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Abstract: Understanding the mechanisms underlying the complex 3D architecture of mammalian
genomes poses, at a more fundamental level, the problem of how two or multiple genomic sites
can establish physical contacts in the nucleus of the cells. Beyond stochastic and fleeting encounters
related to the polymeric nature of chromatin, experiments have revealed specific, privileged patterns
of interactions that suggest the existence of basic organizing principles of folding. In this review,
we focus on two major and recently proposed physical processes of chromatin organization: loop-
extrusion and polymer phase-separation, both supported by increasing experimental evidence. We
discuss their implementation into polymer physics models, which we test against available single-cell
super-resolution imaging data, showing that both mechanisms can cooperate to shape chromatin
structure at the single-molecule level. Next, by exploiting the comprehension of the underlying
molecular mechanisms, we illustrate how such polymer models can be used as powerful tools to make
predictions in silico that can complement experiments in understanding genome folding. To this aim,
we focus on recent key applications, such as the prediction of chromatin structure rearrangements
upon disease-associated mutations and the identification of the putative chromatin organizing factors
that orchestrate the specificity of DNA regulatory contacts genome-wide.

Keywords: chromatin architecture; polymer physics; loop-extrusion; phase-separation; gene
regulation; epigenetics

1. Introduction

Mammalian genomes are highly compartmentalized in the nucleus of cells [1–7],
as revealed by independent sequencing-based technologies such as Hi-C [8],
GAM [9,10] or SPRITE [11,12], and microscopy approaches [13–24]. From the gene up
to the nucleus scale, chromosomes form a multilayered architecture of genomic interactions,
comprising DNA loops [25,26], megabase-sized topological domains with enhanced levels
of self-contacts (e.g., TADs) [27–29], higher-order structures (such as meta-TADs [30] and
lamina-associated domains [31]), A/B compartments [8] and nuclear territories [32]. Such
a complex three-dimensional (3D) organization has been increasingly linked to crucial
functional roles, as, for example, DNA regulatory sequences (e.g., enhancers) can control
the transcriptional output of distal genes by establishing specific, long-range contacts with
their target promoters [1,33,34]. Those interactions are typically favored inside TADs,
which are then thought to constrain the spatial communication between functional ele-
ments [2,3,35,36]. Disruption of TAD boundaries, indeed, has been shown to affect the
network of gene-regulator contacts by altering the 3D organization of the genome, thus
resulting in gene misexpression and disease [37–39]. On the other hand, recent advances
in microscopy-based approaches, such as super-resolution multiplexed FISH techniques,
pushed the investigation of those chromatin structures at the single-cell level [13,19,20,23].
Those studies, by allowing a direct visualization of chromatin conformations in individual
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nuclei, highlighted, for example, the abundance of TAD-like domains in single cells and
their broad cell-to-cell structural heterogeneity, thus adding important constraints on chro-
mosome folding beyond population-averaged contacts [13,40]. Additionally, recent live-cell
imaging reports are enabling to track in time the dynamic of specific chromatin loci and the
transient behavior of DNA functional interactions at the single-molecule level, unveiling
the fourth dimension of genome topologies with a resolution of very few seconds [41,42].

However, despite those technological advancements, a clear understanding of the
molecular mechanisms responsible for chromatin architectures is still lacking. In the last
years, many different computational strategies have been developed to reproduce with
high accuracy the complex patterns of chromosomal interactions as detected, e.g., in bulk
contact data [43–60], albeit those methods provide only poor mechanistic insights on the
processes underlying their origin and formation. To tackle such a major challenge, princi-
pled models from polymer physics, investigated within simplified yet rigorous theoretical
frameworks, have been extensively used. In particular, two main classes of physics models,
which rely on radically different biological scenarios of DNA contact formation, have been
increasingly sustained by recent experimental evidence: loop-extrusion (LE) and polymer
phase-separation [61–94].

Here, we review the key molecular ingredients of those different mechanisms of
folding and describe their implementation into polymer physics models. We discuss
their structural predictions at the single-molecule level that we test against recent super-
resolution imaging data [13]. We show that both mechanisms are consistent with chromatin
structure in single cells and that they can coexist to shape chromosome folding at the
scale of TADs and functional interactions [64,65]. Next, we show that those polymer
models can be employed to predict in silico the patterns of structural rearrangements
upon disease-associated genomic mutations, clarifying how chromatin architecture impacts
gene regulation in the case of specific structural variants [78,95]. Finally, we examine the
molecular determinants of folding envisaged by the different models and show that, in the
emerging picture, a specific combination of genome organizing factors, including but not
limited to CTCF and cohesin, links 3D chromatin architecture to 1D chromatin states [95].
Overall, as they provide access to the underlying molecular processes, polymer physics
models are shown to be crucial to start unveiling the complex machinery shaping chromatin
spatial organization and valuable predictive tools for real-world applications, for example
in biomedicine.

