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Abstract: Therapy for pancreatic ductal adenocarcinoma remains challenging, and the chances of a
complete cure are very limited. As in other types of cancer, the expression and role of miRNAs in
controlling the biological properties of this type of tumor have been extensively studied. A better
insight into miRNA biology seems critical to refining diagnostics and improving their therapeutic
potential. In this study, we focused on the expression of miR-21, -96, -196a, -210, and -217 in normal
fibroblasts, cancer-associated fibroblasts prepared from a ductal adenocarcinoma of the pancreas,
and pancreatic carcinoma cell lines. We compared these data with miRNAs in homogenates of
paraffin-embedded sections from normal pancreatic tissues. In cancer-associated fibroblasts and
cancer cell lines, miRNAs differed significantly from the normal tissue. In detail, miR-21 and -210
were significantly upregulated, while miR-217 was downregulated. Similar transcription profiles
were earlier reported in cancer-associated fibroblasts exposed to hypoxia. However, the cells in
our study were cultured under normoxic conditions. We also noted a relation to IL-6 production.
In conclusion, cultured cancer-associated fibroblasts and carcinoma cells reflect miR-21 and -210
expression similarly to the cancer tissue samples harvested from the patients.
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a relatively infrequent disease with a
reported incidence of more than 64,000 cases in the USA in 2021. Unfortunately, the options
for efficient therapy are currently limited, and patient prognosis remains abysmal [1]. A typ-
ical histological feature of this type of cancer is stromal desmoplasia. The scar-like stroma
contains a copious extracellular matrix produced by cancer-associated fibroblasts (CAFs).

The structural roles of CAFs include the production and simultaneous remodelling
of the extracellular matrix [2,3]. Concerning the proportion of distinct cell types present
in PDAC tumors, CAFs represent an outstandingly abundant cell type. The surprising
quantity of CAFs in PDAC can be easily compared to the number of malignant cells in
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other types of carcinomas. Regarding their origin, CAFs can arise from local fibroblasts.
However, their origin in mesenchymal stem cells, pericytes, or stellate cells under the
control of cancer cells has also been observed [3].

The stroma is biologically highly active and significantly influences tumor growth,
metastatic spread, and resistance to therapy [4]. Therefore, it is likely that CAFs influ-
ence the biology of PDAC through several mechanisms [5–7]. Primarily, CAFs influence
malignant cells across a plethora of tumor types [8], including PDAC, by their paracrine
production. Secreted growth factors, cytokines, and chemokines constitute a chronically
inflammation-supporting tissue microenvironment. CAFs can actively influence cancer
cells; however, various immune cell types are also present in the tumor microenvironment.
The anti-tumor immunity can become inefficient in this specific microenvironment or even
reverse its function to foster malignant cell growth [9].

This can be further enhanced by exosomes bearing cargos of bioactive proteins and
mRNAs. The cancer-supporting properties of CAFs are significantly stimulated by exo-
somes produced by cancer cells containing numerous miRNAs as bioactive cargo [3,10].
Almost 3000 different miRNAs, including miR-21 and -210, have been detected in exosomes
so far and listed in publicly accessible databases (http://exocarta.org/, accessed on 27
October 2022).

The small non-coding RNAs called miRNAs are involved in numerous regulatory
processes in normal and cancer cells. miRNAs can become particularly important in mutual
cross-talk between cancer cells and other elements forming the cancer ecosystem. Mecha-
nistically, miRNAs can interact with mRNAs and so influence the process of translation.
This may reduce specific protein production as the final step of execution of the gene
program [11,12]. This post-transcriptional mechanism ensures control over key cellular
processes such as proliferation, migration, and apoptosis, representing fundamental prop-
erties of cancer growth, spread, and resistance to therapy. Because of the poor prognosis of
PDAC treated by recently available drugs, the regulatory processes mediated by miRNAs
are being extensively studied in this type of malignancy as a potential target for novel
therapeutic interventions [13–15]. Before the animal or even clinical stages of experiments
may be initiated, we have to gain deeper insight into the regulatory pathways using in vitro
models of PDAC.

In this study, we aimed to produce PDAC models in vitro using cultured primary
normal and cancer-associated fibroblasts prepared from the PDAC (PANF), together with
two well-characterized PDAC cell lines, BxPC3 and MIAPaCa-2.

We first addressed the expression of five selected miRNAs (miR-21, miR-96, miR-196a,
miR-210, and miR-217) in normal pancreatic tissues. In closer detail, we selected these
five miRNAs because they play a significant role in PDAC concerning tumor morphology,
progression, and clinical outcomes. Notably, miR-21 and miR-210 proved to have a certain
diagnostic/prognostic value [14,16,17]. Our previous work addressed the expression
profiles of normal fibroblasts and PANF at the whole-genome scale [5]. In this study, we
focus on miRNA detection with emphasis on genes that have a functional relevance to
miRNA expression and thus to the biology of PDAC. In parallel, we also focus on cytokine
IL-6, a critically important master regulator of the interplay between cancer cells and non-
malignant cells within the cancer ecosystem [3]. Thus, the main purpose of this article is
to provide a basis for comparison of the data obtained from in vitro experiments with the
results of studies on clinical material obtained from PDAC patients.

