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Abstract: Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous
system (CNS). While most of the current treatment strategies focus on immune cell regulation, except
for the drug siponimod, there is no therapeutic intervention that primarily aims at neuroprotection
and remyelination. Recently, nimodipine showed a beneficial and remyelinating effect in experimental
autoimmune encephalomyelitis (EAE), a mouse model of MS. Nimodipine also positively affected
astrocytes, neurons, and mature oligodendrocytes. Here we investigated the effects of nimodipine,
an L-type voltage-gated calcium channel antagonist, on the expression profile of myelin genes and
proteins in the oligodendrocyte precursor cell (OPC) line Oli-Neu and in primary OPCs. Our data
indicate that nimodipine does not have any effect on myelin-related gene and protein expression.
Furthermore, nimodipine treatment did not result in any morphological changes in these cells.
However, RNA sequencing and bioinformatic analyses identified potential micro (mi)RNA that could
support myelination after nimodipine treatment compared to a dimethyl sulfoxide (DMSO) control.
Additionally, we treated zebrafish with nimodipine and observed a significant increase in the number
of mature oligodendrocytes (* p ≤ 0.05). Taken together, nimodipine seems to have different positive
effects on OPCs and mature oligodendrocytes.

Keywords: dihydropyridines; nimodipine; MS; myelination; neuroprotection; Oli-Neu; OPC; zebrafish

1. Introduction

Multiple sclerosis (MS) is a chronic neuroinflammatory disease thought to be caused
and sustained by autoimmune responses against central nervous system (CNS) antigens,
in particular, myelin antigens. One of the characteristic pathological hallmarks of MS is the
presence of demyelinated focal lesions that develop on the background of inflammatory
processes [1]. Inflammation in the MS-affected brain is associated with cellular and humoral
components of both the innate and adaptive immune systems. On the one hand, diffuse
infiltrates in the parenchyma of the CNS, perivascular cuffs, and meningeal cuffs consist
of CD3+ T cells, CD20+ B cells, and plasma cells. On the other hand, activated microglia
and macrophages mediate active tissue damage [2]. The inflammatory response is also
driven by soluble factors, such as proinflammatory cytokines, chemokines, components of
the complement system, and antibodies [3].

Given the consensus that inflammation drives demyelination in MS patients, most
of the current therapies rely on immune-modulating strategies that either dampen the
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overall activity of the immune system or block the entry of peripheral immune cells into
the CNS [4]. However, these therapies often fail in patients with progressive MS [5],
where chronic demyelination and neuroaxonal loss are the key to irreversible neurological
disability [6,7]. Although natural partial remyelination can be detected in a small percentage
of patients post-mortem, it is neither efficient nor sufficient to halt axonal atrophy and
loss [8]. Therefore, therapeutic strategies that promote neuroprotection and enhance
remyelination are considered crucial for lesion repair and the restoration of neuronal
activity [6], especially in the progressive phase of the disease.

Several targets that therapeutically facilitate endogenous remyelination have been identi-
fied in preclinical studies [9]. For example, in vitro and in vivo studies have demonstrated
that opicinumab, a monoclonal antibody against leucine-rich repeat and immunoglobin-like
domain-containing protein (LINGO)-1, a negative regulator of myelination, enhanced oligo-
dendrocyte differentiation and myelination [10,11]. Similarly, blocking neurite outgrowth
factor (NOGO)-A has been shown to enhance neuronal plasticity and remyelination in a
mouse model of MS [12,13]. However, neither opicinumab nor the anti-NOGO-A antibody
could be translated into clinical trials.

Another promising therapeutic target is nimodipine, which belongs to the group of
dihydropyridines, a group of drugs capable of blocking the L-type voltage-gated calcium
channels (VGCCs) Cav1.1 to Cav1.4 [14]. Nimodipine is typically used to treat vasospasms
after subarachnoid hemorrhage [15], where its proposed effect is the relaxation of cere-
bral vascular smooth muscles [16]. Interestingly, more recent research has revealed that
nimodipine has other modes of action. Not only did nimodipine increase the memory
function of old [17] and young rats [18], but it also improved cognitive dysfunction after
cerebral ischemia in a rat model, indicating a more global effect on the CNS [19]. Addition-
ally, nimodipine showed a beneficial and remyelinating effect in experimental autoimmune
encephalomyelitis (EAE), a mouse model of MS [20,21]. Nimodipine also positively affected
astrocytes, neurons, and mature oligodendrocytes in culture [22–25].

In this current study, we examined the effect of nimodipine on oligodendrocyte
precursor cells (OPCs), which are a natural reservoir of oligodendrocytes. Our data indicate
that nimodipine does not impact the expression of myelin proteins; however, it could
influence the expression of microRNA (miRNA), which supports myelin formation.

2. Results
2.1. Oli-Neu Cells Share Common Characteristics with OPCs and Express Functional Cav1.2

In the first set of experiments, we characterized the murine OPC cell line, Oli-Neu,
which has previously been shown to have OPC properties [26]. Oli-Neu cells were stim-
ulated with 1 µM PD 174265, which is a selective inhibitor of epidermal growth factor
receptor, as described by Simon et al. [27]. Following stimulation, the cells started to
differentiate into oligodendrocytes with high expression of myelin proteins, such as myelin
basic protein (MBP) and myelin-associated glycoprotein (MAG) (Figure 1A). Furthermore,
end-point PCR revealed a constant expression of MBP and proteolipid protein (PLP) and
an increasing expression of MAG and myelin oligodendrocyte glycoprotein (MOG) during
differentiation (Figure 1B). Given that Cav1.2 and Cav1.3 are the two VGCCs expressed by
oligodendrocytes and OPCs [28], we also demonstrated the expression of Cav1.2 but not
CaV1.1, Cav1.3, and CaV1.4 at the mRNA level by differentiated Oli-Neu cells. Patch-clamp
experiments were conducted to demonstrate that the detected CaV1.2 channel was physio-
logically active (Figure 1C). Further, those channels could be blocked by nimodipine and
activated by BayK8644, a VGCC agonist (Figure 1C).
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Figure 1. Characterization of Oli-Neu cells. (A) Immunocytochemical analysis of Oli-Neu cells with 
MBP (red)/Olig2 (green), PLP (red)/SOX10 (green), MAG (green), and MOG (green) after 1, 2, 4, and 6 
days, respectively, following stimulation with 1 µM PD 174265 compared to untreated cells. Scale bars 