2. Results
2.1. Loop-Extrusion and Polymer Phase-Separation as Mechanisms of DNA Contact Formation

In this section, we describe the basic ingredients of the LE and phase-separation mod-
els of chromosome folding. By using recent chromatin imaging data from multiplexed
FISH experiments [13], we discuss how they perform in capturing the structural proper-
ties of specific human genomic loci at both the population-average and single-cell level,
showing that they can cooperate simultaneously in single molecules to establish chromatin
architecture.

The LE envisages a biological scenario in which the spatial proximity between non-
adjacent anchor sites is achieved by the translocation of SMC molecular complexes (e.g.,
cohesin rings) that extrude DNA loops along the chromatin chain, in a non-equilibrium
process that requires energy burning, such as ATP hydrolysis (Figure 1a) [61,62,73,89]. The
extrusion process halts in correspondence with specific blocking anchors, i.e., convergently-
oriented CTCF binding sites, which mark the boundaries of consecutive genomic re-
gions [61,62]. In different variants of the model, the extruding complexes are subject,
for instance, to passive diffusion [91] or pushed, e.g., by transcription-induced supercoil-
ing [84], or their positions along the chain are averaged out in order to build effective
equilibrium models consistent with explicit-extruder approaches [96]. Polymer simulations
based on LE have been used to explain, for example, the formation and compaction of mi-
totic chromosomes [97], organization of TADs in interphase [61,62], or the structural effects
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of CTCF/cohesin degradation at the cell population-average level [73,98]. Furthermore,
recent single-molecule imaging experiments, although in simplified conditions, provided
direct evidence of a cohesin or condensin-based extrusion activity in vitro [99–102]. Yet,
besides those observations, other reports highlighted the role of additional chromatin
architecture factors, including but not limited to CTCF and cohesin [103,104], in shaping
chromosome structure. Those studies showed, for instance, that loop-extrusion is not essen-
tial for establishing functional (e.g., enhancer–promoter) interactions and controlling gene
regulation [105–108], hinting that chromatin contacts can arise from distinct mechanisms.

A different class of polymer models, exemplified, e.g., by the Strings and Binders
(SBS) model [75,77], which relies on phase-separation mechanisms, represents the biolog-
ical scenario whereby diffusing binders can drive the formation of a chromatin loop by
bridging distal cognate DNA binding sites (Figure 1b, distinct types of binding sites are
visually represented by different colors). The binders can represent single multivalent
proteins, such as Transcription Factors (TFs), or, more generally, aggregates of several
different molecules. In this framework, homotypic DNA interactions drive the sponta-
neous self-assembly of the system into specific globular domains, each associated with the
local abundance of cognate binding sites [64,79]. The folding process in this case does not
involve external energy input as it is sustained by the thermal bath. Such a mechanism
is typically referred to as polymer–polymer (or chromatin-driven) phase-separation, as
chromatin-associated proteins can induce the formation of collapsed polymer globules
by cross-linking different cognate DNA segments [109]. This class of models can also
include DNA binding molecules which have specific multivalent interactions with each
other: in this case, the system undergoes a different folding process, known as liquid–liquid
phase-separation, in which the interactions among soluble molecules promote the assembly
of liquid-like protein droplets around the corresponding binding sites on chromatin [109].
Those nuclear droplets can also be stable in the absence of the polymer scaffold and are
consistent with those observed in recent experiments, such as combinations of Pol-II, TFs,
nuclear bodies, and coactivators linked to transcriptional control [110–116]. This scenario
can be theoretically investigated, e.g., in SBS-like polymer models by allowing specific
binder–binder interactions that could mimic, for example, those observed between many
proteins, chromatin modulators, and RNA molecules in the cell [117–119]. In a more refined
model, DNA-binding proteins could also switch between active and inactive binding states,
providing a theoretical system to explore the possible role of a time-dependent switch
of chromatin epigenetics on folding [120]. Polymer models that investigate the interplay
between the formation of liquid-like protein aggregates and protein-DNA binding in shap-
ing chromatin architecture are extensively discussed, e.g., in [109,121,122]. Notably, these
models predict that even when a direct mutual interaction of the binders is not included,
the binders can cluster and form phase-separated molecular aggregates under suitable
conditions, via a process named bridging-induced attraction, recently observed also by
microscopy experiments [82,108,123,124]. Finally, a model with direct polymer-to-polymer
attractive interactions (that mimic, e.g., internucleosomal interactions between histone
molecules bound to DNA), rather than protein-mediated, reproduces similar behaviors as
dictated by polymer thermodynamics [65,125].

