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Abstract: Amyloid fibril causes serious amyloidosis such as neurodegenerative diseases. The struc-
ture is composed of rigid β-sheet stacking conformation which makes it hard to disassemble the
fibril state without denaturants. Infrared free electron laser (IR-FEL) is an intense picosecond pulsed
laser that is oscillated through a linear accelerator, and the oscillation wavelengths are tunable from
3 µm to 100 µm. Many biological and organic compounds can be structurally altered by the mode-
selective vibrational excitations due to the wavelength variability and the high-power oscillation
energy (10–50 mJ/cm2). We have found that several different kinds of amyloid fibrils in amino acid
sequences were commonly disassembled by the irradiation tuned to amide I (6.1–6.2 µm) where the
abundance of β-sheet decreased while that of α-helix increased by the vibrational excitation of amide
bonds. In this review, we would like to introduce the IR-FEL oscillation system briefly and describe
combination studies of experiments and molecular dynamics simulations on disassembling amyloid
fibrils of a short peptide (GNNQQNY) from yeast prion and 11-residue peptide (NFLNCYVSGFH)
from β2-microglobulin as representative models. Finally, possible applications of IR-FEL for amyloid
research can be proposed as a future outlook.

Keywords: amyloid fibril; infrared free electron laser; amide I; β-sheet; α-helix; vibrational excitation;
disassembly

1. Introduction

Protein structures are generally constructed by a number of peptide fragments such
as α-helices and β-sheets, and many functional proteins have globular shapes including
α-helices mainly under physiological conditions. In contrast, β-sheet-rich conformation
can often be dominant over the α-helix or other conformations when amino acid mutations
occur and protein concentrations are increased locally in cells [1–3]. Amyloid fibrils are
such a protein assembly and are deposited into various tissues, resulting in onset of amy-
loidosis [4–6]. A part of the representative amyloidosis and the causal amyloid proteins are
listed in Table 1. About 40 kinds of proteins cause amyloidosis and can be mainly divided
into 2 categories [7]: the first group is related to neurodegenerative diseases which includes
Aβ [8,9], tau protein [10], polyglutamine [11], transthyretin [12], prion protein [13], S100
protein [14], and α-synuclein [15]. The second group contains lysozyme [16], calcitonin [17],
insulin [18], and β2-microglobulin [19]. Interestingly, the wavenumbers of the amide I of
their fibril states are around 1610–1640 cm−1, while those of globular proteins are usually
around 1640–1660 cm−1 [20]. The difference in the wavenumber is caused by a cross β-sheet
stacking formation which is common in many amyloid proteins, although how the fibril
structure is associated with the cell toxicity remains unclear.
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Table 1. Amyloidosis-related proteins and their amide I bands in fibril states.

Amyloidosis-Related Proteins Amide I (cm−1) Ref.

Aβ1-40/Aβ1-42 (Alzheimer’s disease) 1630/1626 [8,9]
Tau (Frontotemporal dementia) 1630 [10]

Polyglutamine (Huntington’s disease) 1625 [11]
Transthyretin (Amyloidotic polyneuropathy) 1615 [12]

Prion protein (Creutzfeldt-Jakob disease) 1626/1635 [13]
S100A6 (Amyotrophic lateral sclerosis) 1625 [14]
α-Synuclein (Parkinson’s disease) 1630 [15]

Lysozyme (Hereditary amyloidosis) 1614 [16]
Calcitonin (Thyroid medullary carcinoma) 1639 [17]

Insulin (Subcutaneous edema) 1628 [18]
β2-Microglobulin (Kidney dialysis amyloidosis) 1629 [19]

The structure of the amyloid fibril is constructed by self-assembled β-sheet chains:
the diameter of a chain varies from 1 to 10 nm and its length is usually several 100 nano-
meters (Figure 1). Both fibrils from hen egg-white lysozyme and human insulin are
formed under acidic conditions, and those fibrils seem to twist like thin strings [21,22].
It is considered natural that deconstruction of the fibril structure can halt aggregation of
the amyloid proteins and interfere with the disease worsening, which should become an
efficient treatment. However, the fibril structure is highly hydrophobic and formed by a
hydrogen bonding network [23–25]. In addition, the amyloid fibril is strongly deposited
into the biological tissues, so it is difficult to dissociate the β-sheet stacking structure
under physiological conditions without denaturants and organic solvents such as dimethyl
sulfoxide [26,27].
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Figure 1. Transmission-electron microscopy images of lysozyme fibril (a) [21] and insulin fibril
(b) [22]. Photographs were taken by negative staining using phosphotungstic acid. Black bar: 100 nm.