2. Results and Discussion
2.1. Immunocytochemical Characterisation of HFs and PANF

While both studied fibroblasts types, i.e., human fibroblasts (HFs) and PANF, are rich
in vimentin, only PANF cultures contain a high proportion of myofibroblasts (Figure 1).
Using immunocytochemical detection, we observed a high percentage of cells (close to
100%) expressing α-smooth muscle actin with variable intensity. In unstimulated cultures
of primary HFs, we observed only scarcely distributed positive cells. In many of these
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positive PANF cells, we observed a highly organised actin cytoskeleton, typical of fully
differentiated myofibroblasts [18].
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This is also typical of CAFs [3], which significantly influence the functional properties 
of PDAC malignant cells [5]. At the mRNA level, the expression of the ACTA2 gene for α-
smooth muscle actin in PANF increased less than two-fold (fold change = 1.5) with mar-
ginal statistical significance (adjusted p-value = 0.06) and was thus considered non-signif-
icant in contrast to ACTG2 encoding γ-smooth muscle actin, which increased both more 
than two-fold and was statistically significant (Supplementary Figure S1). Both genes 
ACTA2 and ACTG2 encode smooth muscle actin. ACTA2 is the gene encoding α-smooth 
muscle actin expressed, e.g., in the vascular wall. However, it is also expressed in fibro-
blasts, myofibroblasts, and smooth muscle cells elsewhere. ACTG2 is the gene encoding 
γ-smooth muscle actin, also known as the enteric form for its occurrence mainly in smooth 
muscle cells of the intestine [Human Protein Atlas, https://www.proteinatlas.org/, ac-
cessed 11 January 2023]. ACTA2 and ACTG2 are highly homologous, and the regional dis-
tribution of expression is not mutually exclusive. Although the commercial antibody em-
ployed for detecting SMA was designed to recognize α-smooth muscle actin, because of 
the similarity between both actin molecules, the interaction with γ-smooth muscle actin 
cannot be excluded. Co-expression of both isoforms in gastrointestinal cancer has also 
been reported by others [19]. 

2.2. miRNA Expression 
Our results demonstrated that the expression of both miR-21 and miR-210 in cultured 

cells was significantly higher than in the formaldehyde-fixed paraffin-embedded tissue 
from the normal pancreas (Figure 2). MicroRNA miR-217 was significantly downregu-
lated (up to 100-fold) (Figure 3). The expression of miR-96 and miR-196a did not differ 
from the normal pancreas tissue in a consistent way (Figure 4, Supplementary Table S1). 

To provide robust controls for our cell-based research, we built our experiments on 
two independent biological replicates of fibroblasts. Interestingly, both types of normal 
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Figure 1. Detection of α-smooth muscle actin (SMA) and vimentin (VIM) in normal human dermal
fibroblasts (HFs) and CAFs isolated from pancreatic ductal adenocarcinoma (PANF). Negative
controls (CTRL) are also included. The bar is 100 µm.

This is also typical of CAFs [3], which significantly influence the functional properties
of PDAC malignant cells [5]. At the mRNA level, the expression of the ACTA2 gene for α-
smooth muscle actin in PANF increased less than two-fold (fold change = 1.5) with marginal
statistical significance (adjusted p-value = 0.06) and was thus considered non-significant
in contrast to ACTG2 encoding γ-smooth muscle actin, which increased both more than
two-fold and was statistically significant (Supplementary Figure S1). Both genes ACTA2
and ACTG2 encode smooth muscle actin. ACTA2 is the gene encoding α-smooth muscle
actin expressed, e.g., in the vascular wall. However, it is also expressed in fibroblasts,
myofibroblasts, and smooth muscle cells elsewhere. ACTG2 is the gene encoding γ-smooth
muscle actin, also known as the enteric form for its occurrence mainly in smooth muscle
cells of the intestine [Human Protein Atlas, https://www.proteinatlas.org/, accessed 11
January 2023]. ACTA2 and ACTG2 are highly homologous, and the regional distribution
of expression is not mutually exclusive. Although the commercial antibody employed
for detecting SMA was designed to recognize α-smooth muscle actin, because of the
similarity between both actin molecules, the interaction with γ-smooth muscle actin cannot
be excluded. Co-expression of both isoforms in gastrointestinal cancer has also been
reported by others [19].