Figure 1. Characterization of Oli-Neu cells. (A) Immunocytochemical analysis of Oli-Neu cells with
MBP (red)/Olig2 (green), PLP (red)/SOX10 (green), MAG (green), and MOG (green) after 1, 2, 4, and
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6 days, respectively, following stimulation with 1 µM PD 174265 compared to untreated cells. Scale
bars represent 100 µm. (B) End-point PCR showed increased expression of Mag and Mog after
stimulation with 1 µM PD174265. Values on the right indicate the length of the PCR product in
base pairs (bp). (C) Patch-clamp experiments showed the physiological presence of voltage-gated
calcium channels that could be blocked by 10 µM nimodipine and activated by 10 µM BayK8644.
DMSO was used as a control. The graph displays the data points of measured electric currents
(Y-axis) against the applied voltages (X-axis). Error bars indicate standard deviations. Values are
representative of n = 3 independent experiments and are presented as mean ± standard deviation.
Actb: beta-actin; BayK: BayK8644; bp: base pairs; Cacna1s: voltage-gated L-type calcium channel 1.1;
Cacna1c: voltage-gated L-type calcium channel 1.2; Cacna1d: voltage-gated L-type calcium channel
1.3; Cacna1f : voltage-gated L-type calcium channel 1.4; DAPI: 4′,6-diamidino-2-phenylindole; DMSO:
dimethyl sulfoxide; MAG: myelin-associated glycoprotein; MBP: myelin basic protein; MOG: myelin
oligodendrocyte glycoprotein; ms: milliseconds; mv: millivolt; pA: picoamperes; Nimo: nimodipine;
Olig2: oligodendrocyte transcription factor 2; PCR: polymerase chain reaction; PLP: proteolipid
protein; SOX10: SRY-box transcription factor 10.

2.2. Nimodipine Does Not Have an Effect on Myelin Gene Expression in Oli-Neu Cells

To investigate the effect of nimodipine on myelination, terminally-differentiated Oli-
Neu cells were stimulated either with 1 µM or 10 µM nimodipine or dimethyl sulfoxide
(DMSO) for 1, 4, and 6 days in culture medium. The experimental approach is comparable
to a study already published by our group [25], where similar dose-titrated amounts of
nimodipine were added to the oligodendroglial cell line, OLN-93, under differentiating
conditions. Here, we measured the mean fluorescence intensity (MFI) and the extent of
branching in Oli-Neu cells. MFI was defined as the ratio of the total fluorescence of a
single image divided by the number of 4′,6-diamidino-2-phenylindole (DAPI)-positive
cells. Branching was defined as the area occupied by a cell that stained positive for
MBP (Figure 2A) or MAG (Figure 2B) after treatment with nimodipine versus DMSO.
Quantification using artificial intelligence (AI)-based software revealed that the stimulation
of Oli-Neu cells with PD 174265 increased the branching as well as the MFI for MBP and
MAG (Figure 2C,D,F,G), indicating that the cells displayed a more mature status after one
day in the culture medium. No changes in the expression of different myelin proteins were
detectable when nimodipine was added to Oli-Neu cells, irrespective of the number of days
during which the cells were kept in the culture medium (Figure 2C,D,F,G). Furthermore,
using quantitative polymerase chain reaction (qPCR), no differences in the expression of
myelin genes between nimodipine-treated cells and DMSO-treated cells were detected
(Figure 2E,H). These results demonstrate that nimodipine did not significantly increase
myelin-related gene and protein expression in the Oli-Neu cell line.

2.3. Nimodipine Does Not Have Any Effect on Myelin Protein Synthesis in Primary OPCs from
Neonatal Mice

To further confirm that nimodipine does not have any major effect on myelin-related
genes in OPCs, we isolated primary OPCs from neonatal mice and characterized them
following stimulation with platelet-derived growth factor (PDGF) and fibroblast growth
factor 2 (FGF-2). Cells expressed Olig2 and SOX10 after one day in culture, indicating their
differentiation into oligodendrocytes (Figure 3A). Additionally, the myelin proteins, MBP
and MAG, were expressed, confirming the branching of the OPCs (Figure 3A). As shown
in Figure 3B, the expression of myelin-related genes by the primary OPCs was comparable
to that of the Oli-Neu cells (Figure 1). In addition to Cav1.2, primary OPCs also expressed
Cav1.3 (Figure 3B). Patch-clamp analyses demonstrated that both Cav1.2 and Cav1.3 were
physiologically active and could be blocked by nimodipine. Furthermore, BayK8644 was
able to enhance the activation of VGCCs, as shown in Figure 3C. When treating primary
OPCs with nimodipine versus DMSO, we did not detect any changes in the expression of
MBP (Figure 4A–D) and MAG (Figure 4E–H) neither at the protein level nor at the mRNA
level, which was similar to our results using the Oli-Neu cells (Figure 2).
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Figure 2. Oli-Neu cells show increased expression of myelin-related genes after PD 174265 treatment. 
(A,B) Staining of stimulated Oli-Neu cells treated with DMSO, 1 µM, or 10 µM nimodipine. Images 
show MBP (red)/Olig2 (green) (A) or MAG (B). Scale bars represent 100 µm. In n = 10 images, the MFI 
(C,F) and the area occupied by all cells per image in cm2 (D,G) were measured. (E,H) mRNA 
expression of Mbp (E) and Mag (H). Data are presented as mean value ± standard deviation. All 
experiments were performed as n = 4 independent experiments. Kruskal–Wallis test was performed 
to test for statistical significance. * p ≤ 0.05 ** p ≤ 0.01. cm2: square centimeters; DAPI: 4′,6-diamidino-
2-phenylindole; DMSO: dimethyl sulfoxide; MBP: myelin basic protein; MFI: mean fluorescent 
intensity; Nimo: nimodipine. 

