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Abstract: Lagerstroemia indica L. is a well-known ornamental plant with large pyramidal racemes,
long flower duration, and diverse colors and cultivars. It has been cultivated for nearly 1600 years
and is essential for investigating the germplasm and assessing genetic variation to support interna-
tional cultivar identification and breeding programs. In this study, 20 common Lagerstroemia indica
cultivars from different varietal groups and flower morphologies, as well as multiple wild relative
species, were analyzed to investigate the maternal donor of Lagerstroemia indica cultivars and to
discover the genetic variation and relationships among cultivars based on plastome and nuclear
ribosomal DNA (nrDNA) sequences. A total of 47 single nucleotide polymorphisms (SNPs) and
24 insertion/deletions (indels) were identified in the 20 L. indica cultivars’ plastome and 25 SNPs were
identified in the nrDNA. Phylogenetic analysis based on the plastome sequences showed that all the
cultivars formed a clade with the species of L. indica, indicating that L. indica was the maternal donor
of the cultivars. Population structure and PCA analyses supported two clades of cultivars, which
exhibited significant genetic differences according to the plastome dataset. The results of the ntDNA
supported that all 20 cultivars were divided into three clades and most of the cultivars had at least
two genetic backgrounds and higher gene flow. Our results suggest that the plastome and nrDNA
sequences can be used as molecular markers for assessing the genetic variation and relationships of
L. indica cultivars.
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1. Introduction

Crape myrtles (Lagerstroemia indica L.), belonging to the genus Lagerstroemia of the
family Lythraceae, are important summer-blooming ornamental trees or shrubs. They are
excellent woody plants for environmental protection, since they can absorb smoke and
dust in the air and are resistant to toxic gases such as sulfur dioxide, hydrogen fluoride,
and chlorine released from industrial pollution [1]. Crape myrtles are valuable, with high
economic value in city gardening and hill planting. There are more than 200 cultivars of
L. indica in the world, and crape myrtles have been cultivated for nearly 1600 years [1,2].
The breeding of new cultivars with various outstanding features, such as a longer flowering
time; different floral colors; stronger aroma; seeds with higher oil production; or resistance
to drought, coldness, insects, or disease, is an important issue.

Morphological characteristics, such as flower color, length and width of inflorescence,
flower diameter, floral fragrance, number of flowerlets per inflorescence, petal claw color,
leaf color, and thousand-seed weight, are major elements for understanding phenotypic
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differentiation in crape myrtle cultivars. The complex genetics and the high phenotypic
variation of L. indica cultivars are thought to be the result of multiple cycles of artificial
selection and intraspecific hybridization [3,4]. Intraspecific hybridization is mainly used for
cultivar improvement, with selection of the parent cultivar a critical step in hybrid breeding.
Phenotypic traits are frequently used as the main guide for choosing the germplasm
to develop new cultivars with novel appearances and improved stress tolerance. In fact,
selecting the germplasm with relatively large genetic differences can help improve breeding
efficiency, as hybrid breeding according to phenotype may not produce offspring with the
expected characteristics. Understanding the genetic background of L. indica cultivars is
essential for choosing germplasm resources and ultimately facilitating genetic improvement
and breeding programs.

The origin of cultivated crape myrtles has attracted great attention over the past
decades. Previous studies show that the donor of cultivated crape myrtles involved five
Lagerstroemia species based on the morphological and genetic data, including L. indica,
L. fauriei, L. speciosa, L. subcostata, and L. limii [3,5]. However, the maternal donor of
the cultivated crape myrtles is not clear. Morphological characteristics [6], RAPD [7],
AFLP [8], and SSRs [2,9-12] markers were used to assess genetic diversity among the
L. indica cultivars. However, few studies have evaluated the genetic variation and diversity
of L. indica cultivars using DNA sequence markers. Improved DNA sequence markers need
to be developed to facilitate research access to the genetic diversity of crape myrtles.

Plastome and nuclear ribosomal DNA (nrDNA) sequences are popular molecular
markers used for plant phylogeny [13-17] and species identification [18,19] because these
sequences are conserved across plant species and show variability among interspecies
levels. Past studies show that the plastome and nrDNA sequences contain numerous
SSRs, indels, and SNPs at the intraspecies levels, which have been used to research the
genetic divergence of endangered species [20,21], biogeographical structure [22-24], gene
flow among subpopulations [25,26], and origins and domestication of cultivars [27-29].
For the Lagerstroemia species, more than 17 species have sequenced the whole chloroplast
genome, using these data to infer the phylogeny and divergence time of Lagerstroemia [30].
Dong et al. [30] also identified several polymorphism sites in the plastome and nrDNA
sequences at the intraspecies level in L. indica, indicating that these molecular data will
resolve genetic variation among the L. indica cultivars at the genome level.

