer,
which promotes metastatic potential by activating the Akt/GSK-3f3 signaling pathway and
thus regulates the epithelial-mesenchymal transition [81] as well as cellular autophagy via
activation of AMP-activated protein kinase (AMPK) and Unc-51 like autophagy activating
kinase 1 (ULK1) [82].
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Studies have shown both intracellular and plasma membrane expression of the TRPM8
channel in HNSCC cell lines, contrary to exclusively membranous localization of other
mARs. Interestingly, since cancer cells secrete matrix metalloproteinases, which degrade the
basement membrane and the extracellular matrix and thus facilitate the cell migration and
invasion ability, this mechanism was shown to potentially be associated with an elevated
intracellular Ca®* level in the androgen-dependent LNCaP prostate cancer cell line [83].
Similarly, the menthol-induced activity of the TRPM8 enhanced the migration and invasion
potential of the HSC-3 and HSC-4 OSCC cell lines via an increase in the activation and
gelatinase activity of matrix metallopeptidase 9 (MMP-9). On the other hand, the TRPM8
antagonist RQ-00203078 suppressed this activity, which suggested that stimulation of
TRPMS positively regulates MMP-9 [70]. Recent bioinformatical analysis of the HNSCC
dataset from The Cancer Genome Atlas (TCGA-HNSC) indicated TRPMS as one of the risk
factors in HNSCC evolvement [71], but its main role in this type of tumorigenesis is still
unknown.

2.2.2. Voltage-Dependent L-Type Calcium Channel Subunit Alpha-1C (CaV1.2)

CaV1.2 is a protein encoded by the CACNAIC gene whose primary role is pore
formation for Ca?* ion transport into the cell. It is a member of the L-type voltage-gated Ca®*
channel family [84]. The nomenclature is based on the type of response to voltage, meaning
this type of channel has ‘long-lasting” activity, and its activation requires a strong membrane
depolarization [85]. Furthermore, the protein consists of three subunits (CaVa1, CaV«25,
and CaV), and four CaV«1 subunits set up the ion-conducting channel. Alternative splice
variants of the CACNAIC gene are associated with various abnormalities such as Timothy
and Brugada syndromes and cancer progression [85-87]. Increased influx of the Ca* ions
through the plasma membrane is related to the activation of Fos and c-Jun transcription
factors, cAMP response element-binding (CREB) protein, and the nuclear factor of activated
T cells (NFAT) [88]. Likewise, Ca?* is indispensable in coordinating transitions between
G1/S phases of the cell cycle via regulation of D-cyclin expression. All the above changes
are implicated in breast cancer cell proliferation, migration, and invasion [89].

When comparing the gene expression profiles in OSCC-derived cell lines with normal
oral tissues using a microarray analysis, CACNAIC was one of the detected genes with a
confirmed significantly decreased expression in the HSC-2, HSC-3, Ca9-22, H-1, Sa3, and
OK-92 OSCC cell lines compared to human normal oral keratinocytes [72]. In addition,
another study compared genes dysregulated in the TCGA-HNSC dataset with the early
molecular alterations in the oral cavity and esophagus induced by (S)-N’-nitrosonornicotine,
a potent tobacco carcinogen, in rats; except for the genes involved in immune regulation
and inflammation, most of the dysregulated genes in rats were tumorigenesis-associated
and overlapped with altered genes in esophageal and head and neck tumors. This included
CACNAIC, which was amplificated and/or upregulated in 10% of cases [73].