Different, and complementary, strategies have been developed to identify the putative
binding sites of phase-separation-based polymer models, which mainly differ in using or
not a priori knowledge of biological information, such as epigenetic marks and binding
molecules. The first strategy, in which the model binding sites are derived, e.g., from epige-
netics, is useful to test the molecular hypothesis, albeit by definition it cannot identify novel,
additional molecular factors beyond those used to inform the model [60,63,68,93]. In the sec-
ond approach, the binding domains are inferred with no prior epigenetics information and
derived, e.g., from available contact data only. Such a strategy is exemplified, for instance,
by the polymer-based recursive statistical computational procedure (PRISMR) [78], which
infers the optimal SBS polymer model to best-fit input pairwise contact data (e.g., bulk
Hi-C or GAM) [95,126]. Supported by increasing experimental evidence that traces back to
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phase-separation mechanisms [108,110,112], those models provided, overall, a quantitative
explanation of contact formation across genomic scales, from the sub-TAD scale up to
nuclear compartments [67,71,73,77,79,81,93,94], and also at the single-cell level [64]. To set
a reference within such a broad spectrum of models, we consider hereafter the SBS as a
representative phase-separation-based polymer model.

The technical implementation of those distinct folding mechanisms (loop-extrusion
and phase-separation) into polymer models is broadly discussed in specialized papers
(see, e.g., [61,64,73,79,127]) and for brevity will not be addressed here. Briefly, in those
models, chromatin is represented as a coarse-grained polymer chain of consecutive, non-
overlapping beads subject to classic physical potentials (i.e., FENE or harmonic and properly
truncated Lennard-Jones functions) and regulated by a stochastic Langevin dynamics inves-
tigated by massive Molecular Dynamics (MD) simulations in the steady-state [128–130]. In
the case of the LE model, the extruders stochastically bind to the polymer binding sites
and translocate on them until they encounter a convergently-oriented pair of blocking sites
or another extruder, or they stochastically dissociate from the chain. In the SBS model,
the binders, initially randomly located in the system, establish homotypic attractive in-
teractions with their cognate sites, hence driving a phase transition of the polymer into
an equilibrium phase-separated state in which the chain is partitioned into specific and
spatially segregated globular domains. MD simulations are typically performed in cubic
boxes with periodic boundary conditions and optimized by using a high-performance
toolkit, such as OpenMM [131], LAMMPS [132], or HOOMD [133].
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Figure 1. Two main distinct physical mechanisms of DNA contact formation. (a) Cartoon of the 
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along the chromosome and extrude DNA loops, hence defining a physical contact between distal, 
blocking, anchor sites (e.g., convergently-oriented CTCF sites, in red and light blue) where 
translocation halts. (b) Cartoon of phase-separation-based polymer models: diffusing binders, such 
as TFs, enable spatial proximity by bridging pairs (or multiplets) of distal cognate sites (each type 
represented by a different specific color), thus driving the spontaneous self-assembly of the chain 
into phase-separated clusters of sites with enriched levels of self-interactions. 

2.1.1. The Polymer Models Are Consistent with the Structure of Chromatin at the  
Population-Average Level 

Figure 1. Two main distinct physical mechanisms of DNA contact formation. (a) Cartoon of the loop-
extrusion model: active motors (e.g., cohesin rings, depicted in orange in the figure) translocate along
the chromosome and extrude DNA loops, hence defining a physical contact between distal, blocking,
anchor sites (e.g., convergently-oriented CTCF sites, in red and light blue) where translocation halts.
(b) Cartoon of phase-separation-based polymer models: diffusing binders, such as TFs, enable spatial
proximity by bridging pairs (or multiplets) of distal cognate sites (each type represented by a different
specific color), thus driving the spontaneous self-assembly of the chain into phase-separated clusters
of sites with enriched levels of self-interactions.

2.1.1. The Polymer Models Are Consistent with the Structure of Chromatin at the
Population-Average Level

To illustrate the predictive power of the models in explaining chromatin conformations,
we consider as a case study a 2.5 Mb wide genomic region (Chr21: 34.6–37.1 Mb, hg38) in a
human colon cancer cell line (HCT116) where single-cell microscopy data are available [13]
(Figure 2, top panel).
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Figure 2. Loop extrusion (LE) and Strings and Binders (SBS) models of a 2.5 Mb wide chromatin locus
in human HCT116. The experimental median distance matrix of the locus (top) [13] is consistently
recapitulated by the LE (middle) and SBS (bottom) models, as highlighted by their high distance-
corrected correlation coefficients (respectively, r’ = 0.87 and r’ = 0.84), indicating that both mechanisms
significantly capture the spatial conformation of the locus at the ensemble-average level. Adapted
from [64,65].

In the LE model of the locus (Figure 2, middle), the blocking anchor sites correspond
to the genomic locations of CTCF ChIP-seq peaks available in the studied chromatin region
from the ENCODE database [134]. Furthermore, to consider the epigenetic diversity of
single-cell landscapes, those anchor sites are present in each single-polymer molecule with
a specific probability value (roughly in the range of 20–80%), chosen to best match the
average (e.g., Hi-C) contact data of the locus [65,81]. Similarly, since a principled approach
to parameterize the model is missing [73], other LE parameters, e.g., the processivity of the
cohesin rings along the chain and their number, are selected upon a systematic parameter
sweep suited to best reproduce average contact or distance data [65,73]. In the studied
locus, the processivity, that is the extrusion velocity divided by the extruder dissociation
rate, is 700 kb, while 10 is the number of extruding factors [65]. We point out, however, that
fresh data from live-cell imaging technologies could help in a more precise and quantitative
calibration of the LE dynamic parameters, as also discussed in recent studies [41,42].