2.2. miRNA Expression

Our results demonstrated that the expression of both miR-21 and miR-210 in cultured
cells was significantly higher than in the formaldehyde-fixed paraffin-embedded tissue
from the normal pancreas (Figure 2). MicroRNA miR-217 was significantly downregulated
(up to 100-fold) (Figure 3). The expression of miR-96 and miR-196a did not differ from the
normal pancreas tissue in a consistent way (Figure 4, Supplementary Table S1).
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tissue of the normal pancreas. Significant differences between cultured cells and the tissue of the 
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cally significant differences between HDF of ectomesenchymal origin and other cell lines at adjusted 
p-value < 0.05 are marked by crosses. 

Furthermore, it is not easy to explain the observed difference in the production of 
both miR-21 and miR-210 between BxPc3 and MIA PaCa-2. Various phenotypic differ-
ences between both cell lines have been published earlier by others. While MIA PaCa-2 
cells have a typical epithelioid morphology, BxPc3 cells have a mesenchymal morphology. 
BxPc3 cells are, moreover, highly resistant to chemotherapy [23]. 

Both miR-21 and miR-210 are known to be activated by hypoxic conditions. Hypoxia 
occurs in cancer, during wound healing, as well as in other pathological conditions [24–28]. 
Lowering miR-21 and miR-210 expression decreases cell migration and invasion of pancre-
atic stellate cells (PSCs) and CAFs [29]. Predominantly, miR-21 can control various functions 
of fibroblasts, such as extracellular matrix production, angiogenesis, and inflammation con-
trol. This can be particularly important during wound healing and cancer progression [30]. 
This striking similarity is not surprising, because wound healing and the cancer microenvi-
ronment exhibit many similarities at the cellular and molecular levels [31,32]. 

We also observed this significant downregulation of miR-217 in cultured cells, 
mainly in PANF and cancer cells (Figure 3). 

 
Figure 3. Downregulation of miR-217 in cultured human fibroblasts (HDF and HFs), pancreatic-
ductal-cancer-associated fibroblasts (PANF), and PDAC cell lines (BxPC3 and MIA PaCa-2) com-
pared to the tissue of the normal pancreas. Significant differences between cultured cells and the 
tissue of the normal pancreas, i.e., two-fold decrease at adjusted p-value < 0.05, are marked by 

Figure 2. Log2 relative expression intensity of miR-21 and miR-210 in cultured human fibroblasts
(HDF and HFs), cancer-associated fibroblasts prepared from pancreatic ductal adenocarcinoma
(PANF) and cell lines prepared from this type of tumor (BxPC3 and MIA PaCa-2) compared to
the tissue of the normal pancreas. Significant differences between cultured cells and the tissue
of the normal pancreas, i.e., two-fold increase at adjusted p-value < 0.05, are marked by asterisks.
Statistically significant differences between HDF of ectomesenchymal origin and other cell lines at
adjusted p-value < 0.05 are marked by crosses.
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Figure 3. Downregulation of miR-217 in cultured human fibroblasts (HDF and HFs), pancreatic-
ductal-cancer-associated fibroblasts (PANF), and PDAC cell lines (BxPC3 and MIA PaCa-2) compared
to the tissue of the normal pancreas. Significant differences between cultured cells and the tissue
of the normal pancreas, i.e., two-fold decrease at adjusted p-value < 0.05, are marked by asterisks.
Statistically significant differences between HDF of ectomesenchymal origin and other cell lines at
adjusted p-value < 0.05 are marked by crosses.
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tumors as well [40]. 
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malignant melanoma (MELF). Together with normal dermal fibroblasts (HFs), all of the 
isolated primary cells were described in detail earlier [5]. Overall, we observed agreement 
between changes in the miRNA species and changes in the mRNA expression of their 
targets, albeit this association was not statistically significant. Targets of miR-196a and 
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While comparing PANF and HFs, we identified 1327 differentially expressed tran-
scripts (see Supplementary Table S2) belonging to many biological processes. This broad 
difference in expression is not surprising, as we compared CAFs from an internal organ 
with normal dermal fibroblasts. When studied at the level of biological processes using 
the gene set enrichment analysis based on the Gene Ontology terms, we observed differ-
ences in genes associated with organ development, vasculature development, and tissue 

Figure 4. Log2 relative expression intensity of miR-196a and mir-96 in cultured human fibroblasts
(HDF and HFs), cancer-associated fibroblasts prepared from pancreatic ductal adenocarcinoma
(PANF), and cell lines prepared from this type of tumor (BxPC3 and MIA PaCa-2) compared to the
tissue of the normal pancreas. Biologically significant differences between cultured cells and the
tissue of the normal pancreas (two-fold change with adjusted p-value < 0.05) are marked by asterisks.
Statistically significant differences between HDF and other cell lines at adjusted p-value < 0.05 are
marked by crosses.