Infrared free electron laser (IR-FEL) is an intense picosecond (ps) pulsed laser
(Figure 2) [28–30], and the mechanism of IR-FEL oscillation is briefly as follows: An electron
beam is generated by a high radio-frequency (RF) electron gun (2856 MHz) and injected
into an undulator (a periodic magnetic field) through a linear accelerator. The maximum
acceleration energy reaches 40 MeV, and the electron beam is bent periodically to generate
the synchrotron radiation (SR) in the undulator. The SR interacts with the electron beam
and produces the IR-FEL. The time structure exhibits double pulse domains where several
thousands of micropulses having a 1–2 ps duration are bunched with a 350 ps interval
in one macropulse. The macropulse has a 2 µs duration and is oscillated at 5 Hz, and its
pulse energy reaches 10 to 20 mJ. A fascinating characteristic of IR-FEL for users is the
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capacity to excite the various vibrational modes independently due to the wavelength
tunability from near to far infrared regions (3–100 µm), which can lead to alteration of the
molecular structure of various compounds in biological, gas-phase, and solid materials.
Presently, IR-FELs are open at many synchrotron-radiation facilities all over the world
since the optical emission was first observed at a laboratory level more than 50 years
ago [31]. Various original experimental studies using IR-FELs are reported as follows:
ablation of biological tissues [32–34], alteration of biological functions [35,36], degradation
of protein–metal complexes [37,38], optical and spectroscopic imaging [39–41], structural
dynamics of biomolecules [42,43], chemical reactions in the gas phase [44–46], decomposi-
tion of biopolymers [47–49], nonlinear-optical physics [50], and observation of terahertz
radiation [51].
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Figure 2. Outline of IR-FEL system. The oscillation system is mainly composed of electron-linear
accelerator, undulator, and resonant mirrors. The undulator is formed by periodic N and S poles. The
laser beam is transported from a coupling hole on the upstream mirror to user room via reflection
mirrors set in a vacuum waveguide.

We discovered that IR-FEL tuned to amide I can disassemble the β-sheet stacking
structures of amyloid fibrils into their non-fibril states containing α-helix conformations
(Figure 3) [21,22,52–61]. In almost all cases, the silk-like fibrils are converted to tiny
particles after laser irradiation. Various fibrils from lysozyme (129 residues), insulin
(51 residues), DFNKF (5 residues), polyglutamine (69 residues), Aβ (42 residues), GN-
NQQNY (7 residues), and β2-microglobulin peptide (11 residues) can be dissociated to
their non-fibril states, although the disassembly patterns are slightly various depending on
the amino acid sequences. In addition, those experimental results were arguably evidenced
by molecular dynamic simulations [62–66]. Interestingly, the conversion from β-sheets to
α-helices is observed in all types of amyloid proteins.

It can be estimated that the dissociation of amyloid fibrils can proceed within several
hundred picoseconds (Figure 4), which was theoretically verified by a non-equilibrium
simulation study as described later [58,59]. A thermal confinement theory can be applied to
this laser-mediated dissociation process: the fibril dissociation is finished before the diffu-
sion of the vibrational excitation energy because an energy scape to the outer environment
requires several nanoseconds [67]. The fibril state is thermodynamically more stable than
the native state [68], and so it can be inferred that the vibrational excitation energy from
IR-FEL can overcome the energy barrier before the thermal diffusion, which can produce
the disassembled peptides.
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(SEM) images of calcitonin 5-residue peptide fibril before and after IR-FEL irradiation [52]. White
bar: 2 µm.
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The applications of IR-FEL in the dissociation of amyloid fibrils have been demon-
strated for various systems. From the theoretical side, molecular dynamics simulations have
been performed for various fibril models, including Aβ17-42 and HET-s [62], GNNQQNY fib-
rils [59], pure polyglutamine and pure polyasparagine fibrils [69], and tetrameric Aβ1-42 β-
barrel in neuronal membrane [64]. From the experimental side, we have investigated the con-
formational changes of several fibrils from lysozyme [21,58], insulin [22], DFNKF [52,53,57],
polyglutamine [54], Aβ1-42 [56], GNNQQNY [59], and β2-microglobulin [60] by using in-
frared microspectroscopy, electron microscopy, and the fibril-binding fluorescent reagents.
In this review, we focus on two representative amyloid fibril systems which have been
investigated by joint experimental/theoretical studies [59,60].