Figure 2. Oli-Neu cells show increased expression of myelin-related genes after PD 174265 treatment.
(A,B) Staining of stimulated Oli-Neu cells treated with DMSO, 1 µM, or 10 µM nimodipine. Images
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show MBP (red)/Olig2 (green) (A) or MAG (B). Scale bars represent 100 µm. In n = 10 images, the
MFI (C,F) and the area occupied by all cells per image in cm2 (D,G) were measured. (E,H) mRNA
expression of Mbp (E) and Mag (H). Data are presented as mean value ± standard deviation. All
experiments were performed as n = 4 independent experiments. Kruskal–Wallis test was performed to
test for statistical significance. * p ≤ 0.05 ** p ≤ 0.01. cm2: square centimeters; DAPI: 4′,6-diamidino-2-
phenylindole; DMSO: dimethyl sulfoxide; MBP: myelin basic protein; MFI: mean fluorescent intensity;
Nimo: nimodipine.
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Figure 3. Characterization of primary OPCs after stimulation with PDGF and FGF-2. (A) Immunocyto-
chemistry of OPCs with MBP (red)/Olig2 (green), PLP (red)/SOX10 (green), MAG (green), and MOG
(green) after 1, 2, 4, and 6 days, respectively, following stimulation with 10 ng/mL PDGF and FGF-2. Scale
bars represent 100 µm. (B) End-point PCR after stimulation with 10 ng/mL PDGF and FGF-2. Values on
the right indicate the length of the PCR products in base pairs. (C) Patch-clamp experiments revealed the
physiological presence of VGCCs, which could be blocked by 10 µM nimodipine and activated by 10 µM
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BayK8644. DMSO was used as control agent. Data are presented as mean ± standard deviation. All
experiments were performed as n = 3 independent experiments. Actb: beta-actin; BayK: BayK8644; bp:
base pairs; Cacna1c: voltage-gated L-type calcium channel 1.2; Cacna1d: voltage-gated L-type calcium
channel 1.3; DAPI: 4′,6-diamidino-2-phenylindole; DMSO: dimethyl sulfoxide; FGF-2: fibroblast
growth factor 2; Mag: myelin-associated glycoprotein; Mbp: myelin basic protein; Mog: myelin
oligodendrocyte glycoprotein; ms: milliseconds; mV: millivolt; Nimo: nimodipine; pA: picoamperes;
PDGF: platelet-derived growth factor; Plp: proteolipid protein; SOX10: SRY-box transcription factor
10; VGCC: voltage-gated L-type calcium channel.
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Figure 4. Nimodipine does not have an impact on myelin gene and protein expression by oligodendrocyte
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or 10 µM nimodipine. Images show MBP (red)/Olig2 (green) (A) or MAG (E). DAPI indicates
nuclear staining. Scale bars indicate 100 µm. The MFI (B,F) and the area occupied by all cells in
each image (C,G) were measured in n = 10 images per condition. (D,H) mRNA expression of Mbp
(D) and Mag (H). n = 5 independent experiments of every experiment were performed. Error bars
indicate mean ± standard deviation. Kruskal–Wallis test was performed to test for statistical signifi-
cance. cm2: square centimeters; DAPI: 4′,6-diamidino-2-phenylindole; DMSO: dimethyl sulfoxide;
MAG: myelin-associated glycoprotein; MBP: myelin basic protein; MFI: mean fluorescent intensity;
Nimo: nimodipine.

2.4. Effect of Nimodipine on the mRNA Level in OPCs

Given that both OPCs and Oli-Neu cells behaved similarly following nimodipine
treatment in terms of their expression of myelin-related genes and VGCCs, we used Oli-
Neu cells to further study the effect of nimodipine at the transcriptomic level. RNA
sequencing (Figure 5) revealed an upregulation of genes, such as NADH-cytochrome b5
reductase 1 (Cyb5r1), that support myelination [29], while others like metallothionein-1
(Mt1) were either downregulated or remained unchanged in the nimodipine-treated and
DMSO-treated groups [30]. A summary of the results is provided in Table 1. Subsequently,
further analyses were performed using the QIAGEN Ingenuity® Pathway Analysis (IPA)
to identify pathways that could be influenced by nimodipine. Top hits with a z-score of
>+1 or <−1 are displayed in Table 2. Additionally, IPA revealed that several miRNAs were
influenced by nimodipine. All of these miRNAs have been reported to be involved in the
induction of differentiation and transformation of OPCs into mature oligodendrocytes.
In MS patients, miRNA expression has been shown to be disturbed in the CNS gray
matter [31,32], white matter [31,33], and peripheral blood [34]. A summary of the miRNAs
of interest is provided in Table 3.
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experiments. Results from significance tests were corrected for multiple testing using the Benjamini–
Hochberg method. DMSO: dimethyl sulfoxide.
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Table 1. Changes in mRNA expression patterns after nimodipine treatment in Oli-Neu cells. Top-hit
genes with p < 10−15 are shown.

Gene Key Functions of the Gene with Its Relevance to This Study Impact of Nimodipine Sources

Bhlhe40 This growth factor increases the production of cytokines in T cells. The
factor itself is regulated by the vitamin D receptor. Increased expression [35]

Nr4a1 NR41A is expressed in several cell types. Nr41a is known to prevent
immune cell infiltration into the CNS. Increased expression [36,37]

Mt1
MT1 is capable of binding to free radicals and heavy metal ions and has
neuroprotective potential in the CNS; Mt1−/− and Mt2−/− EAE mice

display an increased number of CNS lesions.
Increased expression [30,38,39]

Cyb5r1 CYB5R1 expression has been described to increase the brain volume in
the early phases of development. Increased expression [29]

Nr1d1 This nuclear receptor displays higher expression in neuronal stem cells
than fetal cells. Increased expression [40]

Gap43 The level of GAP43 correlates negatively with the formation of myelin
in gray matter. Decreased expression [41]

Ddit3 DDIT3 is activated when demyelination occurs. In the cuprizone mouse
model, Ddit3-/- knockout mice show reduced demyelination. Increased expression [42]

Sesn2 SESN2 has been described as a universal growth factor. In MS patients,
serum levels of SESN2 are decreased. Increased expression [43,44]

Gadd45b The DNA methylase, GADD45B, increases transcription and stimulates
axonal regeneration. Increased expression [45]

Serpini1
The direct effect of SERPINI1 is unknown. It is speculated that there is a

negative correlation between neuronal growth and
SERPINI1 expression.

Decreased expression [46]

Pik3r3 PIK3R3 regulates lipid metabolism and is part of a myelin
synthesis pathway. Increased expression [47]

Cntfr CNTFR controls the expression of MOG. Increased expression [48]

Bhlhe40: basic helix–loop–helix protein 40 class E; CNS: central nervous system; Cntfr: ciliary neurotrophic
factor receptor; Cyb5r1: NADH-cytochrome b5 reductase 1; Ddit3: DNA damage-inducible transcript 3;
EAE: experimental autoimmune encephalomyelitis; Gadd45b: growth arrest and DNA damage-inducible beta;
Gap43: growth-associated protein 43; MOG: myelin oligodendrocyte glycoprotein; Mt1: metallothionein-1;
Nr1d1: nuclear receptor subfamily 1 group D member 1; Nr4a1: nuclear receptor 4A1; Pik3r3: phosphatidylinositol
3-kinase regulatory subunit gamma; Serpini1: neuroserpin; Sesn2: sestrin-2.