To provide robust controls for our cell-based research, we built our experiments on
two independent biological replicates of fibroblasts. Interestingly, both types of normal
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fibroblasts used in our study significantly differed in the expression of all of the studied
miRNAs except for miR-210 (Figures 2–4). This surprising difference can be explained by
their different embryonic origin. Facial-skin-derived HDF fibroblasts originated in ectomes-
enchyme derived from the neural crest. The truncal-skin-derived HFs originated from
the mesoderm [20]. This developmental difference must be taken into account cautiously.
The different origin of these types of normal fibroblasts has a significant effect on their
expression profile and presumably a significant influence on their function [21,22]. We
therefore prefer to present both fibroblast controls separately and evaluate the statistical
significance independently where relevant (Figures 2 and 3).

Furthermore, it is not easy to explain the observed difference in the production of
both miR-21 and miR-210 between BxPc3 and MIA PaCa-2. Various phenotypic differences
between both cell lines have been published earlier by others. While MIA PaCa-2 cells have
a typical epithelioid morphology, BxPc3 cells have a mesenchymal morphology. BxPc3 cells
are, moreover, highly resistant to chemotherapy [23].

Both miR-21 and miR-210 are known to be activated by hypoxic conditions. Hypoxia
occurs in cancer, during wound healing, as well as in other pathological conditions [24–28].
Lowering miR-21 and miR-210 expression decreases cell migration and invasion of pancre-
atic stellate cells (PSCs) and CAFs [29]. Predominantly, miR-21 can control various functions
of fibroblasts, such as extracellular matrix production, angiogenesis, and inflammation
control. This can be particularly important during wound healing and cancer progres-
sion [30]. This striking similarity is not surprising, because wound healing and the cancer
microenvironment exhibit many similarities at the cellular and molecular levels [31,32].

We also observed this significant downregulation of miR-217 in cultured cells, mainly
in PANF and cancer cells (Figure 3).

miR-217 is a senescence-associated miRNA and it can induce cellular senescence in
normal fibroblasts [33]. On the other hand, miR-217 is usually expressed in the normal
pancreas [34]. A dual-luciferase reporter assay revealed that KRAS mRNA is the direct
target of miR-217. Overexpression of miR-217 in a PDAC cell line decreases KRAS mRNA
levels and inhibits cell proliferation [35]. These findings can possibly explain the low
expression levels of miR-217 that we observed in fibroblasts and pancreatic cancer cell lines.
Moreover, downregulation of miR-217 may predict cancer presence in PDAC patients [36].
Downregulation of miR-217 (as well as miR-96) is known to be important for cancer
cell proliferation and migration. This was also confirmed by the data obtained from
PDAC [14,34,37].

Although two other detected miRNAs, i.e., miR-96 and miR-196a, in cultured cells
also statistically differed from the normal pancreas, they were actually very close to the
level detected in the normal tissue (Figure 4). Their difference from the normal tissue was
lower than our two-fold cut-off [38] except in cancer cells and was somewhat inconsistent
in our experiments.

However, the expression of miR-196a can also be potentially relevant to PDAC biology.
This miRNA represents a component of the molecular signature of Hodgkin lymphoma [39],
where it controls cancer cell proliferation, as confirmed in different types of tumors as
well [40].

2.3. mRNA Expression in Normal Fibroblasts, CAFs, and PDAC Cell Lines

The CAFs used in this study were prepared from PDAC (PANF) or from cutaneous
malignant melanoma (MELF). Together with normal dermal fibroblasts (HFs), all of the
isolated primary cells were described in detail earlier [5]. Overall, we observed agreement
between changes in the miRNA species and changes in the mRNA expression of their
targets, albeit this association was not statistically significant. Targets of miR-196a and
miR-96 also showed deregulation (Supplementary Figure S2).

While comparing PANF and HFs, we identified 1327 differentially expressed tran-
scripts (see Supplementary Table S2) belonging to many biological processes. This broad
difference in expression is not surprising, as we compared CAFs from an internal organ
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with normal dermal fibroblasts. When studied at the level of biological processes using the
gene set enrichment analysis based on the Gene Ontology terms, we observed differences
in genes associated with organ development, vasculature development, and tissue morpho-
genesis, but also in response to extracellular matrix reorganisation and response to hypoxia
(Supplementary Table S3).

The CAFs indeed expressed many factors typical of hypoxic conditions when com-
pared to HFs, although they were cultured under the same conditions in the atmospheric
pressure of oxygen (Figure 5, Supplementary Table S4). In PANF, this observation har-
monises with the detected high expression of both miR-21 and miR-210 described above.
Surprisingly, the crucial player of hypoxia signalling, HIF-1α (HIF1A gene), was not sig-
nificantly upregulated in PANF (expression increased by 60% in PANF and with marginal
statistical significance, adjusted p-value = 0.09). However, even this level of change in
HIF1A gene activity was reflected by the expression intensity of its targets (Figure 5). Data
from PANF were also compared with data from MELF, which were employed for an inde-
pendent comparison to CAF fibroblasts. Interestingly, these CAFs differed from the normal
fibroblasts but shared common features with PANF cells (Figure 5).
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Figure 5. Heatmap demonstrating differential expression of genes influenced in hypoxia signalling
(GO:0001666—response to hypoxia) in PANF, MELF CAFs, and HFs (normal fibroblasts). The gene
encoding HIF-1α expression was increased by 60% in PANF in contrast to HFs, but not reaching
statistical significance.