On the other hand, the SBS model of the locus (Figure 2, bottom) has four distinct
types of binding domains (visually represented by different colors), which are associated
with the major TAD-like domains visible in the experimental median distance map of the
locus. Each type of binding site (i.e., each color) of the model has been shown to correlate
significantly with a specific, distinct combination of epigenetic factors (e.g., H3K4me3,
H3K27ac, H3K27me3) or architectural proteins (such as CTCF/Cohesin and Pol-II) [64],
hinting that a combinatorial action of different molecular factors shapes the polymer phase-
separation of the studied chromatin region [64,95]. The energy affinities between the binders
and the binding sites of the SBS chain are set in the weak biochemical energy scale (i.e.,
1–10 KBT, KB is the Boltzmann constant and T the temperature), while binder concentrations
are in the range of tens nmol/l (i.e., 50–500 nmol/L) [64,79]. Within such a robust range
of energy/concentration parameters, the SBS chain undergoes a thermodynamic phase
transition from an initial coil (i.e., randomly folded) conformation to an equilibrium globule
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phase-separated state (where the polymer self-assembles into segregated micro-globular
structures each enriched of cognate binding sites) [64].

As a first benchmark of the LE and SBS models, their median spatial distance matrix
(i.e., the median of the distance maps of each single-polymer conformation) has been com-
pared against the corresponding locus map from imaging data [65]. It was found that both
models faithfully recapitulate the ensemble-average conformation of the HCT116 locus, as
they capture its main TAD structures and loop interactions (the latter particularly enriched
upstream, e.g., in correspondence of the RUNX1 and SETD4 genes, Figure 2). The high
degree of similarity between the model and experimental distance matrices is quantified,
e.g., by their high distance-corrected Pearson correlation coefficients [78]: r’ = 0.87 for LE
and r’ = 0.84 for SBS (Figure 2). As a further check of the significance of the results, a
null control model, for instance, a self-avoiding chain with no mechanism in place, has
been shown to return only poorer r’ correlations, i.e., roughly 7 times lower [135]. Similar
findings on the performance of the models have been also reported in other genomic loci
and in different cell lines, e.g., in human fibroblast cells where super-resolution microscopy
data are available [13,19,64,65].

Taken together, those results highlight that active processes, such as DNA loop-
extrusion, and passive mechanisms, such as polymer phase-separation, both work well in
recapitulating the structural properties of chromatin architecture, e.g., TADs and loops, at
the cell population level.

2.1.2. Loop-Extrusion and Polymer Phase-Separation Cooperate in Determining
Heterogeneity of Chromatin Architectures in Single Cells

Next, we aim to discuss the loop-extrusion and phase-separation scenarios of folding
at the single-cell level. To this aim, the statistical ensemble of single-polymer conformations
predicted by the LE and SBS models [65] was compared against the imaged single chromatin
structures of the locus in HCT116 cells (Figure 3a) [13]. To address whether the different
models do provide a statistically significant, bonafide, representation of the microscopy
conformations, the root-mean-square deviation (RMSD) criterion was used to associate each
experimental 3D structure to a corresponding best-match single-polymer conformation
of the models [65,136]. In brief, by performing a roto-translational alignment of model
and microscopy structures to optimize the RMSD of their spatial coordinates, the criterion
identifies, for each imaged single-cell structure, the corresponding model conformation
with the least RMSD [65,137]. A visual example of the RMSD best-match procedure is
reported in Figure 3b (top panel): a considered microscopy structure (cell 75 is shown
as an example) has a single-cell distance matrix with two, spatially separated, TAD-like
domains, reflected in two main segregated globules in 3D space; such a specific topology is
steadily found in the corresponding best-matches predicted, respectively, by the LE and
SBS models (Figure 3b, top panel), highlighting, at least visually, the consistency of the
method. To properly assess the significance of the RMSD procedure, the distribution of
RMSD values between random pairs of microscopy conformations was set as a control [64].
It was found that the RMSD distribution of the best-matching experiment–model pairs only
poorly overlaps the control (two-sided Mann–Whitney p-value < 10−3, Figure 3b, middle),
with more than 90% of the LE and SBS best matches falling below 10% of control (pie charts
in Figure 3b, bottom). Similar results are found by taking control polymer models without
LE- or SBS-based mechanisms (e.g., chains with only self-avoidance effects) [138].

Overall, the structural comparison via the RMSD criterion shows that the single-
molecule conformations predicted by loop-extrusion and polymer phase-separation are
statistically consistent with chromatin imaged structures at the single-cell level [65].



Int. J. Mol. Sci. 2023, 24, 3660 7 of 19

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 7 of 19 
 

 

Overall, the structural comparison via the RMSD criterion shows that the single-
molecule conformations predicted by loop-extrusion and polymer phase-separation are 
statistically consistent with chromatin imaged structures at the single-cell level [65].  

