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Abstract: Eosinophilic esophagitis (EoE) is a chronic, Th2-inflammatory disease of the esophagus that
can severely affect food intake. Currently, diagnosis and assessing response to treatment of EoE is
highly invasive and requires endoscopy with esophageal biopsies. Finding non-invasive and accurate
biomarkers is important for improving patient well-being. Unfortunately, EoE is usually accompanied
by other atopies, which make it difficult to identify specific biomarkers. Providing an update of
circulating EoE biomarkers and concomitant atopies is therefore timely. This review summarizes the
current knowledge in EoE blood biomarkers and two of its most common comorbidities, bronchial
asthma (BA) and atopic dermatitis (AD), focusing on dysregulated proteins, metabolites, and RNAs.
It also revises the current knowledge on extracellular vesicles (EVs) as non-invasive biomarkers for
BA and AD, and concludes with the potential use of EVs as biomarkers in EoE.

Keywords: eosinophilic esophagitis; atopic dermatitis; bronchial asthma; Th2-inflammation; eosinophils;
extracellular vesicles; serum; plasma; biomarker

1. Introduction

Eosinophilic esophagitis (EoE) is a chronic disease characterized clinically by symp-
toms referred to as esophageal dysfunction, and histologically by eosinophil-predominant
inflammation of this organ [1]. EoE is mainly driven by food-antigens that trigger T-helper
2 (Th2) local immune response [2,3], and is considered as a particular form of food allergy
that frequently appears in patients who suffer from other Th2-associated atopies [4]. EoE is
recognized as the leading cause of chronic dysphagia in children and young adults, and
the second cause of chronic esophagitis after gastroesophageal reflux disease (GERD) [5];
and there has been a constant rise in its incidence, with currently 34.4 new cases/100,000
subjects per year [6]. Although progress in management of the disease has significantly
reduced diagnostic delay over recent years [7], endoscopy with esophageal biopsies still re-
mains the only reliable method for EoE diagnosis, monitoring disease activity and assessing
the response to treatment. Thus, finding of a non-invasive, accurate and specific biomarker
is a key goal, and an area of great potential in the research of this disease. Despite the
efforts being made however, minimally invasive biomarkers are not yet being applied to
routine clinical practice [8].

One of the main obstacles in the search for non-invasive biomarkers is the lack of
specificity. This is complicated greatly by the frequent concomitance of EoE with several
atopic conditions, including atopic dermatitis (AD), bronchial asthma (BA), IgE-mediated
food allergies, and allergic rhinitis, all significantly more common in EoE patients than in
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the general population [4,9,10]. In fact, EoE has been proposed as a late manifestation of
the “atopic march”, a natural concatenation of atopic disorders over time [11], with BA
and AD being among the most common comorbidities of EoE [10]. Despite this strong
association, only a small proportion of studies have included atopic controls [12] as shown
in Table 1, thus hampering the proper identification of suitable biomarkers.

Table 1. Research studies including atopic control groups. AEC: absolute eosinophil count, AR:
allergic rhinitis, BA: bronchial asthma, AD: atopic dermatitis, AX: food anaphylaxis, CU: contact
urticaria, ND: non-determined, EGID: eosinophilic gastrointestinal disorders, EDN: eosinophil-
derived neurotoxin, EoP: eosinophil progenitor.

Compared Atopies Biomarkers Studied Source of Biomarker Outcome Reference

AR, BA, AD, AX, CU, ND

AEC
Eosinophil surface marker:
anti–IL-5 receptor-α (IL-5Rα)
Lymphocyte intracellular
cytokines: IFN-γ, TNF-α, IL-4,
IL-5, IL-13

Whole blood

− No significant differences of
blood eosinophils, IL-5, IL-4,
IL-13 between EoE patients,
and atopic controls.

− Overall, no biomarker was
found to differentiate
between atopic controls and
EoE patients.

[13]

AR, BA, AD,
food allergy 3-bromotyrosine (3-BT) Urine

− Levels of urine 3-BT were
significantly increased in
EoE patients compared to
atopic controls by 13-fold.

[14]

AR, BA

AEC
Eosinophil surface markers:
CD23, CD54, CRTH2, CD11c,
CCR3, CD44, CD11b, CD18,
CD58
Cytokines: IL-2, IL-3, IL-5,
GM-CSF, CCL5 (RANTES),
CCL11 (eotaxin-1), CCL26
(eotaxin-3)

Blood plasma

− Significant increment of
AEC in EoE.

− Increased CD23+, CD54+,
CRTH2+, and CD11c+

eosinophils; and decreased
CCR3+ and CD44+

eosinophils in EoE.
− Increased blood levels of

CCL5 in EoE.

[15]

EGID, eczema, AR, AS,
allergic conjunctivitis

AEC
Cytokines: IL-5, Eotaxin-1/2/3
Granule protein: EDN

Blood plasma
− No differences in AEC,

Eotaxin-3, and EDN level in
EoE and atopic controls.

[16]

AR, BA, AD EoP Whole blood
− No differences in EoP levels

between EoE patients and
atopic controls.

[17]

BA, Food allergy
Eosinophil surface markers:
CD66b
Transcription factor: STAT-1/6

Whole blood

− Increased CD66b+
eosinophils and
phosphor-STAT/1 and
phosphor-STAT/6 in EoE
compared to atopic controls.