The expression of HIF1A in cooperation with both miR-21 and miR-210 can influence
the properties of PDAC cells, such as proliferation, epithelial–mesenchymal transition, and
migration [41]. The neovascularisation of the tumor is essential for its sustained growth
and metastatic spread. The orchestration between the expression of miR-21, miR-210,
HIF1A, and VEGFA (which is significantly upregulated in PANF) seems to strongly support
PDAC vascularisation and progression [42]. Moreover, the HIF1A–VEGFA axis seems to
be involved in the control of PDAC cell invasiveness [43]. Similarly, both miR-21 and
miR-210 cooperate with carboanhydrase IX (CAIX), also expressed by PANF (Figure 6).
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Carboanhydrase IX is present in the acinar and ductal cells of both the normal pancreas and
PDAC [44]. This protein has also been found in different types of cancer, namely cancer of
the kidney [45]. The role of this enzyme in tumor vascularisation has also been reported by
others [46].
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These factors can also participate in the regulation of cyclin D2. The activity of the
CCND2 gene was significantly upregulated in PANF (Figure 6). This cyclin influences
malignant cell proliferation [47]. Another hypoxia-dependent gene, TP53I11, was non-
significantly upregulated in PANF as well (Figure 6). It is also under the influence of
miR-210 and controls the susceptibility of cancer cells to cytotoxic T lymphocytes [48].
The interaction of miR-210 with the BNIP3 transcript (significantly upregulated in PANF)
can protect cancer cells against hypoxic damage [49]. miR-210 also regulates signalling
cascades with the central position of the TIMP1 gene [50] non-significantly upregulated
in PANF. The TIMP1 protein is known as an inhibitor of metalloproteinases participating
in the remodelling of the extracellular matrix in tumors [51]. Another deregulated gene
family observed in this study were genes encoding members of the IGFBP protein family
(Figure 6). Similar findings were also confirmed in malignant glioblastoma, where miR-21
inactivates IGFBP3. It consequently stimulates progression of this type of brain cancer [52].

2.4. Cross-Talk of miR-21 and IL6 Signalling in Hypoxia

CAFs represent an important component of the ecosystem in the majority of human
malignant tumors. CAFs significantly influence clinically relevant aspects, such as can-
cer cell proliferation, maintenance of low differentiation status of cancer cells, and their
capacity to form metastasis [53]. In addition to other molecules, CAFs express a panel of
miRNAs influencing the described malignant cell behaviour. MiR-21 is highly expressed
in normal dermal fibroblasts (HFs) and insignificantly in PANF. MiR-210 is significantly
upregulated in PANF (and in MIA PaCa-2 cancer cells). Based on the literature, both
these miRNAs significantly aggravate the patient’s prospect of survival in several types
of malignant diseases, including PDAC (Table 1). MiR-21 was identified to distinguish
different tumor subtypes in The Cancer Genome Atlas (TCGA) PAAD dataset [54], and
high expression of both miR-21 and miR-210 worsened the patients’ survival in the same
dataset (Supplementary Figure S3).
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Table 1. Role of miR-21 and miR-210 expression by CAFs/stellate cells in cancer progression.

Type of Cancer Cancer-Supporting Effect
of miR-21

Cancer-Supporting Effect
of miR-210

Pancreatic ductal adenocarcinoma [29,55–62] [16,63]

Colorectal carcinoma [58,64–66] [67]

Lung adeno/non-small carcinoma [68,69] [70,71]

Breast [72] [73]

Gastric [74] Not available

Prostate [75] [76,77]

Thyroid medullary [78] Not available

Cutaneous malignant melanoma Not reported [79]

CAFs and their products support the stable pro-inflammatory microenvironment
that stimulates cancer cells and simultaneously abrogates the anti-tumor immune re-
sponse [3,32]. Cytokine IL-6 seems to be in the central position of regulation of the crosstalk
between cancer cells and non-cancerous cells in the tumor ecosystem [80,81]. The IL-6 role
and activity was also confirmed in PANFs [5]. Both miR-21 and miR-210 seem to actively
participate in the described phenomena. The upregulation of miR-21 in CAFs was observed
after their targeting by exosomes with IL-6 cargo. This mechanism stimulates production of
IL-6 in precancerous tissue of the uterine cervix [82], cutaneous malignant melanoma [83],
and in colon cancer [84]. The interaction of miR-21 and miR-210 participates in the control
of STAT3, the critical component of the IL-6 signalling pathway. Furthermore, collaboration
with the effect on PI3K/AKT also influences IL-6 signalling, as observed in several types of
cancer [85–90]. Interestingly, all of that was under hypoxic conditions.