2.2.3. Oxoeicosanoid Receptor 1 (OXER1)

OXERL1 is a G-protein-coupled receptor (GPCR) that is also known as G-protein-
coupled receptor 170 (GPR170), 5-oxo-ETE G-protein-coupled receptor, or TG1019. The
receptor can be activated by 5-oxoeicosatretraenoic acid (5-oxo-ETE) or some other product
of the arachidonic acid metabolites and by 5-lipoxygenase (5-LOX) and peroxidase [90].
High expression of OXER1 in lung, liver, spleen, kidney, prostate, and breast cancer cells as
well as in inflammatory cells (eosinophils, lymphocytes, monocytes, and neutrophils) and
its activation by endogenous ligand 5-oxo-ETE mediated the intracellular actions in cell
proliferation and survival, inflammatory responses, and steroidogenesis stimulation [91].
On the one hand, receptor activation led to the inhibition of cAMP production mediated by
the G4 subunit. In contrast, the calcium mobilization, chemotactic response, and activation
of other molecular pathways were mediated by a stable dimeric complex Gg., [90]. Most
of these roles are related to the immune system, but OXER1 is also essential in promoting
survival, apoptosis inhibition, and infiltration of inflammatory cells in prostate and breast
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cancers. Recently, it was reported that testosterone is an OXER1 antagonist that mediated
the effects of 5-oxo0-ETE on PI3K/Akt, FAK, and p38« activation [92]. The inhibition of
the above signaling pathways (such as blocking 5-LOX) reduces cancer cell proliferation,
migration, invasion, and apoptosis induction.

So far, no direct studies have investigated the role of OXER1 in HNSCC, but upregula-
tion of the OXER1 gene was reported in HPV+ oropharyngeal and oral cancers [74]. As
stated above, HPV infection has an essential role in HNSCC progression. Thus, OXER1 is
potentially connected with HNSCC tumorigenesis and could present a novel drug target.
Interestingly, Lopez-Ozuna et al. identified the upregulated expression of OXER1 in 2N and
11N human normal oral epithelial cell lines exposed to water-pipe smoking (WPS) solution,
thereby implying the potential risk of WPS consumption for HNSCC development [75].

2.2.4. G-Protein-Coupled Receptor Class C Group 6 Member A (GPRC6A)

GPRC6A is the second GPCR mAR. It is activated by a diverse range of ligands such
as essential L-a-amino acids (L-arginine, L-lysine, and L-ornithine), cations (calcium, zinc,
and magnesium), osteocalcin [93], and steroid hormones [94]. The expression of GPRC6A
in hepatocytes, skeletal muscle myocytes, and adipocytes is related to its involvement in
different physiological and pathological functions such as glucose and fat metabolism,
inflammatory responses, steroid production and insulin secretion from (-cells, and tu-
morigenesis [95]. Furthermore, the role of GPRC6A in the male reproductive system was
recently discovered. Oury et al. showed expression of GPRC6A in Leydig cells, where
it regulated spermatogenesis and testosterone biosynthesis in male mice by acting as an
osteocalcin receptor [96]. In addition, they demonstrated a reduction in circulating testos-
terone levels, a decreased sperm number, and a reduced size of the testis in GPRCOAeydig
KO mice. Likewise, in an AR- and GPRC6A-negative HEK293 cell line, testosterone and
synthetic androgen R1881 could stimulate ERK activity in a dose-dependent manner after
transfection with human GPRC6A. On the other hand, ERK activation was blocked using
a G-protein inhibitor, which confirmed the hypothesis of androgen-mediated GPRC6A
activation [94]. Additionally, it recently was shown that due to the similar structure of the
undercarboxylated form of osteocalcin and the sex hormone-binding protein (SHBG), the
latter—in an unliganded state—binds to the extracellular domain of GPRC6A and activates
the receptor [97]. Computational modeling also predicted several testosterone binding
sites on the GPRC6A receptor, although the specificity of its binding and GPRC6A receptor
activation in vivo is still unclear [98]. Several studies confirmed a connection between
GPRC6A upregulation and prostate cancer cell line proliferation [99-101], while there is
still no evidence for the potential role of the GPRC6A receptor in HNSCC tumorigenesis.