[18]

BA miR-21 Blood serum
− miR-21 is elevated in EoE

and asthma patients. [19]

AR, allergic conjunctivitis,
BA, eczema, food allergy

AEC
Granule protein: ECP
Cytokines: CCL17, CCL18,
CCL26 (eotaxin3)
Mast cell tryptase (MCT)

Blood serum
− No differences were

observed for any biomarker. [20]
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Extracellular vesicles (EVs) are a tremendously heterogeneous group of membrane-
limited entities, of nanometric size, released into the extracellular space by virtually all
cell types and cellular organisms [21]. Although initially conceived as cell ‘debris’ or
cellular waste, evidence of their relevance in both physiological and pathological scenarios,
mainly defined by their role in intercellular communication, has driven forward research
since the early 2000s [22]. In allergy, EVs intervene actively in different aspects of its
pathophysiology, from induction of inflammation by activation of allergen-specific T cells,
to the contribution of sustained chronic inflammation and development of fibrosis [23].
This is possible due to an orchestrated mechanism in which EVs are released and uptake
by cells of the inflammatory microenvironment, whose effects are greatly determined by
their content (i.e., inflammatory cytokines, enzymes, miRNAs, etc.) [23–25]. Moreover,
EVs have arisen as the most promising source of biomarkers for several reasons. First,
EVs are abundant in many bodily fluids such as blood, urine, saliva, ascites fluid, pleural
effusion, breast milk, and cerebrospinal and bronchoalveolar lavage fluid [26]. Moreover,
EVs’ intraluminal and extraluminal cargo (proteins, nucleic acids, lipids, and metabolites)
are functional [27], and correlate well with their parental cell. They inform the cell identity
and its biological status, thus acting as a peripheral representation of a pathological process.
Finally, EVs have a significant advantage over other serum-biomarkers now in that their
conformation extends the stability of their cargo such as RNAs and proteins, protecting
them from catabolic enzymes in circulation. Despite this, the nanometric size of EVs, and
the complex composition of biofluids as blood are technically challenging and need to be
overcome in order to accelerate their use in diagnostics [28].

This review updates current knowledge relating to potential non-invasive blood-
based biomarkers described for EoE and two of its most common comorbidities: BA and
AD, with the aim of identifying the common unspecific biomarkers. We also summarize
state of the art use of EVs as circulating biomarkers for asthma and atopic dermatitis and
speculate about the advantage of using EVs as non-invasive biomarkers for diagnosis and
the management of EoE.

2. Methods

We searched the PubMed library, using the following individual and combined key
words: eosinophilic esophagitis; atopic dermatitis; eczema; bronchial asthma; extracellular
vesicles; exosomes; blood; circulating; serum; plasma; biomarker. Reference lists in the
articles obtained were also searched in order to identify other potential sources of infor-
mation. We included studies describing circulating biomarkers if performed in human
samples, study subjects suffering from EoE, BA, or AD, together with other comorbidities.
The results were limited to studies published and written in English and carried out on
humans or human samples.

3. Current Knowledge of Circulating Biomarkers

EoE, BA, and AD are all chronic inflammatory diseases characterized by Th2 immune
responses. Upon exposure to an allergen, sensitization occurs in the epithelial barrier of the
esophagus (EoE), airways (BA), and skin (AD), the epithelial integrity of which is disrupted
as a result of defects in cell–cell contacts [26,27]. Sensitized epithelial cells then orchestrate
the immunological response by releasing alarmins (IL-25, IL-33, and TSLP) responsible for
the polarization of CD4+ T cells towards Th2 phenotype [29–31]. Cytokines released by
Th2 lymphocytes (IL-4, IL-5, and IL-13) stimulate, among others things, the proliferation
of eosinophils that are subsequently recruited to the inflammatory foci from circulation,
causing the eosinophilia characteristic of EoE, BA, and AD [32–35]. The cytotoxic nature
of eosinophil-granule proteins released locally then promotes skin lesions and pruritus
in AD [36]. As a result, remodeling and hyperresponsiveness of the airways in BA [37],
and esophageal dysmotility and fibrosis in EoE occurs [38]. Unsurprisingly, there is a
significant overlap in the molecular mechanisms of these three diseases that share up to
18 dysregulated genes [39]. However, EoE, BA, and AD are good examples of diverse
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eosinophilic disorders with different tissues being affected, mediation of serum IgE, and
systemic/local inflammation. AD and BA have increased serum total IgE and allergen-
specific IgE levels in common [32,34], therefore skin prick testing (SPT) is a suitable tool for
diagnosis its use in EoE is limited however as IgE is not required for its pathogenesis [40].
In addition, AD is considered a systemic disease [41], while EoE and BA, with the exception
of an endotype of BA [42], are characterized by local inflammation in the esophagus and
the airways, respectively.

Since the pathophysiology of EoE, BA, and AD is very similar, it is likely that unspecific
biomarkers could be found when using samples such as blood the most common tissue
used when looking for non-invasive biomarkers and therefore, will be the focus of this
review. It should be noted that overall biomarkers for EoE [43], BA [44], and AD [45] have
been reviewed recently. As counts of circulating eosinophil and serum IgE levels have
been widely employed in EoE, BA, and AD, with inconclusive results, they will not be
reviewed here.

3.1. Bronchial Asthma (BA)
3.1.1. Proteins

The serum levels of periostin, a matricellular protein involved in eosinophilic in-
flammation and airway remodeling [46], are thought to be a promising biomarker for
Th2-eosinophilic asthma for two main reasons: firstly, it correlates well with its expression
in the airways, and secondly, it remains relatively stable in blood [47]. In fact, serum
periostin can predict airway’s eosinophilia alone [48] and thus serves well as a diagnostic
and predictive biomarker. Furthermore, its expression is markedly increased in children
from 2 to 11 years old, compared to adults [49], despite exhibiting a limited diagnostic
ability in children with severe asthma [50]. The diagnostic potential of osteopontin (OPN),
another matricellular protein, was first suggested by Samitas et al., who observed increased
levels of serum OPN in asthmatic patients compared to healthy controls [51]. Although
such overexpression was later validated [52], a meta-analysis including 9 studies, in which
7 of them used serum or plasma OPN, concluded that there was no association between
circulating OPN and asthma and was not useful for diagnostics or to reflect severity [53].