The orchestration between miR-21 and miR-210 and the IL-6 signalling cascade was
also noted in PDAC. This may have a therapeutic consequence concerning the reduction
of tumor vascularization [24]. In this study, PANF with high expression of miR-21 and
miR-210 exhibited higher expression of the IL6 gene. However, the expression of the gene
encoding the IL-6 receptor (IL6R gene) and the gene for signal transducer gp130 (IL6ST)
was not significantly deregulated (Figure 6). Similarly, the expression of the gene encoding
protein STAT3 was increased but did not reach significance (Figure 6). This observation
supports the hypothesis about the effect of miR-21 and miR-210 on IL-6 production, but the
sensitivity of these cells to IL-6 is not easy to predict.

Interestingly, a soluble form of IL-6R comprising the extracellular portion of the recep-
tor can bind IL-6 with a similar affinity as the membrane-bound IL-6R. This soluble form of
IL-6R can be secreted by other cell types and can even activate cells not expressing IL-6R
at all. This process has been called trans-signalling and it demonstrates the remarkable
versatility of the IL-6 signalling pathway. Via canonical signalling and trans-signalling
together, IL-6 can orchestrate the complex ecosystem of a tumor composed of multiple cell
lineages, eliciting individual responses in every one of them [91].

Another cytokine of the IL-6 family, leukaemia inhibitory factor (LIF), is also strongly
upregulated in PANF, while only insignificantly increased in MELF, Figure 7. LIF is
overexpressed in a variety of solid tumors, including pancreatic tumors [92], and promotes
cancer cell proliferation [93,94]. This gene was found to be induced by hypoxia through
HIF1A activation [95]. The LIF promoter region contains hypoxia-responsive elements that
can be transcriptionally activated by hypoxia [94]. It upregulates miR-21 expression under
various physiological and pathological conditions, e.g., during the maturation of oocytes
into cumulus–oocyte complexes [96,97], in trophoblast cells [98] and in tumor cells [94].

PANF exhibited a significant difference in extracellular matrix organization compared
to normal fibroblasts (Figure 8, Supplementary Table S5). The PLOD2 gene encoding
protein lysyl hydroxylase was found to be significantly upregulated in PANF. The product
of this gene is critical for the crosslinking of collagen. It thus stabilizes the structure of the
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extracellular matrix (Figure 8, Supplementary Figure S4). The high expression of PLOD2
is associated with poor prognosis in cancer patients [99,100]. Significant downregulation
of MMP3 and MMP12 participating in the degradation of extracellular matrix molecules
was also detected (Figure 8, Supplementary Figure S4). As mentioned in the introduction,
the stroma of PDAC is remarkably rich in the extracellular matrix, and it frequently ex-
hibits desmoplastic features. These findings demonstrating differences in production and
remodelling of ECM between HFs, MELF, and PANF harmonize well with the observation
of expression of all of the differentially expressed miRNAs. The upregulation of miR-21
and miR-210 and the downregulation of miR-217 expression observed in this study seem
to be linked with fibrosis under different pathological conditions, including desmoplastic
stroma of PDAC [101–104]. This process is also related to hypoxic signalling [105,106] and
is in agreement with the elevated expression of genes influenced by hypoxia (Figure 5).
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Figure 8. Heat map demonstrating differential expression of genes responsible for extracellular
matrix organization in PANF and MELF compared to normal fibroblasts (GO term GO:0030198,
extracellular matrix organisation).
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2.5. Consequences of Upregulation of miR-21 and miR-210 and Downregulation of miR-217 by
Cancer Cells and CAFs Prepared from Pancreatic Cancer

PANF isolated from PDAC maintained high levels of both miR-21 and -210 even after
in vitro propagation. These data show that CAFs of PDAC can participate in their elevated
levels in biological fluids, as observed by others [101,107]. It is of practical importance
because both miRNAs represent a diagnostic marker of PDAC and have recently been
proposed as prognostic markers [95,101]. They can even be used to distinguish PDAC from
pancreatitis [108,109]. miR-21 and miR-210 upregulation and miR-217 downregulation
were detected in CAFs and cancer cells prepared from PDAC [34]. The regulation by these
miRNAs can influence the pro-tumorigenic microenvironment of PDAC.