 

 

(a) (b) (c) 

Figure 3. LE and SBS cooperate in determining the heterogeneity of chromatin architectures in single 
cells. (a) Schematic of the all-against-all structural comparison between microscopy [13] and model 
[65] 3D structures. (b) Top: example of experiment–model best-match association via the RMSD 
criterion. Middle: the identified RMSD best matches are statistically significant in the LE and SBS 
models (two-sided Mann–Whitney p-value < 10−3, RMSD are z-scored on the x-axis). The control is 
the distribution of RMSD values for randomly taken pairs of experimental conformations. Bottom: 
more than 90% of the model best matches fall below the first decile of the control distribution. (c) 
The degree of cell-to-cell structural variability is quantified by an all-against-all pair correlation of 
single-molecule distance matrices. While LE (orange distribution) and SBS (green), respectively, 
under- and over-estimate the experimental distribution (blue) of pair correlations, a model 
combining both processes at the single-cell level (LE + SBS, light blue) best explains the data, hinting 
that LE and SBS cooperate in determining chromatin structure and its observed cell-to-cell 
heterogeneity. The dashed vertical line is the average value of the experimental distribution. 
Adapted from [64,65]. 

Finally, in order to understand whether the different models could provide a 
theoretical framework to explain the origin of the microscopy-reported cell-to-cell 
variability of the locus [13], the level of structural heterogeneity in imaging data has been 
quantified by computing the distribution of r’ correlations between all pairs of 
experimental single-cell distance matrices [64,139]. Consistent with the substantial 
variability of the observed single-locus conformations [13], the experimental distribution 
has a broad variance (Var(r’) = 0.20, Figure 3c, blue distribution) that is overall well 
reproduced by the LE and SBS models (respectively, in orange and green). However, the 
non-zero average value of the experimental distribution (r’ = 0.27, vertical dashed line in 
Figure 3c) signals that, albeit broadly varying, the imaged conformations have a residual 
structural correlation, which is, respectively, under- and over-estimated by models 
relying solely on loop-extrusion or phase-separation [65] (Figure 3c). Those small 
discrepancies could be related to the different nature of the underlying LE or SBS 
processes, as, for instance, the first tends to favor the formation of strong, yet more fleeting 
(i.e., less correlated) loop contacts, whereas the second tends to establish spatially 
segregated, stable (i.e., more correlated) globular domains. Consistent with such a picture, 
a polymer model that combines simultaneously both mechanisms at the single-molecule 

Figure 3. LE and SBS cooperate in determining the heterogeneity of chromatin architectures in
single cells. (a) Schematic of the all-against-all structural comparison between microscopy [13] and
model [65] 3D structures. (b) Top: example of experiment–model best-match association via the
RMSD criterion. Middle: the identified RMSD best matches are statistically significant in the LE
and SBS models (two-sided Mann–Whitney p-value < 10−3, RMSD are z-scored on the x-axis). The
control is the distribution of RMSD values for randomly taken pairs of experimental conformations.
Bottom: more than 90% of the model best matches fall below the first decile of the control distribution.
(c) The degree of cell-to-cell structural variability is quantified by an all-against-all pair correlation
of single-molecule distance matrices. While LE (orange distribution) and SBS (green), respectively,
under- and over-estimate the experimental distribution (blue) of pair correlations, a model combining
both processes at the single-cell level (LE + SBS, light blue) best explains the data, hinting that LE and
SBS cooperate in determining chromatin structure and its observed cell-to-cell heterogeneity. The
dashed vertical line is the average value of the experimental distribution. Adapted from [64,65].

Finally, in order to understand whether the different models could provide a theo-
retical framework to explain the origin of the microscopy-reported cell-to-cell variability
of the locus [13], the level of structural heterogeneity in imaging data has been quanti-
fied by computing the distribution of r’ correlations between all pairs of experimental
single-cell distance matrices [64,139]. Consistent with the substantial variability of the ob-
served single-locus conformations [13], the experimental distribution has a broad variance
(Var(r’) = 0.20, Figure 3c, blue distribution) that is overall well reproduced by the LE and
SBS models (respectively, in orange and green). However, the non-zero average value of
the experimental distribution (r’ = 0.27, vertical dashed line in Figure 3c) signals that, albeit
broadly varying, the imaged conformations have a residual structural correlation, which
is, respectively, under- and over-estimated by models relying solely on loop-extrusion
or phase-separation [65] (Figure 3c). Those small discrepancies could be related to the
different nature of the underlying LE or SBS processes, as, for instance, the first tends to
favor the formation of strong, yet more fleeting (i.e., less correlated) loop contacts, whereas
the second tends to establish spatially segregated, stable (i.e., more correlated) globular
domains. Consistent with such a picture, a polymer model that combines simultaneously
both mechanisms at the single-molecule level (LE + SBS, Figure 3c) returns an average
value consistent with the data, indicating that loop-extrusion and phase-separation can
indeed coexist to establish chromatin architecture and shape its full range of heterogenous
structural realizations in single cells [65].
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Summarizing, those recent studies suggest that the observed cell-to-cell variability of
chromatin conformations is consistent with a more complex scenario of folding in which
loop-extrusion and polymer phase-separation cooperatively act at the single-molecule
level to shape genome structure. Furthermore, as different phase-separation mechanisms
may take place in the nucleus, an interesting perspective would be to dissect their specific
roles in chromatin folding, for instance by considering more sophisticated models with
a prominent liquid phase along with a chromatin-driven phase and active LE. The exact
interplay and dynamics of this cooperation are yet to be comprehensively explored and
could be one of the grand challenges of the field for both experimental and theoretical tests.