Upon activation, eosinophils release their granule proteins (ECP, EDN, EPX, MBP-1,
and CLC/Gal-10), which are cytotoxic proteins involved in eosinophil-inflammation, tissue
remodeling, and serve as indirect markers of inflammation [54]. In BA, serum eosinophil
cationic protein (ECP), which appears overexpressed in the serum of both adult and
pediatric patients, has been the most widely studied granule protein [55,56]. Although its
utility as a diagnostic biomarker is limited, its correlation with disease severity and response
to treatment exhibited greater potential [57,58]. The lesser studied eosinophil-derived
neurotoxin (EDN) has arisen as a promising clinical biomarker, informative of diagnosis,
severity, and treatment monitoring [59]; more importantly, EDN is very stable in blood
samples, thus increasing its analytical reliability [60]. Blood C-reactive protein (CRP) has
also been proposed as a marker of airway inflammation, but in a very limited cohort of non-
smoker asthmatic patients without such additional complications as cardiovascular-related
diseases, hyperlipidemia, chronic obstructive pulmonary disease (COPD), or infection [61].

Several proteins involved in tissue damage and remodeling appear dysregulated in the
blood of asthmatic patients. In a meta-analysis of 17 studies, the extracellular matrix glyco-
protein YKL-40, was found upregulated in asthmatic patients compared to healthy controls,
and correlated with disease severity and acute exacerbation of the disease, regardless of
COPD and related syndromes [62]. Moreover, metalloproteinase-9 (MMP-9) and dipeptidyl
peptidase-4 (DPP-4), involved in extracellular matrix remodeling, are both elevated in the
serum of BA patients, and their expression, related to disease severity, is reduced after
treatment with corticosteroids [58,63]. In fact, corticosteroid refractoriness, an important
issue in the management of BA, could be identified by the downregulation of mucin-1
(MUC-1) in circulating neutrophils, a characteristic of patients with uncontrolled severe
asthma [64]. Hur et al. explored the ability of several serum cytokines, periostin, EDN,
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calprotectin (S100A9), and folliculin to distinguish BA phenotypes, and concluded that in-
creased serum concentrations of folliculin and calprotectin discriminated paucigranulocytic
and neutrophilic phenotypes, respectively [65].

Serum levels of several cytokines, including Th2-cytokines such as interleukin (IL)-25,
IL-4, IL-5, IL-13, and IL-33, are elevated in asthmatic adults and children compared to
controls [66]. Increased serum levels of the chemokine CCL26/eotaxin-3 could differentiate
moderate-to-severe asthma from healthy controls [67], and recent findings point out the
ability of CCL17/TARC to predict type-2 eosinophilic asthma [68]. Upregulated IL-8 and
TNFαwere detected in acute attacks of asthma [69], and IL-1β is an indicator for the risk of
pediatric allergic asthma [70].

3.1.2. Metabolites

A number of studies have identified metabolite dysregulation as useful for diagnosis,
phenotyping, assessing of severity, and response to treatment [71]. However, the lack
of analytical standardization sabotages replicability [72]. Therefore, only those metabo-
lites that appear dysregulated in at least two different studies using plasma or serum
samples from asthmatic patients were considered. Only linoleic acid levels resulted con-
sistently significant in active asthma [73,74], although correlation with severity was not
found [74]. In contrast, levels of glycerophosphocoline and L-valine were downregu-
lated [75–77]. However, the majority of selected metabolites exhibited opposing results,
appearing down- and upregulated in asthma indistinctly, which could be explained by
the variability in the origin (whole blood, plasma, or serum) or population type (adult or
children) of where/from whom samples were collected. The metabolites include arachi-
donic acid [75,77], succinate [75,78], palmitic acid [75,79], xanthine [74,75], taurine [74,76],
bilirubin [74,75], arginine [75,80], histidine [80,81], and glucose [73,80].

3.1.3. RNA

Changes in gene expression overall suggest the potential of circulating RNAs as BA
biomarkers [82–85], with miRNAs being the most commonly studied. In 2016, Panganiban
et al. described that the differential expression of 30 miRNAs in plasma distinguished a
cohort of patients with allergic rhinitis and 2 subtypes of asthma with high or low periph-
eral eosinophil counts from healthy controls [85]. In total, 11 miRNAs were upregulated
(miR-125b, miR-126, miR-21, miR-16, miR-223, miR-148a, miR-146a, and let-7b/c/e) and
5 downregulated (miR-1, miR-299-5p, miR-570, miR-106a and miR-155) exclusively in
asthma samples [85]. A further analysis compiling different studies concluded that the
combination of miR-185-5p, miR-155, miR-21, miR-320, miR-1246, miR-144-5p, miR-1165-
3p, and let-7a potentially served as a diagnostic biomarker for asthma [86]. In line with
previous reports, Kyyaly et al. proposed a panel of circulating miRNAs with diagnostic
(upregulated miR-126, miR-155, miR-21, miR-125b, miR146a, and miR-98, and downregula-
tion of let-7 family, miR-192, miR-15a, and miR-30a) and assessment of severity potential
(upregulated miR-126, miR-155, miR-125b, and miR-1165-3p, and downregulated miR-1
and miR-19b) [84].

In some cases, a correlation between certain miRNAs and lncRNAs served as biomark-
ers of disease exacerbation. This is the case for ANRIL/miR125a or NEAT1/miR124 [87].
Other lncRNAs are informative for BA diagnosis in adults (RP11-401.2 and LNC-000127) [88],
and children (CASC2, PTTG3P, lncRNA-H19) [89–91]. Among mRNAs, the upregulation of
PTGDR2, a prostaglandin receptor involved in the chemotaxis of leukocytes, was found to
be significantly upregulated in the blood of asthmatic patients [92].