Table 2. Changes in mRNA expression patterns after nimodipine treatment in Oli-Neu cells. Top hits,
as identified by IPA analysis and with an activation z-score of >1 or <−1, are shown.

Gene Key Functions of the Gene with Its Relevance to This Study. Impact of Nimodipine Sources

Magi2 MAGI2 has been described to be involved in synaptic transmission.
MAGI2 expression was decreased in EAE. Increased expression [49]

S100A2 This calcium sensor is crucial for the organization of the cytoskeleton
and the microtubule network in oligodendrocytes. Increased expression [50]

Oxsr1 OXSR1 is upregulated when embryonic stem cells change to OPCs. Increased expression [51]

Tsc22d1 TSC22D1 is a transcription factor that is upregulated in
oligodendrocytes and downregulated in astrocytes. Increased expression [52]

Cdc2 CDC2, which regulates the cell cycle, is present in OPCs but absent in
mature oligodendrocytes. Increased expression [53]

Pfdn5 PFDN5 is a molecular chaperone that stabilizes newly-synthesized
proteins, allowing them to fold correctly. It is decreased in aging OPCs. Decreased expression [54]

Mknk This kinase is responsible for lipid synthesis in oligodendrocytes. Increased expression [55]

Cdc2: cell division cycle protein 2 homolog; EAE: experimental autoimmune encephalomyelitis; Magi2: membrane-
associated guanylate kinase inverted 2; Mknk: MAP kinase signal-interacting kinase; OPC: oligodendrocyte
precursor cell; Oxsr1: Serine/threonine-protein kinase; Pfdn5: prefoldin subunit 5; S100A2: S100 calcium-binding
protein A2; Tdsc22d1: TSC22 domain family protein 1.
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Table 3. miRNAs affected by nimodipine treatment that is known to play a role in MS pathology.

miRNA Expression Pattern Known Interacting Partner Impact of Nimodipine Source

miR-106 Lower expression in blood samples and in
gray matter lesions of MS patients

miR-106 is a negative regulator for the
amyloid precursor protein Increased expression [34]

miR-219-2-3p Lower expression in the cerebrospinal fluid
of MS patients and in gray matter lesions

miR-219 is crucial for developing OPCs via,
e.g., the suppression of caspase 3 expression Increased expression [56–59]

miR-219b-3p

miR-20a Lower expression in gray matter lesions in
MS patients

miR-20a suppresses the expression of
NF-κB and IL-17/IL-23 Increased expression [60,61]

miR-34a-3p Increased expression in patients with
Alzheimer’s disease

miR-34a-3p acts as a target for CD47. CD47
is a “do not eat me” surface marker Decreased expression [62,63]

miR-34a-5p Decreased expression in lesions of
MS patients

miR-34a-5p reduces the expression of, e.g.,
sirtuin 1, which increases differentiation in

neuronal cells
Increased expression [62,63]

miR-23 Expression is reduced in gray matter
lesions in MS patients

miR-23 is a negative regulator of lamin B1,
which is essential for oligodendrogenesis Increased Expression [64,65]

miR-338 Decreased expression in white and gray
matter lesions of MS patients

Interaction partner of miR-219; increases
the expression of myelin Increased expression [58,59]

miR-7 Downregulation in white matter lesions of
MS patients

miR-7 inhibits Wnt and activates Shh
signaling, both of which increase

myelination
Increased expression [66]

miR-1275 Upregulation in white matter lesions of
MS patents

Inhibition of miR-1275 increases the
expression of claudin 11 Decreased expression [67]

miR-122 Expression is increased in white matter
lesions of MS patients

miR-122 expression increases the
expression of proinflammatory type

I interferons
Decreased expression [68,69]

CD47: cluster of differentiation marker 47; IL: interleukin; miR: microRNA; MS: multiple sclerosis; Nf-κB: nuclear
factor κ-light-chain-enhancer of activated B cells; OPC: oligodendrocyte precursor cell; Shh: sonic hedgehog;
WNT: wingless-type.

2.5. Nimodipine Increases the Number of Oligodendrocytes, but Not OPCs, in an In Vivo Model

Finally, to confirm that nimodipine does not have any direct (re-) myelinating effect on
OPCs, we used two zebrafish models in which green fluorescent protein (GFP) is expressed
either under the Olig2 or the claudinK promoter. Three individual experiments were
conducted with n = 8 fish per experiment. Cells were counted in the dorsal spinal cord
after treatment of the fish with either 1 µM or 10 µM nimodipine or DMSO, respectively.
Counting was performed using an AI-based software (Perkin Elmer) for Olig2 or by eye
for claudinK. ClaudinK is a myelin protein expressed in zebrafish and is an analog of
Claudin11, an essential component of CNS myelin in mammals [70,71]. As shown in
Figure 6, the number of dorsal claudinK+ cells was increased compared to the control,
indicating that there was an effect of nimodipine on mature oligodendrocytes (Figure 6C).
On the contrary, there was no effect on dorsally migrated Olig2+ cells (Figure 6B).
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3. Discussion

This study aimed to investigate the effect of nimodipine on myelin gene and protein
expression as well as on the differentiation and maturation of the Oli-Neu cell line and
primary OPCs. Using different approaches, we were able to demonstrate that nimodipine
did not enhance myelin production in our in vitro cell culture model, neither at the protein
nor at the mRNA level. Furthermore, nimodipine did not induce any morphological
alterations in the cells. However, bulk mRNA sequencing of Oli-Neu cells, followed by
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QIAGEN Ingenuity® Pathway Analysis of the genes, revealed that nimodipine had the
potential to modulate mRNA and miRNA expression patterns.

In the first set of experiments, we confirmed the expression and physiological activity
of L-type VGCCs in Oli-Neu cells and demonstrated that nimodipine, a canonical antagonist
of CaV1.2, was able to block the channel. However, nimodipine did not induce any
upregulation or downregulation of myelin-related genes, which was further confirmed
in primary OPCs. Using immunocytochemistry (ICC), we also analyzed Oli-Neu cells
and OPCs for the expression of MBP, which is one of the most abundant myelin proteins.
Additionally, MAG expression was measured at the protein level since it has been described
as one of the terminal maturation proteins in oligodendrogenesis [72]. Again, there was
no significant difference observed between nimodipine-treated and DMSO-treated cells.
Subsequently, the transcriptome of the Oli-Neu cells was studied further using RNA-Seq.
Several genes that are known to support myelination were differentially regulated in
nimodipine-treated Oli-Neu cells. Among them was Cntfr, which is known to increase
the expression of MOG [48]. Another example was Gap43, which negatively correlated
with the expression of myelin in the gray matter [41] and was decreased after treatment
with nimodipine. On the contrary, Ddit3, which was found to be upregulated during
the demyelination [39,42], showed increased expression after treatment with nimodipine.
Precisely what factors influence this contradictory effect of nimodipine on Oli-Neu cells
requires further clarification.