In this study, we performed comprehensive sampling in cultivars of L. indica. A
total of 20 accessions were collected to represent different varietal groups and flower
morphologies [6,31]. All of the plastome and ntDNA sequences were assembled to discover
the sequence variation among the cultivars. Phylogenetic analyses combining data of the
cultivars and of wild species elucidated the relationships between and maternal origin of
crape myrtle cultivars. Genetic diversity and population differentiation analyses evaluated
the genetic structure and genetic divergence in the cultivars. This study sheds light on the
diversity of crape myrtle cultivars and provides variable genetic resources for the breeding
of new cultivars.

2. Results
2.1. Plastome and nrDNA Sequences of Lagerstroemia indica Cultivars

In this study, the plastomes of 20 cultivars of L. indica were assembled (Figure 1 and
Table 1). All the plastomes had the typical quadripartite structure of most angiosperm
plants. The length of these plastomes varied between 152,174 bp and 152,232 bp, with
the LSC (length: 84,006 bp—84,062 bp) and SSC (length: 16,908 bp-16,910 bp) separated
by two IRs (length: 25,630) (Table S2). The overall GC content was 37.6%. The L. indica
plastome harbored 112 different genes, including 78 protein coding genes, 30 tRNA genes,
and 4 rRNA genes. The annotated plastomes were deposited in GenBank (Table 1). The
positions of the IR and SC boundaries were conserved among the cultivars. The LSC and
IRb boundary was located in the rps19 gene, and the IRb and SSC in the ndhF gene. The
boundary between LSC and IRa was located between the rps19 and trnH-GUG. The trnH-
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GUG gene was located at the beginning of the LSC region. The ntDNA sequences were
each assembled into a single contig using the GetOrganelle toolkit. The ntDNA sequences

were aligned with 6419 bp.

Figure 1. The floral traits of 20 Lagerstroemia indica cultivars. 01. ‘Baimixiang’; 02. ‘Baiyunyingxia’;
03. ‘Bingqgingyudie’; 04. ‘Zizhuainwei’; 05. ‘Dahuazhaolu’; 06. ‘Xiaohuayinwei’; 07. ‘Dahuaziyun’;
08. ‘Zhoubanjinwei’; 09. ‘Dahuacuipanjinwei’; 10. “Duohuazi’; 11. ‘Qiaojiaren’; 12. ‘Jinwei’; 13. ‘Lanzi’;
14. ‘Duohuajinxiu’; 15. ‘Fenjing’; 16. ‘Ziyu’; 17. ‘Zixia’; 18. ‘Caixiamantian’; 19. “Yinbianhong’;
20. ‘Hongzhuashenzi’.

Table 1. Samples information and characteristics of the 20 Lagerstroemia indica cultivars.

GenBank GenBank
. Flower . . Flower . Accession Accession
Samples Varietal Group Number Flowering Times Color Origin Numberof  Number of
Plastome nrDNA
‘Dahuazhaolu’ ‘Bicolor” Group 43-98 Middle period (July and August) Bicolor Jishou, Hunan OP613198 OP723643
Ziyu’ é*r?:‘r'jlhs 62-112 Middle period (July and August) Purple Changde, Hunan ~ OP613199 OP723644
‘Duohuazi’ é‘rl:;;ﬂis 64-172 Middle period (July and August) Purple Liuyang, Hunan ~ OP613200 OP723645
‘Qiaojiaren” ‘Bicolor” Group 61-138 Middle period (July and August) Bicolor Wuhan, Hubei OP613201 OP723646
‘Zizhuayinwei’ ‘Alba’ Group 69-102 Middle period (July and August) White gﬁgﬁgﬁ OP613202 OP723647
“Yinbianhong’ ‘Bicolor” Group 86-113 Early flowering period (before July) ~ Bicolor Jishou, Hunan OP613203 OP723648
‘Bingqingyudie’ ‘Alba’ Group 76-158 Middle period (July and August) White gﬁgﬁgﬁ OP613204 OP723649
- . ‘Amabilis’ . ) Changsha,
JinWei Group 83-185 Middle period (July and August) Purple Hunan OP613205 OP723650
“Zixia’ é‘rﬁ‘ﬁ;‘hs 66-119 Middle period (July and August) Purple Changde, Hunan  OP613206 OP723651
‘Zhoubanjinwei’ Omabilis 153225  Middle period (July and August) ~ Purple Changsha, OP613207  OP723652
roup Hunan
‘Caixiamantian’ ‘Rubra’ Group 98-198 Late flowering (September) Red g&f\ﬁiﬁu OP613208 OP723653
‘Baiyunyingxia’ ‘Alba’ Group 57-125 Middle period (July and August) White %i‘;fha' OP613209 OP723654
‘Baimixiang’ ‘Alba” Group 100-198 Flowering long White Changsha, OP613210 OP723655

Hunan
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Table 1. Cont.
GenBank GenBank
S . Flower . . Flower .. Accession Accession
amples Varietal Group Number Flowering Times Color Origin Number of Number of
Plastome nrDNA
, . ‘Amabilis’ . .