3.2. Atopic Dermatitis (AD)
3.2.1. Proteins

As eosinophils are active participants in the pathogenesis of AD, eosinophil granule-
derived proteins are found in circulation, although their utility as biomarkers is under
debate. ECP was postulated in the early 1990s as a severity biomarker [93,94], and EDN
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subsequently [95]. However, later studies in pediatric patients showed no significant
association [96,97].

Several adhesion molecules appeared upregulated in skin biopsies of AD patients [98],
and some have also been detected in circulation. Increased serum periostin has potential
as a diagnostic and severity biomarker [99], and its levels even vary in response to ther-
apy [99,100]. E-selectin and tissue remodeling matrix metalloproteinases (MMP-3/9/10/12)
are also potentially useful for diagnosis [101,102].

In AD, Th2-chemokines such as CCL26/eotaxin-3 [103,104], CCL22/MDC [105],
CCL18/PARC [100,106], CCL27/CTACK [107], and CCL17/TARC, have been more com-
monly found as blood biomarkers compared to Th2-cytokines [45], the latter of which is
considered the most reliable biomarker for AD [66]. In fact, elevated serum TARC/CCL17
discriminated AD from healthy controls [102,108,109] and showed the best odds ratio
(OR) when compared to eosinophil count, total IgE, serum IL-18, and lactate dehydro-
genase (LDH) [110]. However, more extensive evidence promotes TARC’s utility as a
biomarker of severity [111–113], and response to treatment [100]. Its specificity has been
questioned however as it also appears upregulated in several skin diseases [45], with the
exception of psoriasis [102]. A few cytokines with biomarker potential in AD include IL-13,
IL-22 [100,109], and IL-18 [110,114]. Contradictory results relating to DPP-4 showed its
upregulation in plasma of AD patients [115], while in circulating T-cells in AD, it exhibited
a significant decrease in surface expression [116,117].

Other inflammatory molecules are: the soluble receptor IL-2 (sIL-2R), associated with
severity [93,94] but with inconclusive results [102]; soluble CD23 (sCD23) [94]; the receptors
of soluble Tumor Necrosis Factor (sTNFRI/II) [118]; C-reactive protein (CRP), which is
upregulated in AD subjects compared to healthy controls and correlated with disease
severity scores [119]; and lactate dehydrogenase (LDH), which is also elevated in AD [99,
119] as a potential indicator of disease severity both in children [120], and adults [110].
Adipokines, involved in the integration of metabolism and immune function [121], have
also been postulated as potential biomarkers. A significant decrease of serum resistin and
adiponectin differentiated adults with AD from controls, and correlated with the SCORing
Atopic Dermatitis (SCORAD) index [122]. Similarly, serum levels of YKL-40 appeared
significantly upregulated in AD versus healthy controls, and correlated positively with the
SCORAD index, thus, indicating its potential as a biomarker for severity [123]. Likewise,
elevated serum levels of squamous cell carcinoma antigens 1 and 2 (SCCA1/2) have been
described in AD and psoriatic patients [124].

3.2.2. Metabolites

A distinct metabolic signature of AD has been most commonly studied using skin
biopsies rather than in circulation [125], reflecting the stronger diagnostic power of skin com-
pared to blood [126,127]. Existing studies in serum samples identified a distinct metabolic
profile between AD and healthy controls involving dysregulation of phosphatidylcholine
and acylcarnitine [128], and other metabolites and lipid mediators that are linked to the pro-
inflammatory state of AD [129]. In plasma, Chiu et al. showed that a metabolic signature
related to the metabolism of nitrogen and amino acids discriminated AD endotypes based
on filaggrin mutations and IgE levels [130]. This was further evinced in pediatric patients,
regarding elevated IgE endotypes [131]. In addition, metabolic signatures have identified
therapeutic responders as shown for omalizumab and dupilumab treatments [132,133].
Only recently, the increased levels of vitamin D and A5 ligands in the plasma of AD patients
has been postulated as a biomarker of AD severity [134].

3.2.3. RNA

Cumulative evidence connects microRNAs (miRNAs) with the pathophysiology of AD
and other skin disorders [135,136]. This has motivated the search for differential circulating
miRNA-expression patterns in blood in order to seek a suitable biomarker. In an initial
study involving pediatric subjects, serum levels of miR-203 and miR-484-5p were found to
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be significantly increased in children with AD compared to controls. However, miR-203
was upregulated exclusively in those patients who showed high serum IgE levels [118].
In addition, miR-155, known to be upregulated 4–6-fold in AD skin [137], also appeared
significantly increased in the circulation of atopic children [138] and circulating CD4+
monocytes of children with AD [139].

A subsequent study performed with a small cohort of adult patients with AD, psoriasis,
and healthy controls, showed that serum levels of miR146a, miR-203, and miR-205 had
no discriminative ability for AD compared to controls; however, it exclusively identified
significant downregulation of serum miR-125b in AD patients [140]. These results contradict
the aforementioned miR-203 upregulation in AD [118]. A recent study carried out in
pediatric patients suffering from AD found a significant increment in serum miR-146a
expression, and a lower ratio of Th1/Th2 compared to controls [141]. Another study
that selected miR-29b based on a miRNA microarray of skin biopsies, demonstrated its
upregulated expression in the serum and correlation with the disease severity score [142].

One of the two studies to date that used plasma instead of serum as a source of
circulating biomarkers for AD identified 25 differentially regulated miRNAs by high-
throughput sequencing of samples from 700 subjects (including adult and pediatric patients,
and healthy controls without history of atopies). Of those upregulated sequences, plasma
miR-151a was significantly increased in AD when confirmed by RT-qPCR [143]. The
second study, using plasma samples of children with AD, showed the dysregulation of
40 miRNAs and proposed the most differentially expressed miRNA, hsa-miR-194-5p, as a
potential biomarker of AD, based on area under the receiver operating characteristic (ROC)
analysis [144].