IPA-based bioinformatical analysis was performed to identify potential pathways
that could be influenced by nimodipine [73], which resulted in the detection of several
miRNAs that were affected (Table 3). miRNAs that belong to small non-coding RNAs
(ncRNAs) have the ability to control gene expression in a sequence-specific manner [74]
and are known to modulate >50% of protein-coding genes at the translational level [75].
The effect of nimodipine on repairing ischemic neuronal injury as well as inhibiting Tau
phosphorylation in tauopathies through a miRNA-dependent axis has been previously
discussed [76,77]. In our study we noticed, for example, that the levels of miR-219-2-
3p and miR-219b-3p, two well-described miRNAs involved in (re-) myelination, were
increased in Oli-Neu cells after nimodipine treatment [56–59]. These miRNAs have not
only been identified as regulators of OPC maturation and myelin repair but have also been
demonstrated to be biomarkers in MS patients [56–59].

Therefore, it is conceivable that nimodipine has the ability to support (re-)myelination
by influencing specific miRNA and mRNA expression patterns. Future experiments should
focus on identifying the precise interacting mRNA target(s) of miRNAs affected by ni-
modipine by performing relevant knock-in and knock-out studies both in vitro and in vivo.

Finally, we confirmed our in vitro data with in vivo studies by treating zebrafish with
either nimodipine or DMSO. The zebrafish model was chosen because of the rapid ability
of zebrafish oligodendrocytes to myelinate [78]. The experiments revealed that only mature
claudinK+ oligodendrocytes increased in number, in contrast with the total number of
Olig2+ oligodendrocytes that are said to be mainly of a more immature phenotype [70].

In line with the data presented here, previous studies have demonstrated that ni-
modipine treatment increased the number of oligodendrocytes in the spinal cord in EAE, a
mouse model of MS [20,21]. Additionally, increased remyelination was observed both in
EAE [20,21] as well as in the cuprizone model of demyelination [24]. Furthermore, nimodip-
ine exerted a beneficial effect on the rat oligodendrocyte cell line OLN-93 by upregulating
myelin-related genes [25]. In our previous studies, the observed effects were independent
of the interaction between nimodipine and the L-type VGCCs Cav1.2 and Cav1.3 [20,25].
Therefore, taken together, we suggest that not only does nimodipine have alternative
interacting partners that are not limited to the L-type VGCCs Cav1.2 and Cav 1.3, but the
differential effects of nimodipine could be linked to specific stages of oligodendrocyte
maturation [25]. Other alternative Ca2+ channels that nimodipine interacts with could be
P2X7 channels which are also discussed as receptors for targeting neuroprotection [79,80].
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In conclusion, nimodipine is a well-characterized and well-tolerated drug that has
been used in clinical practice for more than four decades [15,81,82]. Most of the currently
available therapies for the demyelinating disease MS are based on immune modulation
and immune suppression, while remyelinating treatment is still missing [83]. MS, one of
the most prevalent neurological diseases in young adults in the Western world, causes
a high socio-economic burden [77]. The introduction of a neuroprotective drug would
elevate MS treatment to a new level. Future studies will have to demonstrate if nimodipine
has the potential to become such a drug. Although beneficial effects of nimodipine have
been shown on remyelination both in vivo [20,21] and in vitro, in addition to the effects on
astrocytes, microglia, and neurons [20,22,23,25,84], these effects could not be explained by a
VGCC-dependent mode of action in all cases [22,25,84]. Therefore, further investigation is
necessary to identify potential interaction partners of nimodipine at a cellular level, which
would clarify its role and potential in (re-) myelination.

4. Materials and Methods
4.1. Nimodipine and BayK8644

Nimodipine and BayK8644 were provided (batch: BXR4H3P, research grade) by Bayer
AG (Leverkusen, Germany) on the basis of a material transfer agreement. Both substances
were dissolved in DMSO (Thermo Fisher Scientific, Waltham, MA, USA) to obtain a 10 mM
stock solution. We used a dose of 1 µM or 10 µM for in vitro experiments following
recommendations of previously published studies [85–90] and our own experience [20].

4.2. Oli-Neu Cell Line

The mouse OPC cell line Oli-Neu was provided by Jaqueline Trotter (University of Mainz,
Mainz, Germany). Cells were grown in T75 cell culture flasks (Thermo Fisher Scientific) using
the SATO medium containing Dulbecco’s modified Eagle’s medium (DMEM; Thermo Fisher
Scientific) supplemented with 2% heat-inactivated horse serum (Themo Fisher Scientific),
5 µg/mL insulin (Merck, Darmstadt, Germany), 1% penicillin/streptomycin (10,000 U/mL)
(Thermo Fisher Scientific), 1% N2 supplement (Thermo Fisher Scientific), 5 ng/mL sodium
selenite (Merck), 25 µg/mL gentamicin (Merck, Darmstadt, Germany), 400 nM 3,3′,5-triiodo-L-
thyronine (T3) (Merck), and 520 nM L-thyroxine (T4) (Merck). Cells were maintained at 37 ◦C
and 5% CO2 and passaged when a confluency of 70–80% was reached. All cell culture materials
were coated overnight at 37 ◦C with 0.0001% poly-ornithine (PORN) (Merck) solution.

4.3. ICC

In preparation for immunocytochemical staining, 12-mm diameter coverslips (Carl
Roth, Karlsruhe, Germany) were sterilized by heating at 60 ◦C overnight. For characteriza-
tion, 2.5 × 104 cells were seeded per well of a 24-well plate containing one coverslip each
and incubated in the SATO medium for 48 h. Oli-Neu cells were stimulated with 1 µM
PD 174265 [27] dissolved in DMSO, and OPCs were treated with 10 ng/mL PDGF-AA
and 10 ng/mL FGF-2. For immunofluorescence analyses, cells were treated as above and
additionally received 1 µM nimodipine, 10 µM nimodipine, or DMSO (Thermo Fisher
Scientific), the latter as a vehicle.