2. Infrared-Laser Induced Dissociation of GNNQQNY Peptide Fibril

Prion is known to cause several neurodegenerative diseases and Creutzfeldt–Jakob
disease in mammals [70]. Prion also exists in bacteria, and a part peptide of Sup35, GN-
NQQNY, is self-assembled to form amyloid fibrils [71–73]. This peptide fibril was subjected
to the IR-FEL irradiation and analyzed by both experiments and non-equilibrium molecular
dynamics simulation [59].

2.1. Experimental Results

The laser beam from the IR-FEL oscillation system was introduced to the surface of
the fibril sample, and the beam diameter was focused to about 0.3–0.4 mm using a barium
fluoride lens. The pulse energy was 9−10 mJ, and the local destruction of the sample
surface can be seen after 10 macropulses where the duration of one macropulse is 2 µs [74].
Below 5 mJ, the irradiation effect on the fibril dissociation was weak. In this study, the
number of irradiation pulses was set to 900 macropulses (=3 min) to induce full dissociation
of the fibril state.

FT-IR spectrum of the non-fibrous conformation of the peptide (Pre-fibril) exhibits
a dominant peak at 1650 cm−1 and a shoulder peak at 1631 cm−1 (≈6.13 µm) at the
amide I region (Figure 5a). After fibrillation (mature-Fibril), the absorbance of the latter
peak increases, which corresponds to the C=O stretching mode in the β-sheet chain, and
the experimental wavelength of IR-FEL was set to 6.13 µm. A non-specific wavelength
(2000 cm−1 = 5.0 µm) was also tested as a reference. Figure 5b shows the thioflavin T (ThT)
fluorescence intensity of the fibril before and after irradiations at the amide-I resonant
and the non-resonant frequencies. The irradiation at 6.13 µm caused a decrease of nearly
85% of the ThT signal, which indicates a substantial decrease in the fibrous conformation,
while the irradiation at 5.0 µm hardly changed the signal, which indicates the fibril state
was maintained.

In the SEM images (Figure 6a), straw-like filaments (left) markedly changed into small
fragments (right) by the irradiation at 1631 cm−1. Wide-angle X-ray scattering (WAXS)
measurement was performed to examine the conformation of the peptide (Figure 6b). In
the Pre-fibril state (blue), one main broad peak was detected at q = 13.25–13.5 nm−1, which
indicates random peptides in the oligomeric state. On the contrary, a strong peak and a
weaker peak were observed in the fibril state at 12.8 nm−1 and 13.5 nm−1, respectively (red).
The former peak means an intermolecular Cα−Cα distance (d) of 0.49 nm in the cross-β
sheets. After IR-FEL irradiation at 1631 cm−1, this peak was decreased and the broad peak
near q = 13.5 nm−1 remained, which shows complete dissociation of the fibril (green).



Int. J. Mol. Sci. 2023, 24, 3686 6 of 18Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 19 
 

 

 

 
Figure 5. (a) Infrared spectra of the Pre-fibril (red) and mature-Fibril (blue) of the GNNQQNY pep-
tide. The IR-FEL irradiation wavelengths of 6.13 μm and 5.0 μm used in this study were marked as 
dotted lines. (b) ThT binding assay. The reagent concentration is 25 μM and the laser energy is about 
10 mJ per one macropulse at both wavelengths. 

In the SEM images (Figure 6a), straw-like filaments (left) markedly changed into 
small fragments (right) by the irradiation at 1631 cm−1. Wide-angle X-ray scattering 
(WAXS) measurement was performed to examine the conformation of the peptide (Figure 
6b). In the Pre-fibril state (blue), one main broad peak was detected at q = 13.25−13.5 nm−1, 
which indicates random peptides in the oligomeric state. On the contrary, a strong peak 
and a weaker peak were observed in the fibril state at 12.8 nm−1 and 13.5 nm−1, respectively 
(red). The former peak means an intermolecular Cα−Cα distance (d) of 0.49 nm in the 
cross-β sheets. After IR-FEL irradiation at 1631 cm−1, this peak was decreased and the 
broad peak near q = 13.5 nm−1 remained, which shows complete dissociation of the fibril 
(green). 