In addition to microRNAs, a significant increase of mRNAs encoding for pro-inflammatory
cytokine IL-17 and retinoic acid receptor (ROR)γt in circulating Th17- CD4+ cells obtained
from AD patients suggest their potential as a diagnostic biomarker for the disease [139].

3.3. Eosinophilic Esophagitis (EoE)
3.3.1. Proteins

Periostin is markedly overexpressed in the esophagus of EoE patients [145], and rep-
resents a promising non-invasive biomarker. Slightly increased levels of serum periostin
differentiated EoE patients from controls in correlation with high serum IL-13 [146]. How-
ever, this is, to our knowledge, the only study assessing serum periostin. Alternatively,
given the disruption of the epithelial barrier and esophageal fibrosis in EoE, the use of
autoantibodies against epithelial adhesion molecules has been hypothesized as serving as
disease biomarkers. Indeed, antibodies against transmembrane desmoglein-3 (DSG3) and
collagen XVII (NC16A) appeared to be increased in the serum of EoE patients, with a more
prominent increase of NC16A [147].

ECP and EDN are the eosinophil granule proteins most commonly studied in cir-
culating blood in the context of EoE. Although no utility of ECP or EDN as biomarkers
was reported in a small number of studies [148,149], this evidence was overshadowed by
others showing the upregulation of EDN [16,150,151] and ECP [150,152,153] in the blood
of EoE patients compared to healthy controls. Consequently, treatment with mepolizumab
led to a reduction in ECP and EDN levels [154], and topical corticosteroids [155] or diet
restriction also reduced ECP levels [156] with variable results [157]. Despite the lack of
differences in circulating MBP-1 initially reported [148], more recent works have shown
a significant upregulation of MBP-1 as being helpful in discriminating EoE from healthy
controls, and after treatment [158], and even in combination with CLC-GAL10 [153]. Strik-
ingly, in contrast to common upregulation of granule proteins reported to date, Wright et al.
observed lower levels of granule proteins in the serum of EoE patients that exhibited a
marked degranulation within the tissue [149]. They postulated that circulating eosinophils
in EoE might retain their granules, therefore suggesting that downregulation of serum EPX
is a biomarker of EoE [149].
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Cytokines, as mediators of inflammation, have been extensively studied as inflamma-
tory disease biomarkers. The blood levels of cytokines: IL-4, IL-13, IL-5, IL-6, IL-12p70,
CD40ligand, IL-1α, and IL-17 distinguished EoE from non-EoE patients [159], but such
changes could not be validated in subsequent studies [66]. Among cytokines, IL-5 has raised
the highest interest given its key role in the proliferation, maturation, and differentiation of
eosinophils within the bone marrow [160]. However, many studies could not demonstrate
differences in serum IL-5 [148,150,151,158,161]. Only Lu et al. [162] observed a significant
increase of Th2 cytokines, specifically IL-10, in EoE patients, together with increased levels
of absolute eosinophil counts and serum levels of TNFα and IL-12 cytokines. Similarly,
despite the increased esophageal expression of eotaxin-3 [163], a chemokine important
for eosinophil migration and tissue infiltration, differences in circulation have not been
detected [150,153,158]. The exception is a study performed in pediatric patients, where
eotaxin-3 was increased in plasma, along with increased absolute eosinophil counts and
tissue eosinophilia [16].

3.3.2. Metabolites

Just two studies highlighted dysregulated metabolites in circulation as being pos-
sibly useful for EoE diagnosis. This is the case with 15(S)-hydroxyeicosatetraenoic acid
(15(S)-HETE), a metabolite detected in peripheral blood derived from arachidonate 15-
lipoxygenase (ALOX15), which is upregulated in the esophagus of EoE patients, and
also found to be increased by 2.4-fold in the serum of EoE patients [164,165]. A fur-
ther study identified several urea cycle metabolites (dimethylarginine, putrescine and
N-acetylputrescine) as potential biomarkers for EoE diagnosis in children [166].

3.3.3. RNA

Lu et al. tested for the first time the potential of circulating microRNAs as a reflection
of the RNA expression profile in tissue. They found that increased levels of miR-146a,
miR-146b, and miR-223 significantly differentiated between healthy controls and EoE pa-
tients, while downregulation of miR-146a and miR-233 indicated EoE remission induced by
glucocorticoid therapy [167]. Likewise, significant upregulation of serum miR-21 30-fold in
EoE correlated with an increased expression 40-fold in the esophageal tissue [19]. Unfor-
tunately, there is still little evidence of circulating microRNAs in EoE, and other authors
failed when they tried to detect them in the serum [168]. Differences in mRNAs have
also been explored as potential circulating biomarkers for EoE [169–171]. The presence of
IgE receptor I (FcεRI) mRNAs was found to be significantly reduced in the blood of EoE
patients compared to GERD and healthy controls [169], a finding that aligns with the fact
that EoE is a non-IgE-mediated allergy [40]. Similarly, IL-15R mRNAs were less abundant
in the blood of EoE compared to GERD patients [169]. Despite IL-15 expression being
induced in the esophagus of active EoE [172], the authors hypothesized that the reduction
in circulating lymphocytes with IL-15 receptors was due to their preferential recruitment
to the tissue. On the other hand, upregulation of mRNAs encoding for eosinophil surface
molecules such as CD101, CXCR6, and CD274 (PDL1) served to discriminate EoE from
GERD patients [170,171].