Cells were analyzed after 1, 4, and 6 days (Oli-Neu) and 1, 2, 4, and 6 days (OPCs),
after which the medium was removed, and the cells were washed with PBS and fixed
in ice-cold 4% (v/v) paraformaldehyde (Carl Roth) in PBS for 15 min. After the removal
of paraformaldehyde, cells were washed three times with cold PBS and stored in PBS
at 4 ◦C. For staining, cells were permeabilized using 0.1 M Triton X-100 (Carl Roth) in
PBS at room temperature for 10 min, washed three times with PBS, and blocked with
10% BSA (Carl Roth) in PBS for 1 h at room temperature. After blocking, the follow-
ing primary antibodies were diluted in 1% BSA in PBS: anti-MBP (Abcam, Cambridge,
UK) (1:1000), anti-PLP (Novus, Abington, UK) (1:200), anti-Olig2 (Abcam) (1:250), anti-
SOX10 (Abcam) (1:500), anti-MAG (Abcam) (1:100), and anti-MOG (Santa Cruz, Dallas, TX,
USA) (1:200). Primary antibodies were incubated at 4 ◦C overnight. Cells were washed
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three times with PBS and incubated with secondary antibodies in 1% BSA in PBS using
the following dilutions: goat anti-chicken Cy3 (Dianova, Hamburg, Germany) (1:500),
goat anti-rabbit AlexaFluorTM 488 (Dianova) (1:500), and goat anti-mouse AlexaFluorTM

488 (Dianova) (1:400) for 1 h at room temperature. Subsequently, the cells were washed
twice with PBS and once with ddH2O before coverslipping with fluoroshield + DAPI (Ab-
cam). Images were acquired using a Leica DMi8 microscope (Leica, Wetzlar, Germany) at
40× magnification. Intercomputational clearing using the THUNDERTM software was
applied to the obtained images. For analyses, ten random images of one coverslip were
taken. The fluorescence intensity and the total occupied area of the cells were measured
using the NIS ElementsTM software (Nikon, Chiyoda, Japan) and divided by the number of
visible cells to ensure a cell-based analysis.

4.4. RNA Isolation and PCR

Oli-Neu cells were differentiated using PD 174265, while primary OPCs were isolated
using PDGF-AA (Miltenyi Biotech, Bergisch Gladbach, Germany) and FGF-2 (Miltenyi
Biotech). For RNA isolation, the PureLinkTM Mini Kit with PureLinkTM DNase set (Thermo
Fisher Scientific) was used per the manufacturer’s suggestions. The quantity and qual-
ity of the RNA were checked with a photometer. The RNA was reverse transcribed to
complementary DNA (cDNA) using a reverse transcription kit (Thermo Fisher Scientific).

For PCR, samples were amplified using a PCR master mix (Genaxxon, Ulm, Germany)
with primers, as shown in Table 4. Gel electrophoresis was performed with a 2% agarose gel
(Genaxxon) supplemented with GelRed® DNA dye (Genaxxon). A DNA ladder of the size
range 100 bp to 1.5 kbp (Genaxxon) was used to determine the size of the DNA fragments.
Images were obtained using the iBright CL1500 Imaging System (Thermo Fisher Scientific).

Table 4. List of primers used for PCR.

Gene Forward Primer Reverse Primer Annealing Temperature Length (bp)

Actb GGCTGTATTCCCCTCCATCG CCAGTTGGTAACAATGCCATGT 55 ◦C 154
Mbp CGGACCCAAGATGAAAACCC AAAGGAAGCCTGGACCACACAG 56 ◦C 582, 672
Plp GAAAAGCTAATTGAGACCTA GAGCAGGGAAACTAGTGTGG 45 ◦C 531, 636
Mag CTCTATGGCACCCAGAGCCT TGTCCTTGGTGGGTCGTTTT 56 ◦C 355, 400
Mog GACCTCAGCTTGGCCTGACCC TGCTGGGCTCTCCTTCCGC 63 ◦C 841

Cacna1s TGTGGTATGTCGTCACTTCCTCC CGTCAATGATGCTGCCGATG 57 ◦C 258
Cacna1c CAGCTCATGCCAACATGAAT TGCTTCTTGGGTTTCCCATA 53 ◦C 202
Cacna1d AATGGCACGGAATGTAGGAG GACGAAAAATGAGCCAAGGA 52 ◦C 207
Cacna1f GACGAATGCACAAGACATGC CAAGCACAAGGTTGAGGACA 55 ◦C 324

Actb: beta-actin; bp: base pairs; Cacna1c: voltage-gated calcium channel 1.2; Cacna1d: voltage-gated cal-
cium channel 1.3; Cacna1f : voltage-gated calcium channel 1.4; Cacna1s: voltage-gated calcium channel 1.1;
Mag: myelin-associated glycoprotein; Mbp: myelin basic protein; Mog: myelin oligodendrocyte glycoprotein;
Plp: proteolipid protein.

4.5. Patch-Clamp Analysis

Patch-clamp recordings were performed as described previously [91]. Briefly, cov-
erslips with adherent oligodendrocytes were transferred to the recording chamber of an
upright microscope (Zeiss, Jena, Germany) with a solution containing 137 mmol/L of
NaCl, 5.4 mmol/L of KCl, 1.8 mmol/L of CaCl2, 1 mmol/L of MgCl2, 5 mmol/L of N-
2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid (HEPES), and 10 mmol/L of glucose
(pH 7.4). The patch pipette solution contained 120 mmol/L of K-D-gluconate, 20 mmol/L
of KCl, 1 CaCl2, 2 mmol/L of MgCl2, 11 mmol/L of 1,2-bis(o-aminophenoxy)ethane-
N,N,N′,N′-tetraacetic acid (EGTA), and 10 mmol/L of HEPES (pH 7.2).

All experiments were carried out at room temperature (22 ◦C–23 ◦C). Voltage-gated
currents were recorded with an EPC10 patch clamp amplifier (Heka Elektronik, Lambrecht,
Germany) and low-pass filtered at 2.9 kHz using a built-in Bessel filter and digitized
at 20 kHz with Patchmaster software (Heka Elektronik). Patch electrodes were pulled
from borosilicate glass (Hilgenberg, Malsfeld, Germany) to a final resistance of 3–5 MΩ.
Electrode tips were coated with Sylgard 184 (Dow Corning, Midland, MI, USA), and their
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series resistance (5–10 MΩ) was compensated up to 80%. Current traces were analyzed
and plotted with OriginPro (OriginLab Corporation, Northampton, MA, USA) and Matlab
(Mathworks, Natick, MA, USA).