  

Figure 5. (a) Infrared spectra of the Pre-fibril (red) and mature-Fibril (blue) of the GNNQQNY peptide.
The IR-FEL irradiation wavelengths of 6.13 µm and 5.0 µm used in this study were marked as dotted
lines. (b) ThT binding assay. The reagent concentration is 25 µM and the laser energy is about 10 mJ
per one macropulse at both wavelengths.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 7 of 19 
 

 

 

 
Figure 6. (a) SEM images of GNNQQNY peptide fibril before (left) and after (right) IR-FEL irradia-
tion. Black bar: 200 nm. (b) WAXS spectra. Blue: Pre-fibril; red: mature-Fibril; green: irradiated fibril. 
Intermolecular distance (d) is equal with 2π/q. 

2.2. Simulation Results 
We performed nonequilibrium molecular dynamics (NEMD) simulation to examine 

the fibril dissociation process with the IR-FEL irradiation. Based on a calculation of the IR 
spectrum of 100 structures and a statistical selection from the equilibrium trajectory, the 
amide-I band around 1675 cm−1 was dominantly identified as the C=O stretching vibration 
in the cross-β sheets, and a band around 1690 cm−1 was assigned as the C=O stretching 
vibrations in the other conformations. Interestingly, it was found that the fibril state was 
deformed after one single laser pulse at 1675 cm−1 by calculations of root-mean-square-
deviation (RMSD), number of intermolecular hydrogen bonds, and radius of gyration. 
This evidenced that the laser irradiation resonant with the C=O stretching vibration in the 
cross-β sheets causes disruption of the fibril. To examine the effect of the laser intensity, 
we performed 100 simulations with three laser intensities, E0 = 1.5 V/nm, 2.0 V/nm, and 
2.5 V/nm at 1675 cm−1, and one laser intensity E0 = 2 V/nm at 2000 cm−1 (Figure 7a). The 
fibrous assembly was fully dissociated after 500 ps with E0 = 2.0 V/nm and 2.5 V/nm while 
the fibril was partially dissociated in the case of E0 = 1.5 V/nm and was little changed at 
2000 cm−1 even with the high laser intensity E0 = 2.0 V/nm. 

To associate the molecular simulation with the experiment, we calculated the WAXS 
spectra (Figure 7b) and the secondary structures of the peptide (Figure 7c) with E0 = 2 
V/nm at 1675 cm−1. A peak at 13.3 nm−1 remained within the first 20 ps in the WAXS spec-
trum which is close to the peak at 12.8 nm−1 in the experimental spectrum (Figure 6b). The 
peak was shifted to 11.5 nm−1 at 24 ps and almost disappeared after 50 ps, which means 
destabilization of the fibrils. The population of secondary conformation was calculated 
based on the peak intensity at amide-I frequency: 1625−1640 cm−1 for β-sheet, 1650−1655 
cm−1 for α-helix, 1645−1650 cm−1 for other, and 1655−1675 cm−1 for turn. Before the IR-FEL 
irradiation, the populations of β-sheet, random coil, turn, and helix were 68%, 18%, 14%, 
and 0%, respectively (Figure 7c, left). After the IR-FEL irradiation (right), these popula-
tions changed into 11%, 30%, 31%, and 28% in the experiment, which indicates that the 
fibril was converted to non-fibrous conformation with dominant random coil/turn struc-
tures. In the molecular simulation using E0 = 2 V/nm, β-sheet, coil, turn, and helix are 5%, 

Figure 6. (a) SEM images of GNNQQNY peptide fibril before (left) and after (right) IR-FEL irradiation.
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2.2. Simulation Results