Common circulating biomarkers for either BA and AD, BA and EoE, AD and EoE, or
BA, AD, and EoE are shown in Figure 1.
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4. Extracellular Vesicles (EVs) as Circulating Biomarkers
4.1. EVs and the Immune System

The term extracellular vesicle was coined in 2011 [174] to define any non-replicating
extracellular entities delimited by a lipidic membrane that are released by cells. Although
the classification is complex and continues to grow as the field develops [22], EVs can be
generally divided in two broad categories based on their biogenesis: endosomal origin (or
exosomes), and plasma-membrane (or ectosomes) [25]. Regardless of their biogenesis, EVs
perform fundamental functions in homeostasis and pathological processes that range from
the removal/recycling of unnecessary molecules from the cell to the delivery of intercellular
signals. The biogenesis of EVs, as well as the identity and state of the parental cell, largely
contribute to defining their cargo and, consequently, their function [175].

The ability of EVs to mediate intercellular communication is of enormous relevance
in immune signaling. In inflammation and innate immunity, EVs exert pro- and anti-
inflammatory functions mediated by their load of bioactive lipids (i.e., arachidonic acid) [176];
cytokines [177]; damage-associated molecular patterns (DAMPs) [178]; pro-inflammatory
microRNAs [179]; or soluble mediators (i.e., C-reactive protein) [180]. Activation of immune
responses upon microbial or allergen intrusion also involves EVs, as they carry allergens
and microbial-associated molecular patterns [25]. In addition, a fundamental function in
adaptive immunity, antigen presentation, can be mediated by MHC-loaded EVs, contribut-
ing to a more sophisticated regulation of immunity [181,182]. Viewing the published data, it
is logical to think that EVs can be utilized as biomarkers, especially in the context of immune
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mediated disorders, where EVs seem to have ubiquitous roles. We will now examine the
data suggesting the utility of circulating EVs as biomarkers of AS and AD.

4.2. Circulating EVs as Biomarkers in BA

One of the first hints indicating an association between asthma and EVs was the
increment of such particles in the circulation of asthmatics [183]. Duarte et al. found
elevated levels of platelet microparticles in the circulation of a group of 20 asthmatics under
corticosteroid treatment compared to 15 healthy volunteers, and further studies showed
similar upregulation induced by pollution [183–185]. Nonetheless, elevated EV levels do
not correspond specifically to asthma, as was observed in asthmatics and non-asthmatics
from a cohort of type-1 allergic patients with rhinoconjunctivitis [186].

Identifying significant differences in the EV-cargo is one of the main hopes when
looking for EV biomarkers, and EV-miRNAs are among the most commonly studied
molecules in this regard. Increased levels of serum EV miR-126 in allergic asthmatic
patients has suggested its potential as a diagnostic biomarker [187]. MiRNA-125b in serum
EVs appeared upregulated in patients with different levels of asthma severity, and was
even able to discriminate mild-bronchial asthma from healthy controls [188]. Consistently,
upregulation of EV-miR-125b correlated with increased CRP and IgE serum levels, which
together with downregulated EV- miR-124, miR-133, and miR-130, could differentiate
subjects with severe asthma under corticosteroid treatment from healthy controls [189]. The
let-7 family of microRNA is dysregulated in bronchial asthma [84]. Accordingly, Zheng et al.
observed that increased let-7i-5p levels in plasma EVs correlated with patient exposure to
fine particulate matter in a cohort of asthmatic children and, in combination with serum IgE,
exhibited a greater diagnostic performance [185]. Plasma EVs significantly enriched in miR-
223 and miR-21 also differentiated moderate asthmatic patients from healthy controls [190].
The only study, to our knowledge, that employed RNAseq in circulating human EVs for
plasma did not find overall changes in the miRNA content; however, an insufficient cohort
size could partly explain these results. Nonetheless, the authors identified the upregulation
of miR-122-5p in all groups of eosinophilic asthma compared to controls [191].

Although less explored, proteins in EVs harbor potential biomarkers for defining
asthma endotypes, as hypothesized by Suzuki et al. [192]. Without purification of EVs,
the proteome of plasma samples from COPD or patients with severe asthma showed
different profiles differentiating each disease and asthma endotypes, significantly enriched
in extracellular vesicle markers, and thus suggesting an association between EVs and
protein groups [192]. Similarly, a pattern of upregulated (TNFα, IL-4, IL-5, IL-6, IL-17F,
CCL2, and CCL17/TARC) and downregulated (IL-11, IL-27, and CCL20) EV-associated
cytokines discriminated healthy controls from allergic patients, including asthmatics [186].

4.3. Circulating EVs as Biomarkers in AD

The pathogenesis of AD has been associated with the colonization of the skin by
different microbes, one of the best characterized being Staphylococcus aureus [193]. The
fact that bacteria can release EVs [194] has sustained the research around microbe-derived
EVs as potential pathogenic effectors and biomarkers. A metagenomic analysis on serum
and urine EVs from AD and healthy donors identified high homogeneity between both
type of biofluids, and significant downregulation of several lactic acid bacteria genera in
comparison to controls in urine EVs [195]. A similar study including a greater number of
healthy controls, and using only serum EVs, identified Escherichia–Shigella and Enterococcus
as upregulated in AD [196], which suggests great potential for microbial EVs as biomarkers
for AD.

EVs derived from immune cells can reflect their origin and the activation state of the
donor cell by their content and surface marker [25]. Based on this premise, Ryutaro Oba et al.
identified several EV-subsets from T cells: CD3+CD4+ EVs for CD4+ T cells, CD3+CD8+
EVs for CD8+ T cells, and CD3+HLA-DR+ EVs for Th1-type T cells [197]. Interestingly,
differential distribution of such EV subsets could discriminate AD from healthy adults as
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CD3+CD4+ EVs were significantly upregulated in AD, while CD3+HLA-DR+ EVs were
downregulated. However, when AD was compared to other inflammatory diseases such
as osteoarthritis or rheumatoid arthritis, no differences were found in the aforementioned
EV-subsets. EVs derived from mast cells have been identified in the serum of both AD and
non-atopic controls, although a significant overexpression of the miR103a-3p characterized
EVs from AD patients [198]. RNAseq of plasma derived EVs from pediatric AD patients
revealed 10 differentially regulated genes, among which the transfer RNA Fragment tRF-
28-QSZ34KRQ590K (tRFs are a novel class of non-coding RNAs with regulatory roles [199])
was significantly downregulated in AD [200]. To date, a single study has characterized the
proteomic differences in serum EVs in the context of AD [201]. Over a thousand proteins
were identified, of which 19 were unique to AD-EVs, with overrepresented functions linked
to pro-inflammatory cytokine production such as platelet activation or Rap1 signaling [202].