2.2. Further Validation and Key Applications of Chromatin Polymer Models

A central role for validated models from polymer physics is their ability to make
accurate predictions on chromatin architecture that can be tested against independent
experiments.

In this respect, applications of polymer models have been crucial, for example, in
understanding the role of chromatin architecture in human genetic diseases. Recent studies
have shown, in particular, that the SBS model can accurately predict the effects on chromatin
3D structure of disease-associated genomic structural variants (SVs), such as deletions,
inversions, and duplications, thus helping to understand their contribution in driving
disease [78,95,140–143]. To illustrate this point, in the following subsection, we focus on
recent applications at a crucial chromatin locus, Sox9, linked to embryonic development [95].
On the other hand, while the phase-separation-based SBS model can well explain the effects
of large mutations such as SVs, the LE model has been shown to be particularly suited
to predict the effects of much smaller genomic rearrangements, such as single CTCF
sites mutations [62]. Interestingly, however, an SBS polymer model including explicit
interactions between preferential CTCF sites, as in the LE, has been shown to slightly
improve predictions about the effects of SVs, indicating that the cooperation of the two
mechanisms, consistent with the findings discussed above, can better explain chromatin
folding also in disease [78].

Another relevant aspect of chromatin polymer models is that they are helping to
spread light on the molecular factors that organize chromatin folding across chromosomal
scales. Indeed, different studies based on polymer modeling and supported by experiments
have revealed that the formation of different chromatin sub-compartments and specific
folding patterns are driven, e.g., by homotypic interactions between chromatin sites sharing
similar chromatin occupancy features, including histone modifications, active and poised
gene promoter states, and TF binding sites [64,67,68,81,93,95]. To further elaborate on this
point, we focus in the last subsection on a recent study that, by employing the SBS model,
identifies the key putative chromatin organizing factors that are involved in the specificity
of DNA regulatory contacts genome-wide [95].

2.2.1. Prediction of Genomic Mutations Effects

To exemplify the ability of the SBS model to predict the effects of disease-associated
mutations on chromosome conformation, we take here as a case study the developmental-
related Sox9 locus, in which different and partially overlapping SVs were shown to produce
different phenotypes [144]. The SBS model specific to the locus has been built based on
wild-type (WT) cHi-C data in mouse E12.5 limb buds (Figure 4a) by using the PRISMR
approach [78,95], which infers the SBS model that best describes the locus contact matrix,
i.e., the minimal number and positioning of the binding site types in order to obtain an
ensemble of polymer 3D structures consistent with input data. The SVs are implemented
in silico on the WT SBS model and their corresponding contact matrices, derived from
polymer physics with no fitting parameters whatsoever, are compared to independent
cHi-C data from cells that carry those precise mutations [95].
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the result for a 1.6 Mb duplication (Dup-L) encompassing the neighboring TAD boundary 
(inter-TAD duplication) with no phenotypic effects. The Pearson and distance-corrected 
Pearson coefficients between the model-predicted and cHi-C contact matrices reflect their 
good degree of similarity being, respectively, r = 0.95 and r’ = 0.76 in Dup-S and r = 0.92 
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predicts that while the intra-TAD duplication Dup-S does not affect the overall TAD 

Figure 4. Prediction of the impact of genomic mutations. (a) Hi-C contact matrix [144] of the wild-
type (WT) Sox9 genomic region (top) and its corresponding SBS model (middle) show high similarity
(r’ = 0.87). Bottom: snapshot of a single-molecule conformation in the WT predicted by the model.
(b) The model contact matrix (middle) in the Dup-S case, predicted by implementing the duplication
on the WT model. It shows a high correlation (r’ = 0.76) with the corresponding matrix derived from
an independent experiment (top) in cells bearing the Dup-S mutation. The black arrows highlight
the effect of the duplication on the contact pattern. Bottom: snapshot of a model-predicted single-
molecule conformation in Dup-S (note, in particular, how the duplicated region, highlighted in red, is
well embedded into the original sequence, colored in brown). (c) The model contact matrix (middle)
in the Dup-L case, predicted by implementing the duplication on the WT model. It shows a correlation
with a matrix from an independent experiment (top) in cells bearing the Dup-L mutation as high as
r’ = 0.63. The black arrows highlight the effect of the duplication on the contact pattern. Differently
from the Dup-S case, a snapshot of the 3D structure in Dup-L (bottom) shows that a fraction of
the duplicated region (neo-TAD, colored in red) results to be spatially isolated. This clarifies that
different mutations result in different 3D structures and distinct enhancer-hijackings, explaining their
phenotypes. Adapted from [95].