Lanzi Group 59-106 Middle period (July and August) Purple Changde, Hunan OP613211 OP723656
‘Fenjing’ ‘Rubra’ Group 97-198 Middle period (July and August) Red gl}c‘flﬁgi“ OP613212 OP723657
‘Dahuaziyun’ ‘Bicolor” Group 43122 Middle period (July and August) Bicolor ﬂ‘jﬁg’ﬁng' OP613213  OP723658
‘Xiaohuayinwei ‘Alba’ Group 69-145 Middle period (July and August) White Scd}gi?lgiu, OP613214 OP723659
‘Duohuajinxiu’ é‘:j;ﬂis 138222 Middle period (July and August) Purple Shaoyang, OP613215  OP723660
, ., ‘Amabilis’ . . Shaoyang,

Hongzhuashenzi Group 64-164 Middle period (July and August) Purple Hunan OP613216 OP723661
‘Dahuacuipan]inwei’ é‘;g‘f;‘hs 75-156 Middle period (July and August) Purple ﬂ‘ﬁ:ﬁ“g’ OP613217 OP723662

2.2. Plastome Variation in the Lagerstroemia indica Cultivars
The L. indica cultivars’ plastomes were aligned with 152,250 bp in length. Indels and
SNPs were identified in the plastomes, and most of the intraspecific L. indica variable
sites and indels were located in the LSC and SSC regions (Figure 2). A total of 24 indels
were discovered in the 20 L. indica cultivars’ plastomes, including 14 SSR-related indels,
4 repeat-related indels, and 6 normal indels. All the indels occurred in the noncoding
regions, including 4 in introns (ndhA, clpP, atpF, and petB) and 20 in the spacer regions
(Figure 2c). The indels’ size ranged from 1 to 36 bp (Figure 2a), with 1 bp indels occurring
in the highest frequency (62.5%). The two largest indels were located in the rpl33-rps18 and
accD-psal regions, both of which were repeat-related. Both of these indels were found in an
insert in the ‘Qiaojiaren’, ‘JinWei’, “Zhoubanjinwei’, ‘Baimixiang’, and ‘Lanzi’ cultivars.
16 a 20 b 20 Cc
14 18 18
1 16 16
14 14
10 12 12
8 10 10
. 8 8
6 6
4 4 4
2 2 I 2
0 0 . 0
1 2 3 7 17 36 spacer  intron  exon LSC IR ssC
16 d 5 € a0 j
14 25 25
12
20 20
10
8 15 15
6 10 10
4
5 5
2
0 _ 0
AG/TC CT/GA AC/TG AT/TA CA/GT CG/GC spacer intron exon LSC IR SSC

Figure 2. Plastome variation in the Lagerstroemia indica cultivars. (a) length of indels, X-axis indicated
the length of the indels; (b) number of indels in the spacer, intron, and exon regions; (c) number of
indels in the LSC, IR, and SSC regions; (d) patterns of SNPs, X-axis indicated the patterns of the SNPs;
(e) number of SNPs in the spacer, intron, and exon regions; (f) number of SNPs in the LSC, IR, and
SSC regions.
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There were 47 SNPs in the 20 L. indica plastomes, and the average number of in-
traspecific variable sites was 0.31 per kb. Among the 47 SNPs, there were 45 parsimony-
informative sites, including 23 transition (Ts) and 24 transversion (Tv) sites. The most
frequent SNP mutation types were A to G and T to C, with G to C or C to G mutations
occurring far less frequently, and only once in the psbE-petL region. A total of 30, 15, and
2 SNPs occurred in the LSC, SSC, and IR regions, respectively. SNPs were harbored in
38 sequence regions, including 23 spacer regions, 12 coding regions, and 4 intron regions.
The trnK-UUU-rps16 spacer region and the ycf] gene had three SNPs; trnD-GUC-trnY-GUA,
rpl32-trnL-UAG, rpoC2, ndhD, and ndhF had two SNPs, and the rest of the regions had
one SNP.

2.3. Nuclear Ribosomal DNA Variability

The ntDNA sequences were highly homogeneous among the 20 L. indica cultivars,
with an aligned length of 6,419 bp. The GenBank accession numbers of the ntDNA of the
cultivars are shown in Table 1. Comparison of the sequences revealed 25 SNPs: 11 in the
185 rRNA region, 11 in the ITS region, and 3 in the 265 region.