Common biomarkers between BA, BA-EVs, AD, and AD-EVs are shown in Figure 2.
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4.4. Potential of EVs as Biomarker of EoE

Although the role of EVs remains unexplored in EoE, a number of studies have col-
lected evidence of the functional relationship of EVs, with two areas closely linked to
EoE: allergy and inflammation [203], and esophageal disorders (mostly Barrett’s esoph-
agus) [204]. Development of Barrett’s esophagus is often preceded by sustained GERD,
which exhibits overlapping symptoms with EoE but a different pathogenesis [205]. Pre-
liminary work by Uemura et al. showed the diagnostic potential of EV-miRNAs in a rat
model of GERD, in which serum EVs were withdrawn from male rats at different stages
after the development of reflux esophagitis (acute, sub-acute, and chronic phases) [206]. By
microarray analysis of the EVs, miR-223-3p and miR-29-3p were identified as differentially
expressed among the different phases. Interestingly, the upregulation of circulating miR-223
has previously been found upregulated in EoE patients compared to healthy controls [167].

The highly conserved mechanisms of autophagy coordinate the recycling and degra-
dation of cellular material to maintain protein homeostasis, activated in response to certain
stress stimuli such as inflammation [207]. In line with this, a study employing human
biopsies and murine models of EoE demonstrated that inflammatory stimuli mediated by
IL-13 and TNFα cytokines upregulated autophagy in esophageal epithelial cells, causing
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the accumulation of autophagic vesicles (AVs) with distinct cargo between EoE and control
samples [208]. Autophagy and EVs are tightly related, due to the confluence in their mech-
anisms of biogenesis and functionality, since the autophagy–EV crosstalk is relevant in
homeostatic and pathologic scenarios [209]. Moreover, the release of extracellular vesicles
and particles with autophagic cargo controlled by the secretory autophagy pathway has
been described [210,211]. Future studies might consider exploring the release of vesicles
to the extracellular milieu, that potentially contain autophagy-derived material, as being
useful as biomarkers in EoE.

The total of specific markers that define the tissue origin of EVs is still largely unknown.
According to Li et al., about 0.2% of EVs in circulation belong to different tissues, including
EVs that derive from the esophagus, as several specific genes were identified in plasma-
EVs [212]. However, the vast majority of circulating EVs are generated by blood cells
(i.e., monocytes, lymphocytes, platelets, etc.), suggesting that immune cell-derived EVs
are the most promising as a source of circulating biomarkers. In fact, every immune cell
with a role in inflammation can secrete EVs [25]. This is the case for eosinophils [213].
Studies employing EVs derived from circulating eosinophils demonstrated that, upon
cytokine stimulation (IFNγ, eotaxin-1, or TNFα), these cells increase the release of EVs
carrying several eosinophil-granule proteins, which are more prominent in eosinophils
from asthmatics than in healthy controls. Moreover, eosinophil-EVs participate in tissue
remodeling and cell migration, indicating their active role in disease pathophysiology [214].
Despite the potential of eosinophil-derived EVs as biomarkers for eosinophilic disorders,
the characterization of these EVs is currently limited and studies reporting the detection of
eosinophil-EVs in biofluids are lacking.

Changes in the microbiota of the mucosa have been linked to the initiation and main-
tenance of inflammation. The flora of the healthy esophagus, commonly colonized by the
genus Streptococci [215], is imbalanced in EoE esophagi towards an enrichment in Neisseria,
Corynebacterium [216], and Haemophilus [217]; and downregulation of Phorphyromonas [218].
Both commensal and pathogenic bacteria can secrete bacterial extracellular vesicles (BEVs)
into different biofluids, thus becoming a reflection of the microbiota composition in distant
sites, and potent biomarkers of disease diagnosis and monitoring [219]. For example, the
metagenome of serum-derived EVs showed correlation with bodily microbiota in a murine
model of Alzheimer’s disease that differed from the wild type controls [220]; and the
presence of Sphingomonadaceae in urine-EVs of children with chronic rhinitis and asthma
correlated with its upregulation in the airways [221]; and serum bacterial-EVs positively
correlated with bacteria in paranasal sinus of patients with rhinosinusitis [222]. In the latter
study, microbiota composition varied depending on whether the patients had eosinophilic
inflammation or not, thus suggesting a link between microbiota and immune response of
the host [222]. Therefore, circulating BEVs as potential biomarkers of dysbiosis in the gut
seem promising, since a match between blood EVs and gut microbiota have been repeatedly
reported [219]. Interestingly, different bacterial composition and abundances characterize
GERD and EoE patients [215,223], suggesting the potential of bacterial-derived EVs in
discriminating between these two commonly misdiagnosed diseases.