As exemplificative cases, in Figure 4b we show the result of a 0.4 Mb duplication
(Dup-S) in the non-coding DNA region within the Sox9 gene TAD (intra-TAD duplication)
associated with female-to-male sex reversal in humans, whereas in Figure 4c we illustrate
the result for a 1.6 Mb duplication (Dup-L) encompassing the neighboring TAD boundary
(inter-TAD duplication) with no phenotypic effects. The Pearson and distance-corrected
Pearson coefficients between the model-predicted and cHi-C contact matrices reflect their
good degree of similarity being, respectively, r = 0.95 and r’ = 0.76 in Dup-S and r = 0.92 and
r’ = 0.63 in Dup-L. Specifically, and consistent with experimental data, the model predicts
that while the intra-TAD duplication Dup-S does not affect the overall TAD structure, the
inter-TAD duplication Dup-L produces the formation of a separate chromatin domain
termed “neo-TAD” [144]. However, the neo-TAD results are spatially insulated from its
neighboring regions thus preventing ectopic interactions between Sox9 and its regulatory
sequence, explaining the lack of pathogenicity in humans carrying this type of mutation.
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The polymer model of the Sox9 locus allows dissecting of the interactions of the
duplicated from the original DNA sequence, information not accessible through only Hi-C
data [95]. Importantly, while DupS is fully included within the TAD encompassing Sox9,
in DupL the duplicated region spans two TADs (Figure 4b,c). Since a TAD, in the model,
derives from the presence of a dominant type of binding sites in that region (see, for
example, Figure 2, bottom), the duplicated and original sequence in DupS share many
homologous binding sites producing an excess of interactions localized around the mutated
region, without altering the overall contact pattern. The 3D conformation of the Sox9 DupS
locus (Figure 4b) shows indeed that the duplicated region (colored in red in the figure)
remains well embedded into the original sequence (in brown). On the other hand, in the
inter-TAD duplication DupL, since different prevailing binding sites are present, the portion
of the duplication within the Sox9 TAD interacts with itself more than with its neighboring
regions, remaining partially isolated from the rest of the locus. The snapshot of the 3D
structure of DupL locus shows, indeed, that the region corresponding to the neo-TAD (in
red) is spatially isolated.

Summarizing, in addition to demonstrating that the SBS model can be successfully
used to predict the effect of disease-associated mutations on genome 3D structure, those
results clarify how mutations differently impact chromatin architecture and gene regulation,
resulting in distinct phenotypes.

2.2.2. A Combinatorial Epigenetic Code Linking 1D and 3D Chromatin Organization

The genomic size of the chromatin regions discussed so far is in the range of a few
millions of base pairs. However, the folding machinery also acts at much larger scales,
up to the size of whole chromosomes [7,30]. Chromosome-wide polymer models are then
fundamental to test the validity of the underlying physical mechanisms. Here, we show that
the SBS model can be successfully employed genome-wide and discuss how that allows
to both identify the location and combination of the putative binding sites underlying
chromatin contacts and to derive a first characterization of their molecular features.

The ability of the SBS model in describing the folding at larger genomic length scales
has been tested, e.g., by using high resolution (5 kb) in situ Hi-C data in the human lym-
phoblastoid cell line GM12878 [25]. For each chromosome, PRISMR [78,95] has been used
to infer the SBS model that best describes its corresponding contact matrix. Importantly,
PRISMR exploits only Hi-C data as input, with no prior knowledge of binding factors. As
an example, Figure 5a shows the results of the PRISMR procedure for chromosome 20,
where experimental and model contact patterns show a quantitative degree of similarity
(r’ = 0.85). The position and abundance of the different types of binding sites (binding
domains) are also shown (Figure 5a, middle panel). Interestingly, the arrangement of the
binding site types along the polymer chain is highly non-trivial: rather than being restricted
to small, contiguous genomic regions (as found, e.g., in common and much simpler block-
copolymer models), the binding domains do overlap with each other and are spread across
several mega-bases, hence capturing contacts occurring up to the chromosomal scale [95].
These results indicate that the basic molecular ingredients considered by the model are
sufficient to explain contact patterns across genomic scales.
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Figure 5. A combinatorial epigenetic code links 1D and 3D chromatin structures. (a) Top: in situ Hi-C
data [25] of chromosome 20 at 5 kb of resolution in the human GM12878 cell line. Middle: position
and abundance of the different binding domains along chromosome 20. The colors reflect the specific
association of each domain with a set of key epigenetic marks (see panel b). Bottom: the contact
matrix inferred from the model shows a contact pattern similar to Hi-C (r’ = 0.85). Similar results
are found across chromosomes [95]. (b) According to their correlation with key histone marks, the
genome-wide binding domains of the model cluster in nine epigenetic classes matching well the
chromatin states found in epigenetic segmentation studies [95]. The heatmap shows the histone
profile of the centroid of each class. Interestingly, some but not all the classes also correlate with CTCF
and cohesin, suggesting that a specific combination of genome organizing factors, including but
not limited to CTCF and cohesin, links 3D chromatin architecture to 1D chromatin states. Adapted
from [95].