4.6. Mice

Male and female C57BL/6J mice (Charles River, Sulzfeld, Germany) were maintained
under specific pathogen-free conditions at the Franz-Penzoldt-Zentrum (Palmsanlage 5,
91054 Erlangen, FAU Erlangen-Nürnberg, Germany) or at the House of Experimental
Therapy (Nussallee 11, 53115 Bonn, University of Bonn, Germany). All animals had free
access to a standard rodent diet (Ssniff, Soest, Germany) and autoclaved water. Room
temperature was maintained between 20 ◦C–24 ◦C at 45%–65% humidity. Twelve-hour
light/dark periods were ensured. All animal experiments complied with the German Law
on the Protection of Animals (§4 and §7), the European Union directive 2010/63/EU, and
the European Union regulation (EU) 2019/1010, the “Principles of Laboratory Animal Care”
(NIH publication no. 86–23, revised 1985), as well as the “Animal Research: Reporting of In
Vivo Experiments” (ARRIVE) guidelines [92].

4.7. OPC Isolation and Culture

Mice from postnatal day 1 (P1) to P3 were sacrificed by decapitation. The brain was
dissected and stored in DMEM before it was transferred to C-Tubes (Miltenyi Biotec). For
dissociation, the multi-tissue dissociation kit (Miltenyi Biotec) and the gentleMACS™ Octo
Dissociator with Heaters (Miltenyi Biotec) with the program NKDT1 were used per the
manufacturers’ protocols. Cell suspensions were filtered through a 70 µm filter (Sarstedt,
Nümbrecht, Germany) and diluted in PBS containing 0.5% BSA. For the isolation of OPCs,
the CD140a (platelet-derived growth factor receptor (PDGFR)α) microbead kit was used
(Miltenyi Biotec) in combination with the QuadroMACS™ Separator (Miltenyi Biotec)
with LS Columns (Miltenyi Biotec). In brief, columns were activated with 0.5% BSA/PBS
solution. After samples had been applied, columns were washed and eluted with the same
solution. OPCs were cultured in DMEM/F12 (Thermo Fisher Scientific) containing 1% N2
supplement, 2% B27 supplement (Thermo Fisher Scientific), 1% penicillin/streptomycin,
10 ng/mL PDGF-AA (Miltenyi Biotec), and 10 ng/mL FGF-2 (Miltenyi Biotec). Cell culture
flasks were coated with 0.0075 µg/mL poly-D-lysine (Merck), and 24-well plates were
coated with 0.0001 PORN before the cells were seeded.

4.8. Quantitative PCR

For qPCR, day 0 (before the addition of nimodipine/control) was used for baseline
measurements. Cells were treated at identical time points as in ICC experiments. Ex-
periments were performed in technical triplicates using a LightCycler 96 (Roche, Basel,
Switzerland). Actb was used as an endogenous control. Relative gene expression was
assessed using the ∆∆CT method [93]. Primers for qPCR are listed in Table 5.

Table 5. List of primers used for qPCR.

Gene Forward Primer Reverse Primer Ann. Temp. Length (bp)

Actb ACGATATCGCTGCGCTGG AGCATCGTCGCCCGC 60 ◦C 71
Mbp GGCACGCTTTCCAAAATCT GGAGGGCTCTCAGCGTCT 60 ◦C 81
Plp TCAGTCTATTGCCTTCCCTAGC AGCATTCCATGGGAGAACAC 60 ◦C 91
Mag CCAGTACACCTTCTCGGAGC TCCGGCACCATACAACTGAC 60 ◦C 114
Mog ATGCTTACATGGAGGTTGGGC TTCCTCCAAGAAGCCCGAAG 60 ◦C 70

Actb: beta-actin; bp: base pairs; Mag: myelin-associated glycoprotein; Mbp: myelin basic protein; Mog: myelin
oligodendrocyte glycoprotein; Plp: proteolipid protein.

4.9. Bulk mRNA-Seq

Total RNA was extracted from Oli-Neu cells using the PureLink RNA Mini Kit (Thermo
Fisher Scientific), followed by DNase treatment. The quality of the isolated RNA samples
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was determined using an Agilent 2100 Bioanalyzer equipped with an Agilent RNA 6000
Nano Kit and related software (Agilent, Santa Clara, CA, USA). Sequencing libraries were
generated from 1 mg of high-quality RNA using the TruSeq Stranded mRNA Kit (Illumina,
San Diego, CA, USA) per the manufacturer’s instructions. Libraries were sequenced at
a single end on a HiSeq 2500 platform (Illumina) with 100 bp reads to a depth of at least
56.3 million reads. Reads were converted to a FASTQ format with bcl2fastq (version
2.17.1.4; Illumina). Sequences were minimally quality-trimmed and adapter-trimmed using
cutadapt (version 1.18; https://doi.org/10.14806/ej.17.1.200 (accessed on 5 February 2023))
The pre-processed reads were mapped to the Mus musculus reference genome GRCm38.6
and Ensemble gene model 102, using spliced transcripts alignment to a reference (STAR)
software (Version 2.7.8.a; https://github.com/alexdobin/STAR (accessed on 5 February
2023)) and quantified as reads per gene while excluding exons shared between more
than one gene (featureCounts [Version 2.0.1]; http://subread.sourceforge.net/ (accessed
on 5 February 2023)). Based on the read count per gene, differentially expressed genes
were determined using the negative binomial model as implemented in the differential
gene expression analysis package DESeq2 (version 1.30; http://www.bioconductor.org/
packages/release/bioc/html/DESeq2.html (accessed on 5 February 2023); R version 4.0.2).
Results from significance tests were corrected for multiple testing using the Benjamini–
Hochberg method [94]. IPA (Qiagen) was used to investigate pathways and up- and
downstream regulators. An adjusted p-value of ≤0.01 was used as a cut-off to identify
significantly differentially expressed genes. Raw data were uploaded on GEO and can be
found under the identification number GSE221939.

4.10. Fish

Danio renio was maintained under defined conditions [95] in our zebrafish core facility
(Nussallee 10, 53115 Bonn, University of Bonn) according to the German law on the Protec-
tion of Animals (§11), the European Union directive 2010/63/EU, and the European Union
regulation (EU) 2019/1010, the “Principles of Laboratory Animal Care” (NIH publication
no. 86-23, revised 1985), as well as the “Animal Research: Reporting of In Vivo Experi-
ments”(ARRIVE) guidelines [92]. All experiments were performed before the zebrafish
larvae reached an age of 5 days after fertilization.