2.2.5. Zinc Transporter Member 9 (ZIP9)

ZIP9 is a member of the zinc transporter Zrt- and Irt-like protein (ZIP) family encoded
by the SLC39A9 gene in humans. The central role of ZIP transporters is the regulation of zinc
homeostasis by increasing the intracellular zinc concentration and therefore maintaining the
normal physiological function of the organism. Compared to the other ZIP family members
that contain eight transmembrane domains and an extracellular C-terminus, ZIP9 is the
only member with seven transmembrane domains and an intracellular C-terminal domain,
which enables signalization via G proteins [102]. In addition to regulating cellular functions
associated with zinc transport, ZIP9 was first identified as a mAR in Atlantic croaker
fish ovarian follicle cells [103] and then immediately afterwards in the triple-negative
human breast cancer cell lines MDA-MB-468 and MDA-MB-231 as well as in the PC-3
prostate cancer cell line, all of which were stably transfected with ZIP9 [104]. Treatment
with testosterone in those cell lines led to G-protein activation, thereby increasing the
cytosolic zinc concentrations and apoptosis induction through the upregulation of the
proapoptotic genes BAX, TP53, and MAPKS. On the other hand, testosterone-induced
increased expression of the proapoptotic factors was blocked by using a MAPK inhibitor
(PD98059) or a zinc chelator, which suggested that the apoptotic response was mediated
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by MAPK activation and zinc influx [104]. Furthermore, when comparing the binding
affinity and activation of nAR and ZIP9 via testosterone, DHT, and androstenedione, ZIP9
showed a higher affinity for testosterone regarding DHT or androstenedione [102]. Except
for its role in apoptosis induction, an activated form of the ZIP9 receptor affected cell
migration in prostate cancer cells [105]. Due to its broad expression in most tissues and
cell types related to zinc homeostasis, ZIP9 is involved in cell proliferation, growth, and
apoptosis and represents a potential drug target in different types of carcinomas. However,
the connection between ZIP9 and HNSCC tumorigenesis is still unexplored.

3. Current Therapeutic Approaches to the Treatment of HNSCC

Since the primary treatment for most patients with HNSCC is surgery and radiother-
apy, research is focused on developing effective targeted therapies and the identification
of new biomarkers to reduce mortality and improve the treatment outcome as well as the
life quality of the patients. The biggest challenge in this, as is the case with many other
tumors, is a weak response to therapy and the development of therapy resistance due to the
heterogeneous nature and aggressiveness of HNSCC. Likewise, the roles of both the tumor
microenvironment and the oral microbiome in HNSCC pathogenesis are increasingly being
investigated.

3.1. Immunotherapy Strategies for Head and Neck Cancer

Interestingly, about 70% of HPV-negative HNSCCs cases have the loss-of-function
(LoF) mutations in tumor-suppressor p53 while 30% of patients have them in the mam-
malian target of rapamycin (mTOR) and around 15% have them in the EGFR and NOTCH
oncogenes. In comparison, the EGFR is overexpressed in more than 80% of HNSCCs [10].
Therefore, to date, the FDA has fully approved three targeted immunotherapies for HN-
SCC treatment: the anti-EGFR monoclonal antibody cetuximab as well as pembrolizumab
and nivolumab, which are programmed cell death protein 1 (PD-1) inhibitors [13]. Ce-
tuximab mediates in an oncogenic signal blocking and killing tumor cells by activating
antibody-dependent cell-mediated cytotoxicity (ADCC) via natural killer (NK) cells and
monocytes [64]. It was used for a decade as the first line of HNSCC treatment together
with other platinum-based drugs such as cisplatin and 5-fluorouracil (5-FU). In contrast,
the latter two antibodies block the interaction of PD-1 with its programmed death-ligand
1 (PD-L1) and are used to treat recurrent or metastatic (R/M) HNSCC [106]. Since the
KEYNOTE-048 trial was published in 2019, pembrolizumab has been approved as a first-
line treatment for PD-L1-positive R/M HNSCC and in combination with chemotherapy
for patients with any PD-L1 status [107]. However, the efficacy of targeted therapies is
reduced due to the development of drug resistance. For instance, EGFR shares common
downstream pathways (the RAS-RAF-MAPK and PI3K-AKT-mTOR) with alternative re-
ceptor tyrosine kinases (RTK) such as hepatocyte growth factor receptor (c-MET), human
epidermal growth factor receptor 3 (HER3), and AXL receptor tyrosine kinase, so any muta-
tions or aberrant signaling activity that lead to epidermal growth factor (EGF)-independent
signal transduction can cause resistance development [108].