We performed nonequilibrium molecular dynamics (NEMD) simulation to examine
the fibril dissociation process with the IR-FEL irradiation. Based on a calculation of the IR
spectrum of 100 structures and a statistical selection from the equilibrium trajectory, the
amide-I band around 1675 cm−1 was dominantly identified as the C=O stretching vibration
in the cross-β sheets, and a band around 1690 cm−1 was assigned as the C=O stretching
vibrations in the other conformations. Interestingly, it was found that the fibril state was
deformed after one single laser pulse at 1675 cm−1 by calculations of root-mean-square-
deviation (RMSD), number of intermolecular hydrogen bonds, and radius of gyration.
This evidenced that the laser irradiation resonant with the C=O stretching vibration in the
cross-β sheets causes disruption of the fibril. To examine the effect of the laser intensity,
we performed 100 simulations with three laser intensities, E0 = 1.5 V/nm, 2.0 V/nm, and
2.5 V/nm at 1675 cm−1, and one laser intensity E0 = 2 V/nm at 2000 cm−1 (Figure 7a). The
fibrous assembly was fully dissociated after 500 ps with E0 = 2.0 V/nm and 2.5 V/nm while
the fibril was partially dissociated in the case of E0 = 1.5 V/nm and was little changed at
2000 cm−1 even with the high laser intensity E0 = 2.0 V/nm.
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Figure 7. (a) The peptide assembly after 500 ps NEMD simulations at different laser intensities
and frequencies. (b) Spectral changes in WAXS and the corresponding assemblies during NEMD
simulation with E0 = 2.0 V/nm at 1675 cm−1. (c) Populations of protein secondary conformations
in the peptide before (left) and after (right) laser irradiations at an experimental laser frequency of
1631 cm−1 (green) and at simulation laser frequency of 1675 cm−1 (blue).
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To associate the molecular simulation with the experiment, we calculated the WAXS
spectra (Figure 7b) and the secondary structures of the peptide (Figure 7c) with E0 = 2 V/nm
at 1675 cm−1. A peak at 13.3 nm−1 remained within the first 20 ps in the WAXS spectrum
which is close to the peak at 12.8 nm−1 in the experimental spectrum (Figure 6b). The peak
was shifted to 11.5 nm−1 at 24 ps and almost disappeared after 50 ps, which means desta-
bilization of the fibrils. The population of secondary conformation was calculated based
on the peak intensity at amide-I frequency: 1625–1640 cm−1 for β-sheet, 1650–1655 cm−1

for α-helix, 1645–1650 cm−1 for other, and 1655–1675 cm−1 for turn. Before the IR-FEL
irradiation, the populations of β-sheet, random coil, turn, and helix were 68%, 18%, 14%,
and 0%, respectively (Figure 7c, left). After the IR-FEL irradiation (right), these populations
changed into 11%, 30%, 31%, and 28% in the experiment, which indicates that the fibril was
converted to non-fibrous conformation with dominant random coil/turn structures. In the
molecular simulation using E0 = 2 V/nm, β-sheet, coil, turn, and helix are 5%, 40%, 40%,
and 15%, respectively. These results are almost compatible with the experimental data.

To visualize the time evolution at the peptide sequence level, intermolecular hydrogen-
bond mapping was created using E0 = 2 V/nm with ω = 1675 cm−1 as the simulation
parameters (Figure 8). Before the laser irradiation (0 ps), five strong hydrogen bonds
at N−N, Q−N, N−Q, Q−Q, and N−Y can be observed, which refers to the parallel β-
sheets formation. After the laser irradiation, the number of hydrogen-bonds continuously
decreased from 100−140 to 20−40 after 50 ps, which indicates that the laser can enhance
the separation between peptide chains.
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3. Disassembly of β2-Microglobulin Peptide Fibril

β2-Microglobulin (β2M) is a protein composed of about one hundred amino acids
and is a causal factor for serious amyloidosis in kidney dialysis patients [75]. Especially,
the peptide fragment (NFLNCYVSGFH) tends to form a self-assembly under physiological
conditions [76]. The peptide fibril was subjected to the IR-FEL irradiation, and the con-
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formation was analyzed by infrared microspectroscopy (IRM) and equilibrium molecular
dynamics simulation [60].

3.1. Experimental Results

Three wavelengths (6.1 µm (νC=O, amide I), 6.5 µm (δN-H, amide II), and 5.0 µm
(non-absorption wavelength)) were selected for the irradiation experiments. In the IRM
spectra (Figure 9a), a strong peak at 6.15 µm (1624 cm−1) and a broad peak at about 6.0 µm
(1667 cm−1) were observed (blue, non-irradiation). The former corresponds to the β-sheet
and the latter influenced amide bonds associating with other conformations containing
α-helix. The laser irradiation tuned to 6.1 µm with an energy fluence of 50 mJ/cm2 reduced
the peak intensity from the β-sheet (red) more than those tuned to 6.5 µm (violet) and
5.0 µm (green). The peptide conformations were markedly changed when the energy
fluence was set to more than 40 mJ/cm2 (Figure 9b,c).
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the reduction of the β-sheet. (c) Irradiation-energy dependency of the formation of the α-helix.