5. Conclusions and Perspectives

Although blood is the source of choice in the majority of studies seeking non-invasive
biomarkers, a robust candidate for EoE still has not been found [12]. In this review we show
that 18 circulating molecules suggested as disease biomarkers are common for either BA
and AD (7), BA and EoE (6) or BA, EoE and AD (5), demonstrating that the co-existence of
EoE with other eosinophilic disorders hinders the finding of specific biomarkers. Although
our review is limited to concomitancy of EoE with BA and AD, the existence of other
common biomarkers for EoE and concomitant allergies such as allergic rhinitis or food
allergy is very likely and should be considered for further research. Such findings indicate
the need for alternative sampling methods. Other minimally invasive methods employing
esophageal mucus seem promising [224,225] and potentially more specific in the context
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of EoE; however, they are more or less limited to the site of collection. In contrast, blood-
based biomarkers have the potential to provide a more complete picture of the state of the
disease. To overcome current limitations, further studies should consider either the detailed
characterization of patient comorbidities or, when possible, the inclusion of appropriate
atopic controls. Additionally, a more refined manipulation of blood samples might improve
specificity, such as the enrichment of EVs from patient´s blood. Despite being in its infancy,
a considerable number of studies have explored the potential of EVs as biomarkers of
disease. In regard to the malignancies covered in this review, BA constitutes the highest
number of EV-related studies, doubling those dedicated to AD using blood exclusively.
Indeed, up to 19 potential EV-biomarkers were described for BA, five of which had been
previously uncovered in circulation including Il-4, IL-5, TNF-α, CCL17/TARC, and miR-21
(Figure 2), thus indicating the specificity and robustness of these biomarkers. In contrast,
no coincidences were found between circulating and EV biomarkers described for AD. This
is most likely due to the still limited amount of research for this disease. We also noticed a
great deal of heterogeneity in the EV-isolation methods employed, as well as an uneven
technical accuracy for EV characterization [226,227], highlighting room for improvement,
still, within translational research in EVs. Table 2 summarizes all studies involving EVs as
potential biomarkers included in this work.

Table 2. Studies exploring the potential as biomarkers of circulating EVs included in this work. TEM:
transmission electron microscopy, UC: ultracentrifugation, NTA: nanoparticle tracking analysis, BCA:
bicinchoninic acid assay, DLS: dynamic light scattering, SEM: scanning electron microscopy, SEC:
size exclusion chromatography, PBMC: peripheral blood mononuclear cells.

Disease Source Outcome Isolation Method EV´s Characterization
(According to MISEV 1) References

BA Plasma
Platelet microparticles (PMPs) are

upregulated in asthma
(20 asthmatics vs. 15 controls)

Centrifugation
(200× g and 1500× g) None [183]

BA Plasma

Direct correlation of endothelial
cell-derived microparticles (MPs)
levels and pollution in asthmatics

(17 asthmatics vs. 10 controls)

Centrifugation
(11,000× g and 13,000× g) None [184]

BA Plasma

EV-packaged let-7i-5p increased
during asthma attacks in childhood

asthma
(110 asthmatic children)

ExoQuick Plasma Prep
with Thrombin kit (SBI,

US)

TEM
Flow cytometry

Western blot
[185]

Type 1 allergy Plasma
EVs-cytokine cargo discriminates

allergic from control patients
(22 allergics vs. 16 controls)

Centrifugation
(2 h at 110,000× g)

BCA
NTA

Western blot
[186]

BA Serum
Upregulated miR-126 in EVs of

asthmatics
(20 allergic asthmatics vs. 16 controls)

Centrifugation
(20 min at 2000× g,
filtered with 0.22

micron-mesh, and 2 h at
110,000× g)

EM
Western blot [187]

BA Serum

Elevated EV-miR-125b serves for
diagnostics and assessment of severity

in asthma
(80 asthma vs. 30 controls)

exoRNeasy
Serum/plasma MaxiKit

(Qiagen, Germany)

EM
NTA [188]

BA Plasma

Upregulated EV-miR-125b and
downregulated EV-miR-133b,

miR-130a and miR-124 in asthmatics
(30 asthmatics vs. 30 controls)

Centrifugation
(70 min at 100,000× g)

DLS
TEM

Flow cytometry
[189]

BA Plasma

Significant upregulation of
EV-miR-223 and EV-miR-21 in

asthmatics
(22 asthmatics vs. 24 controls)

Exo-SpinTM kit (Cell
Guidance System, UK)

SEM
DLS [190]
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Table 2. Cont.

Disease Source Outcome Isolation Method EV´s Characterization
(According to MISEV 1) References

BA Plasma

EV-miR-122-5p is increased in severe
asthma

(45 eosinophilic asthmatics vs. 16
controls)

SEC (qEV, Izon Science,
NZ)

NTA
BCA

Flow cytometry
[191]

AD Serum
Specific microbiome-EVs discriminate

AD patients
(24 atopics vs. 49 controls)

Centrifugation
(3000 rpm and 10,000× g) None [196]

AD Serum

Distinct subpopulations of T-cell
derived EVs can reflect inflammatory

status
(63 with inflammatory diseases vs. 20

controls)

Total exosome isolation
kit (ThermoFisher,

Germany)
Fluorescent NTA [197]

AD Serum
Increased EV-miR-103a-3p in AD

patients
(18 atopics vs. 8 controls)

ExoQuick-TC (SBI, US)

TRPS
TEM

Flow cytometry
Western blot

[198]

AD Plasma
Dysregulation of transfer

RNA-derived fragment in EVs in AD
(23 atopics vs. 23 controls)

ExoQuick-Plasma prep
and Exoome precitation

kit (SBI, US)
TEM [200]

AD Plasma
Different proteomic profile of EVs in

AD
(12 atopics vs. 13 controls)

Centrifugation
(70 min and 100,000× g)

TEM
Flow cytometry

Western blot
[201]

1 Minimal Information for Studies of Extracellular Vesicles (MISEV) is an initiative of the International Society
of Extracellular Vesicles (ISEV) that aims to bring agreed criteria to guide scientists in reporting results and
distinguish EV from non-EV components.

In summary, common circulating biomarkers have been described for BA, AD, and
EoE diseases. The suggestion of lack of specificity highlights the need to include an
exhaustive control of concomitant atopies. EVs are a promising source that could increase
biomarker specificity; however, rigorous characterization and method homogeneity are
key to ensuring robust and reproducible results.
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