3. Material and Methods
3.1. Cell Culture

HDFs isolated from facial skin were obtained from Cell Applications, Inc. (San Diego,
CA, USA) and maintained in a fibroblast growth medium (Cell Applications, Inc., San
Diego, CA, USA) supplemented with 10% foetal bovine serum (FBS) and ATB (penicillin
100 U/mL; streptomycin 100 µg/mL), both purchased from Sigma Aldrich Co (St. Louis,
MO, USA). The other biological replicate, human fibroblasts (HFs), was isolated in our labo-
ratory from the residual skin of a healthy donor undergoing routine aesthetic breast surgery
at the Department of Aesthetic Surgery, Third Faculty of Medicine, Charles University.
Cancer-associated fibroblasts from DACP (PANF) were prepared from the tumor samples
obtained from the Department of Pathology, Third Faculty of Medicine, Charles University.
HF and PANF isolation have been described elsewhere [110]. Both the HFs and PANF were
also employed in our previous study [5], where both tested negative for epithelial markers
(keratins), a leukocyte marker (CD45), an endothelial marker (CD34), and melanocytic
markers (MiTF, HMB45, and MELAN-A). The non-commercial samples were obtained fol-
lowing informed consent from the patient with the agreement of the local ethics committee
according to the Helsinki Declaration [111]. Pancreatic cell lines (BxPc3 and MIA PaCa-2)
were obtained as a generous gift from Dr. Maurizio Viale, National Institute for Cancer
Research, Genova, Italy. All of these lines were maintained in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% foetal bovine serum (FBS) and ATB (penicillin
100 U/mL; streptomycin 100 µg/mL), all purchased from Sigma Aldrich Co (St. Louis,
MO, USA). The cells were seeded into 75 cm2 culture flasks. Nunclon was purchased from
Thermo Fisher Scientific–Nunc A/S, Roskilde, Denmark (density 4 × 105 cells/mL) and
maintained in a 37 ◦C incubator with humidified air supplemented with 5% CO2. These
cells were employed for the study of miRNAs.

3.2. Immunocytochemical Analysis

For immunocytochemical analysis, the cells were seeded at a density of 20,000/cm2.
After 48 h, the cells were briefly washed with PBS and fixed in 2% paraformaldehyde.
After permeabilization in TBS-T/1% hydrogen peroxide solution, the cells were blocked
in 5% Roti-ImmunoBlock (CarlRoth, Karlsruhe, Germany). Primary antibodies (rabbit
monoclonal anti-vimentin antibody [clone SP20] (ab16700), Abcam, Cambridge, UK) and
mouse monoclonal anti-SMA [clone 1A4], Dako, Glostrup, Denmark) were diluted 1/100
in DAKO-Real antibody diluent and incubated overnight at 4 ◦C. After washing, the
secondary polymer HRP-tagged antibody (Histofine® Simple Stain™ M.A.X. PO MULTI;
Nichirei Biosciences, Tokyo, Japan) was incubated for 30 min. Chromogenic detection was
performed using Histofine® Simple Stain™ A.E.C. Solution. The slides were counterstained
in Gill’s hematoxylin and mounted in Biomount Aqua (Baria, Praha, Czech Republic).

3.3. MicroRNA Isolation and Reverse Transcription

After 120 h when the confluent growth of cells was approached, the cells were washed
three times with a PBS solution, scraped with a rubber policeman, and harvested by centrifu-
gation at 400× g for 5 min at room temperature. MicroRNAs were extracted from human
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cell lines with an miRNeasy kit (Qiagen, Hilden, Germany), following the manufacturer’s
instructions. Formalin-fixed paraffin-embedded (FFPE) blocks with normal pancreatic
tissue used as a negative control were retrieved from the archive of the Department of
Pathology of the University Hospital Kralovske Vinohrady in Prague. This control sample
(n = 1) was obtained from a patient undergoing partial pancreatectomy for a suspected
tumor that was later histologically diagnosed as the accessory spleen [14]. The tissue was
therefore considered normal and contained normal fibroblasts in contrast to those prepared
from a pathological pancreas, which are often activated even when harvested far from the
affected tissue [112]. The sample was routinely processed and embedded in paraffin, as
described in [113]. Importantly, this type of preparation enables successful isolation of
miRNAs and can be used for comparison with isolates from cultured cells [114,115].