Since the model uses as input only the GM12878 Hi-C contact matrices, its inferred
binding sites have been characterized a posteriori, by crossing their position along the
genome with independent biological information. In particular, five key histone marks
available from the ENCODE database in the same cell line [134] have been considered
and the correlation between their genomic signals and the genomic location of the model
binding domains computed, thus obtaining for each domain its epigenetic signature. By
grouping the domain histone profiles across chromosomes via hierarchical clustering
algorithms, it has been discovered that there are 9 statistically different groups (or epigenetic
classes) [95]. Figure 5b shows the average histone profile per class. Interestingly, each
class correlates with a specific combination of different epigenetic factors rather than with
a single one. For instance, although there are three classes that strongly correlate with
active chromatin marks (Active 1, Active 2, and Active 3 in Figure 5b), class 1 is enriched
for only active marks, while classes 2 and 3 are both enriched in H3K9me3 (also found in
heterochromatin) and class 3, in particular, shows a stronger correlation with H3K4me1, a
histone mark associated especially with active enhancer regions [145]. That suggests that
the binding domains corresponding to the first three classes produce contacts between
transcribed and regulatory regions. Importantly, the first six classes correlate with CTCF
(Figure 5b), confirming its significance in regulating chromatin architecture and gene
activity [146], but also indicating that its role can be modulated by different sets of histone
marks and molecular factors as discussed above.
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Summarizing, the binding domains inferred genome-wide have a specific barcode of
histone marks and fall in epigenetic classes that match well the chromatin states found
by previous segmentation studies [14,145,147–149]. However, while the latter are, by
definition, non-overlapping segments, the binding domains do overlap with each other
along the genome, providing each DNA window with a distinctive set of binding site types
that can be read as a combinatorial code linking 1D and 3D chromatin organization [95].

3. Discussion

In this work, we discussed principled models of polymer physics to explore the com-
plex machinery underlying chromosome spatial organization. To this aim, we reviewed two
major classes of models, i.e., loop-extrusion and polymer phase-separation, that envisage
distinct biological pictures of folding. In the first class, chromatin structures, e.g., loops and
TADs, are established by molecular motors (such as SMC proteins) that extrude DNA loops
in an off-equilibrium, cell-energy-consuming, process [61,73,89]. In the second, those topo-
logical structures are spontaneously shaped by molecular diffusing binders (corresponding
to specific combinations of chromatin organizing factors, such as CTCF/cohesin, histone
marks, TFs, active/poised Pol-II) that bridge distal DNA cognate sites via equilibrium
polymer thermodynamics mechanisms [64,77,79]. The phase behaviors described in such
models are typical of complex systems of physics [150–154]. In the emerging scenario,
consistent with single-cell imaging data, chromatin contacts at the megabase-scale arise
from the interplay of those distinct (respectively, active and passive) physical processes,
which can coexist and act simultaneously at the single-molecule level [65].

The models we considered, albeit simplified, enable quantitative predictions on real
chromatin structures that can be tested against independent experiments. For example,
within the framework of the SBS (i.e., phase-separation-based) model, we discussed how
specific genomic mutations at key chromatin loci (such as the Sox9 locus) perturb 3D
chromatin structure, producing ectopic contacts consistent with real data (e.g., via specific
enhancer-hijacking events) that result in distinct phenotypes [95]. Importantly, such predic-
tions can help the interpretation of human genetic variants in driving severe diseases, such
as congenital disorders and cancers, which is currently a challenging question in many
clinical cases. Recently, and interestingly, those validated models have been also shown,
in a reverse approach, to serve as ground truth to benchmark independent experiments,
for instance by assessing advantages and limitations of technologies for the determina-
tion of chromosomal structure [138,155], therefore expanding the spectrum of their useful
applications in silico.

Nevertheless, the search for the different mechanisms controlling chromosome archi-
tecture is still open and debated, and many long-standing questions of DNA biology, such as
the molecular rules shaping enhancer–promoter communication, are only poorly addressed
from first principles. In this respect, a few models of long-range transcriptional control
have been recently proposed, invoking, e.g., longer-lived promoter states [36], “activity-by-
contact” models relying on chromatin state measurements [156], or TF-grounded-activity
models based on local 3D gradients of chemical signals [157], yet a comprehensive under-
standing at the molecular level is yet far from being reached. For that reason, validated
theories from polymer physics that rely on robust organizing principles can be crucial to
elucidate the relationship between genome architecture and function, which we expect to
be among the most critical challenges of the field in the nearest future.
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