3.2. Simulation Results

Equilibrium molecular dynamics simulation using GROMACS (version 2019.6) was
performed to investigate the conversion process from theβ-sheet toα-helix in the 11-residue
peptide (Figure 10a). The converged RMSD value of the β-sheet is higher than that of the
α-helix, and the fluctuation of the β-sheet was larger than that of the α-helix (Figure 10b).
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Time evolution analysis suggested that the β-sheet conformation was disordered while
the α-helix was stable after the peptide fibril was irradiated by laser irradiation (Figure 3
in [60]).
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Figure 10. Equilibrium molecular dynamics simulation analysis. (a) β-Sheets (left) were extracted
from the 11-residue peptide from β2M and the α-helix (right) was created by restricting the dihedral
angle of the peptide main chain. (b) Time evolution of RMSD values (nm).

Hydrogen bonds analysis highlighted a critical amino acid for the conversion from
β-sheet to α-helix of the peptide (Figure 11a). The probability of hydrogen bonds at N4
was remarkably decreased from 70% in the β-sheet to 10% in the α-helix. A 3D stick model
showed that L3 and C5 are close to N4 and the hydrogen bond distances between N4
and those amino acids are elongated from 2 Å in the β-sheet to 12–14 Å in the α-helix
(Figure 11b). Therefore, it can be estimated that the hydrogen bonds associated with N4
can be dissociated by the vibrational excitation induced by the amide-I specific irradiation.

Involvement of water molecules can also be suggested to induce the dissociation of
the fibril [77]. NEMD simulation of the Aβ peptide fibril showed that water molecules
sometimes enter the space between the β-sheet chains and prevent the reformation of the
intermolecular hydrogen bond if the peptide fibril is irradiated by the IR-FEL. Therefore,
the water molecules disturb the formation of hydrogen bonds and allow the disassembly
of the fibril during the laser irradiation (Figure 12).
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Figure 12. IR-FEL mediated disassembly of amyloid fibril. First, hydrogen bonds between the
β-sheets are cleaved by vibrational excitation of amide bonds. Second, water molecules enter the core
of the fibril and disturb the re-assembly of the peptide chains. Finally, the fibril is disassembled into
the non-fibrous state containing α-helix and other conformations.

4. Future Application of IR-FEL in Amyloid Research

The above results showed that the combination of experiments and molecular dynam-
ics simulations gives us a clear image of the disassembly process of amyloid peptides by
the IR-FEL, and we can expect that the use of intense infrared lasers will open a way for
the reduction of various types of amyloid aggregates in future. Regarding the therapeutic
strategies for Alzheimer’s disease (AD), non-pharmaceutical approaches are now highly
desirable although several antibodies against Aβ and inactivators of γ-secretase have been
tested as pharmaceutical drugs [78–80]. In recent years, it has been suggested that the
binding of Aβ to cell membranes is a critical step for the onset of AD pathogenicity, and
the hydrophobic interactions of cholesterol molecules with Aβ play important roles in
β-sheet oligomerization [64,81–84]. Therefore, it can be supposed that targeting the binding
of cholesterol in the lipid membrane to the Aβ fibril may affect the progression of the
pathogenicity. The IR-FEL can decompose the cholesterol in blood vessels by tuning the
irradiation wavelength to the ester bonds [85]. It can be supposed that the Aβ binding to
the lipid membrane can be perturbed by excluding the cholesterol by laser irradiation. In
the future, a therapeutic approach based on this concept may lead to a novel strategy for
the treatment of AD.

Regarding the physical engineering techniques, it has been so far reported that low-
level near-infrared laser can restore functions of mitochondria and induce transcription
factors [86]. In addition, the neuronal functions are recovered and the Aβ plaque can be
decreased by laser treatment in model animals [87]. It is also reported that a radiofrequency
electromagnetic field (1950 MHz) can lead to the improvement of AD-like symptoms in
transgenic mice [88]. However, it has not been proven whether those external radiations
would induce dissociation of Aβ aggregates by destruction of β-sheet conformation. There-
fore, dissociation of amyloid fibrils by using IR-FEL opens up a novel promising approach
for treating AD.