One to three 6µm-thick unstained paraffin-embedded tissue sections were procured
for miRNA extraction using an miRNeasy FFPE kit (Qiagen, Hilden, Germany), according
to the manufacturer’s instructions. Reverse transcription was carried out using RevertAid
Reverse Transcriptase (Thermo Fischer Scientific, Waltham, MA, USA) in a 50 µL reaction
mixture containing the following reagents: 1 µg of DNA-free RNA, a reaction buffer
[50 mM Tris-HCl (pH 8.3 at 25 ◦C), 50 mM KCl, 4 mM MgCl2 and 50 mM DTT], 1 mM of
dATP, dTTP, dCTP, and dGTP, 20 IU rRNasin ribonuclease inhibitor, 100 IU of Moloney
murine leukaemia virus reverse transcriptase (M-MuLV RT), and the primer mix, including
20 pmol of each stem-loop primer. A mix of stem-loop primers was used for miRNA
reverse transcription. The primers were designed with miRNA primer designer software,
kindly provided by Dr. Fuliang Xie, East Carolina University, USA. The stem-loop primer
sequences for the alien spike (miR-39 from C. elegans) and the examined miRNAs are listed
in Supplementary Table S6. Artificial spike RNA (miR-39 from C. elegans, 5 × 108 copies)
was also added to the reaction as an external reference. After initial denaturation (5 min at
70 ◦C, then cooling the samples on ice), the reactions were incubated at 25 ◦C (10 min), and
then at 42 ◦C for 1 h. To stop the reaction, the mixture was heated at 70 ◦C for 10 min.

3.4. Real-Time qPCR

cDNA samples were amplified in duplicates using an Applied Biosystems 7500 Fast
real-time PCR system and Hot FirePol EvaGreen qPCR Mix Plus (Solis BioDyne, Tartu
Estonia). The reaction mix included 10 pmol of each primer (miRNA-specific and universal
(Supplementary Table S7) and 2 µL of cDNA. Amplification of the cDNAs was performed
under the following thermal conditions: denaturation at 94 ◦C for 15 min, followed by
40 cycles consisting of denaturation at 94 ◦C for 15 s, annealing at 62 ◦C for 60 s, and
DNA synthesis at 72 ◦C for 40 s. The reaction product specificity was controlled with
the respective melting curves. The ∆∆Ct method was applied to measure the values
of miRNA expression of interest [116] with spiked-in miR-39 from C. elegans used as a
reference miRNA.

3.5. Comparison with the mRNA Expression Profile of PANF and CAFs from Melanoma (MELF)
Based on [5]

The data were processed as described in the original article. In short, oligo [117]
and limma [118] packages of R/Bioconductor [119] were used to identify differentially
transcribed genes after the transcription profiles were background corrected using a normal–
exponential model, quantile normalised, and variance stabilized using base 2 logarithmic
transformation. A moderated t-test was used to detect differentially expressed transcripts.
An adjusted p-value (Storey’s q) of <0.05 and a minimally two-fold change in expression
intensity were required to consider the gene as differentially transcribed. The MIAME
compliant data are available in the ArrayExpress database (E-MTAB-8764). Gene set
enrichment analysis (GSEA) was performed using the Fisher’s exact test. Only the terms
with GSEA p-value < 0.00001, a minimal overlap of twenty genes and an odds ratio > 2
were considered to be statistically significant.
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3.6. Statistical Analysis

All of the statistical analyses were performed using GenEx 6, SAS release 9.4 (SAS
Inc., Cary, NC, USA), and SPSS 25 (IBM Corporation, Armonk, NY, USA), unless stated
otherwise. The expression of miRNAs in neoplastic and normal cells was compared by a
Mann–Whitney test. All of the tested hypotheses were two-sided. As multiple tests were
performed, we adjusted the p-values using the false discovery rate approach (FDR). The
significance level was selected as alpha = 0.05; therefore, adjusted p-values below 0.05 were
considered statistically significant unless otherwise stated.

4. Conclusions

Cultured normal human fibroblasts, pancreatic cancer-associated fibroblasts, and
malignant cells from PDAC strongly express miR-21 and miR-210 and downregulate the
expression of miR-217. These features are maintained even after being extended in vitro
propagation. The expression of miR-21 and miR-210 is associated with high expression of
IL-6 and molecules participating in the organization of the extracellular matrix. MiR-21,
miR-210, and miR-217 seem to be important for the formation of a cancer-cell-supporting
microenvironment. Moreover, these miRNAs may have some clinical relevance. There is
increasing evidence supporting these miRNAs as reliable markers for PDAC diagnosis and
prognosis.
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Abbreviations

CAF Cancer-associated fibroblast
CTRL Negative controls
FDR False discovery rate
GSEA Gene set enrichment analysis
GO The Gene Ontology
HDF Human dermal fibroblast originating in ectomesenchyme derived from the neural crest
HF Human dermal fibroblast originated from mesoderm
HIF-1α Hypoxia-induced factor 1α
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IL-6 Interleukin 6
LIF Leukaemia inhibitory factor
MELF CAF prepared from cutaneous malignant melanoma
miRNA MicroRNA
miR-21 MicroRNA 21
mir-96 MicroRNA 96
mir-196a MicroRNA 196a
mir-210 MicroRNA 210
mir-217 MicroRNA 217
MMP Matrix metalloproteinase
PANF CAF prepared from PDAC
PBS Phosphate-buffered saline
PDAC Pancreatic ductal adenocarcinoma
SMA α-smooth muscle actin
VIM Vimentin
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