3.2. Applicability of Antiandrogen Therapy in HNSCC

On the other hand, given the evidence of elevated SHR expression in HNSCC, nAR also
represents a potential target for antiandrogen therapy in these tumors (Figure 2)—notably
in SDC. SDC is a very rare and aggressive subtype of salivary gland carcinoma (1-3%)
with a 5-year survival rate below 20% [109]. Interestingly, nAR is expressed in 70-98% of
SDC cases [110,111] and significantly more often in men than in women [112]. Therefore,
based on nAR expression, in recent years the first-line treatment for AR+ SDC is androgen
deprivation therapy (ADT) using the first-generation of nonsteroidal antiandrogens such
as bicalutamide [113] and flutamide as well as abiraterone acetate [114], an inhibitor of
androgen synthesis [115]. Several studies have shown the benefits of ADT use in AR+ SDC
in terms of a higher response rate and a better prognosis and clinical outcome [109,116-118].
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Locati et al. reported a 64.7% overall response rate and three complete clinical remissions in
a cohort of 17 AR+ SDC patients who received ADT [119]. Furthermore, ADT proved less
toxic but equally effective in both R/M and unresectable locally advanced SDC compared
with conventional chemotherapy [120]. First-line ADT therapy also demonstrated a higher
response rate than the first-line chemotherapy treatment in SDC patients [109]. Nonetheless,
combining chemotherapy or radiotherapy with ADT seems to be the most effective for
AR+ HNSCC treatment because nAR expression positively correlates with overall and
metastases-free survival [121]. Interestingly, an in vitro study also showed that flutamide
treatment of the HSY salivary gland cancer cell line could block the effects of DHT, which
has been shown to increase cell proliferation, migration, and invasion [114].

Since the vast majority of SDC tumors express nAR, treatment with nonsteroidal
antiandrogens is often used in combination with GnRH agonists such as triptorelin and
goserelin and luteinizing hormone-releasing hormone (LHRH) agonists (leuprorelin ac-
etate) [122]. This type of combined androgen blockade (CAB) has an established role in
prostate cancer treatment, and therefore translating these combined treatment strategies
to SDC was studied in a phase II study that suggested the equivalent efficacy and lower
toxicity of CAB for SDC patients compared with chemotherapy [120]. Currently, in the treat-
ment of prostate cancer, new-generation nonsteroidal antiandrogens such as abiraterone
acetate, enzalutamide, apalutamide, and darolutamide also are used [123]. Enzalutamide
monotherapy treatment was used for AR+ SDC patients in a phase II trial in which only
15% of patients (7/46) had a partial response and 2/46 patients maintained the response
until 8 weeks [124]. On the other hand, in the first published report of SDC responding
to abiraterone, a 10-month progression-free survival was described in one patient [125].
Furthermore, 19 AR+ SDC patients were treated with abiraterone plus prednisone and an
LHRH agonist in another phase II trial. The results showed that this combined therapy
represented an active and safe second-line treatment option for AR+ SDC with a 12-month
overall survival rate of 74.5% [126]. Likewise, the first prospective trials that evaluated
CAB with apalutamide and gorselin as a GnRH agonist (NCT04325828) as well as with
darolutamide and gorselin for AR+ SDC treatment are currently ongoing (NCT05694819).
Although SDC can be classified as an androgen-dependent tumor, the growth of which
can be controlled using ADT, the effectiveness and molecular mechanisms underlying the
application of ADT in this type of tumor have yet to be investigated.

4. Conclusions

Disparities in HNSCC incidence and mortality rates between males and females are
more than evident, and this could not be associated only with the different lifestyles.
Although present levels of evidence are still quite limited and scarce, potential toxic
effects of male sex hormones in HNSCC development and progression either alone or
in combination with other well-known risk factors could be discovered by studying the role
of ARs in the etiopathology of HNSCC. At present, nAR is the most studied AR in HNSCC.
However, using the expression status of nAR as a prognostic or predictive biomarker for
HNSCC is still far from a routine clinical practice. The only exception is AR+ salivary
duct carcinomas, for which several clinical trials have shown an advantage in using the
new generation of nonsteroidal antiandrogens in terms of a higher response rate and a
better prognosis and clinical outcome. In that light, the substitution of traditional ADT
with new-generation drugs or even using CAB might provide a better quality of life for all
patients with AR+ HNSCC.
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