A 14-h light period and a 10-h dark period were ensured. All animals were fed two
times a day with artemia salinae and dry pellets (AquaPro2000, Bückenburg, Germany).
Tg(Olig2:eGFP) [96] and Tg(claudinK:eGFP) [70] were paired as previously described [95].
After 30 min, eggs were collected and maintained in Danieau water at 28 ◦C. Methylene
blue was used to avoid the growth of fungi. The pigmentation of fish was prevented using
0.003% phenylthiocarbamide (PTU) in Danieau water after the first 24 h. In addition, fish
were decoronated and treated with 1 µM nimodipine, 10 µM nimodipine, or DMSO as a
control for 48 h between 24 and 72 h post-fertilization. Fish were anesthetized with ethyl
3-aminobenzoate methanesulfonate (MS222) (Sigma), placed in 96-well glass plates (Cellvis,
Mountain View, CA, USA) individually, and imaged with an EnSight Multimode Plate
Reader (PerkinElmer, WA, USA). Z-stacks consisting of n = 6 images with z = 50 µm/step
size were acquired at a wavelength of 465 nm and 50 ms light exposure. Olig2+ cells were
counted using PerkinElmer’s Kaleido software (PerkinElmer) [55]. ClaudinK+ cells were
counted manually using the ImageJ software.

4.11. Statistics

For statistical analyses, Prism 9.3.1 was used (Graphpad, San Diego, CA, USA). Mean
values ± standard deviations are indicated in all graphs. To test for normal distribution of
data, the Shapiro–Wilk test was used. For the analysis of normally distributed data, ANOVA
was used. The Kruskal–Wallis test was used when data were not normally distributed. A
statistical significance level of 5% was chosen, and the p-values are displayed as * p ≤ 0.05,
** p ≤ 0.01, and *** p ≤ 0.001.

https://doi.org/10.14806/ej.17.1.200
https://github.com/alexdobin/STAR
http://subread.sourceforge.net/
http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html
http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html


Int. J. Mol. Sci. 2023, 24, 3716 17 of 21

Author Contributions: M.E. and S.K. designed the experiments; M.E., A.W., Y.A., F.B., C.B. and
E.M. conducted the experiments; M.E., R.C. and S.K. wrote the original draft of the manuscript; S.K.
secured funding; A.F., A.B.E., B.O. and S.K. supervised the study. All authors have read and agreed
to the published version of the manuscript.

Funding: This study was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation): 270949263/GRK2162 (grant to Stefanie Kuerten). The DFG was not involved in the
study design, collection, analysis, or interpretation of data, nor was it involved in the writing of
the manuscript and the decision to submit the manuscript for publication. S.K., who also received
a grant from the DFG IRTG2168 (grant no. 272482170), is a member of the Excellence Cluster
“ImmunoSensation2” EXC2151-390873048.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data generated and analyzed during the current study are available
from the corresponding author upon reasonable request.

Acknowledgments: We thank Birgit Blanck, Marion Michels, Tobias Lindenberg, Ji-Young Chang,
Anita Hecht, Andrea Hilpert, Petra Rothe, Farah Radwan, Lars Fester, and Ursula Lebherz for their
outstanding technical and administrative support. Zebrafish work was supported by the Bonn
Medical Faculty Zebrafish Core Facility.

Conflicts of Interest: M.E., A.W., R.C., Y.A., F.B., A.F., C.B., A.E., E.N., and B.O. declare no conflict of
interest. S.K. reports receiving funding from the Deutsche Forschungsgemeinschaft (DFG), Novartis,
F. Hoffmann-La Roche, and Sanofi, and also receiving speaker fees and consultancy honoraria from
Novartis, F. Hoffmann-La Roche, Sanofi, and Teva (outside the submitted work).

References
1. Lassmann, H. Pathogenic mechanisms associated with different clinical courses of multiple sclerosis. Front. Immunol. 2018, 9, 3116.

[CrossRef] [PubMed]
2. Frischer, J.M.; Bramow, S.; Dal-Bianco, A.; Lucchinetti, C.F.; Rauschka, H.; Schmidbauer, M.; Laursen, H.; Sorensen, P.S.; Lassmann,

H. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 2009, 132, 1175–1189. [CrossRef]
[PubMed]

3. Lassmann, H. Multiple Sclerosis Pathology. Cold Spring Harb. Perspect. Med. 2018, 8, a028936. [CrossRef]
4. Weber, M.S.; Menge, T.; Lehmann-Horn, K.; Kronsbein, H.C.; Zettl, U.; Sellner, J.; Hemmer, B.; Stüve, O. Current treatment

strategies for multiple sclerosis-efficacy versus neurological adverse effects. Curr. Pharm. Des. 2012, 18, 209–219. [CrossRef]
[PubMed]

5. Van Schaik, P.E.M.; Zuhorn, I.S.; Baron, W. Targeting fibronectin to overcome remyelination failure in multiple sclerosis: The need
for brain- and lesion-targeted drug delivery. Int. J. Mol. Sci. 2022, 23, 8418. [CrossRef]

6. Klistorner, A.; Barnett, M. Remyelination trials: Are we expecting the unexpected? Neurol. Neuroimmunol. Neuroinflamm. 2021, 8.
[CrossRef] [PubMed]

7. Dutta, R.; Trapp, B.D. Relapsing and progressive forms of multiple sclerosis: Insights from pathology. Curr. Opin. Neurol.
2014, 27, 271–278. [CrossRef]

8. Calabresi, P.A. Trials and tribulations on the path to remyelination. Lancet Neurol. 2021, 20, 686–687. [CrossRef]
9. Cunniffe, N.; Coles, A. Promoting remyelination in multiple sclerosis. J. Neurol. 2021, 268, 30–44. [CrossRef]
10. Hanf, K.J.M.; Arndt, J.W.; Liu, Y.; Gong, B.J.; Rushe, M.; Sopko, R.; Massol, R.; Smith, B.; Gao, Y.; Dalkilic-Liddle, I.; et al.

Functional activity of anti-LINGO-1 antibody opicinumab requires target engagement at a secondary binding site. MAbs
2020, 12, 1713648. [CrossRef]

11. Cadavid, D.; Mellion, M.; Hupperts, R.; Edwards, K.R.; Calabresi, P.A.; Drulović, J.; Giovannoni, G.; Hartung, H.-P.; Arnold,
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