However, there remain two important subjects that we should solve towards develop-
ment of amyloidosis therapy: (1) Although it has been recognized that the low-molecular
weight oligomers possess cellular toxicity compared with the integrated fibrils [66,83,89,90],
the ability of the IR-FEL to degrade those oligomeric states has not yet been elucidated at
the present stage. (2) What about the effect of the laser irradiation on cellular tissues? Re-
garding the laser effect on the normal tissues, one hypothesis was proposed using lysozyme
protein from hen egg-white as a model [58]. We found that the protein conformation was
hardly affected on the synchrotron-radiation CD spectrum although the enzymatic hydrol-
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ysis activity against the bacterial cell wall was a little decreased by the IR-FEL irradiation at
the amide-I band. This is further supported by our molecular dynamics simulations which
show that Aβ fibrils are completely dissociated while DNA molecules and globular proteins
are hardly affected [62]. Accordingly, IR-FEL can lead to dissociate the fibril structure of
amyloids with little damage of the other biomolecules. Nonetheless, the investigation on
the IR-FEL irradiation to the mammalian body is a future subject.

On the contrary, it is known that amyloid formation is a so-called “intrinsically dis-
ordered” status [91,92]. The intrinsically disordered proteins play important roles such
as gene regulators in cells. There is a possibility that the cell function related with the
functional amyloids can be altered by the physical engineering technique using IR-FEL.
The study of the regulation of the biological functions related with intrinsically disordered
peptides should be a future research project.

One more issue that we should mention about the application of IR-FEL in amyloid
research is that amyloid fibers have a potential application in functional biomaterials due
to the rigidness and the regularity in the fiber structure, similar to cellulose fibers [93–98].
For example, the fiber format can be applied to adhesive sheets for cell cultivation and
a nano-carrier for a drug-delivery system. In the former case, infrared laser irradiation
can be applied to remove the fibrous hydrogel from tissues, and in the latter case, the
drug in the vehicle can be released into the blood by laser irradiation in the surgery
treatment. Therefore, the development of structural deformation methods based on the
IR-FEL against the amyloid fibrils will produce functional biomaterials in regenerative
medicine and pharmaceutical fields. We obtained experimental and theoretical evidence
on the processing of cellulose fiber by IR-FEL irradiation as well as amyloid fibrils [48,99].
The NEMD simulation showed that sugar chains are disassembled by laser irradiation
tuned to 1360 cm−1 (C-O-H bending mode), and irradiation experiments using three
wavelengths, 9.1 µm (νC-O), 7.2 µm (δC-O-H), and 3.5 µm (νC-H) showed that cellulose
was disaggregated and the glycoside bonds are cleaved under atmospheric conditions.
The IR-FEL can also be applicable for supplying low-molecular-weight sugars that can be
employed for bioethanol production in the biorefinery process.

5. Conclusions

In this special issue, we presented a review of the dissociation of amyloid fibril induced
by an intense infrared laser based on our combination studies of experiments and computer
simulations. The IR-FEL can be oscillated through a linear accelerator and can excite
chemical bonds’ vibrational modes, selectively. A structural feature of amyloid fibril is
the β-sheet-stacking conformation, and it was revealed that the fibrous structure can be
deformed to produce α-helix and other conformations during specific irradiation by the
amide-I (6.1–6.2 µm) from the IR-FEL oscillation system. The experimental evidence was
obtained by performing FT-IR spectroscopy, ThT binding assay, SEM, and X-ray scattering.
The vibrational excitation of C=O stretching in the amide bonds is effective for cleavage of
hydrogen bonds between the β-sheets, which was theoretically evidenced at both secondary
structures and amino acid levels by using nonequilibrium and equilibrium molecular
dynamics simulations. It can be believed that an intense infrared laser system based on
IR-FEL should contribute to a degradation strategy for amyloid fibrils, although we should
examine the effects on toxic oligomers on mammalian bodies towards the development of
amyloidosis therapy. In addition, the IR-FEL irradiation system can be used as a processing
tool for fibrous biomaterials constructed by β-sheet conformations in the medical and
material engineering fields in the future.
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