2.4. Maternal Origin of the Cultivars

Combining the wild species and cultivars, ML and BI analyses based on the whole plas-
tome dataset produced similar trees (Figure 3). The dataset strongly supported the mono-
phyly and revealed four clades in the genus Lagerstroemia. This result is consistent with
recent phylogenetic results [30,32]. All 20 cultivars of L. indica formed a strongly supported
group with the wild species of L. indica, with higher supported values (BS/PP =90/1) in
clade IV indicating that the maternal parentage of all 20 cultivars was the L. indica.

2.5. Genetic Variation Based on the Plastome Sequences

ML and BI tree analyses performed from the whole plastome sequences indicated that
all 20 cultivars of L. indica formed two clades (Figure 4a). The five cultivars of ‘Qiaojiaren’,
‘JinWei’, “Zhoubanjinwei’, ‘Baimixiang’, and ‘Lanzi’ formed a clade. The PCA scatterplot is
presented in Figure 4c. The first two PCA axes account for about 38.61%, revealing a clear
clustering in the two groups. Population structure results from ADMIXTURE suggest that
there are two clades (Figures 4d and S1).

All the polymorphisms allowed for the identification of five haplotypes (Figure 4e,
Table S3). The five haplotypes also formed two clades, exhibiting a significant genetic differ-
ence with the number of mutational steps (44 steps). Further evidence of the phylogenetic
structure of plastome variation in the L. indica cultivars was provided by the distribution
of SNP variation among the phylogenetic clades. Haplotype 1 contained five cultivars of
‘Qiaojiaren’, ‘JinWei’, ‘Zhoubanjinwei’, ‘Baimixiang’, and ‘Lanzi’. Haplotype 2, containing
nine cultivars, formed a clade with haplotypes 3, 4, and 5, showing a star-like topology
consisting of a central haplotype (hap2) from which the other three haplotypes radiate,
separated by one step (Figure 4e).

2.6. Genetic Variation Based on the nrDNA Sequences

Phylogenetic reconstruction using the ntDNA sequences revealed three clades di-
viding the twenty cultivars of L. indica (Figure 5a). The PCA scatterplot is presented in
Figure 5c. The first two PCA axes account for about 34.63%, revealing a clear clustering
in the three groups. Population structure was analyzed using K values ranging from 1 to
10, and the cross validation (CV) error was also the lowest with K = 5 (Figures 5d and S1).
The results show that most of the cultivars had at least two genetic backgrounds and had
higher gene flow.
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Figure 3. Phylogenetic relationships between Lagerstroemia indica and other related wild species.

(a) morphological characteristics of Lagerstroemia indica; (b) ML bootstrap support values/Bayesian
posterior probabilities are shown at each node.

Network analysis supported three clades, consistent with the phylogeny result (Figure 5e).
Ten haplotypes were identified (Table S4), with only haplotype 1 (hap 1) represented across
eleven cultivars. With haplotype 2, haplotypes 1, 6, and 7 formed a clade (Group A in
Figure 5a) with nine mutational steps. Haplotype 2 was the ‘Dahuazhaolu’ from the Bicolor
group. The population structure shows ‘Dahuazhaolu’” with multiple instances of cross-
breeding (Figure 5d). Group C included six haplotypes, containing six cultivars of “Yinbian-
hong’, ‘Bingqingyudie’, ‘Zixia’, ‘Baiyunyingxia’, Hongzhuashenzi’, and ‘Zhoubanjinwei’.
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Figure 4. Intraspecific diversity and genetic structure of 20 Lagerstroemia indica cultivars based on
plastome dataset. (a) phylogenetic tree. ML bootstrap support values/Bayesian posterior proba-
bilities are shown at each node; (b) phenotypic characterization; (c) principal component analysis;
(d) population structure analysis with K = 2, 3; (e) TCS network of five haplotypes from the plastome
sequences. The number of mutational steps is shown on the lines, and the size of the pie chart
represents the number of the accessions. The haplotype for each sample is listed in Table S3.

2.7. Phenotypic Characterization

The 20 cultivars of L. indica showed very high morphological variation (Figure 1).
The different varietal groups exhibited variation in flower numbers and flowing time,
and neither the plastome nor ntDNA data supported a finding that the varietal groups
were monophyletic. (Figures 4b and 5b). There were four orders of flower numbers in
the inflorescence of the twenty cultivars, showing greater differences. The two cultivars
of ‘Duohuajinxiu’ and ‘Zhoubanjinwei’ exhibited a large number of flowers (more than
200) per inflorescence, while the ‘Dahuazhaolu’ cultivar from the ‘Bicolor” group only had
half that amount. Most of the cultivars (17) bloom in July and August. The flowering
time of cultivar “Yinbianhong’ is relatively early, before July, while ‘Caixiamantian’ flowers
relatively late, in September. The ‘Baimixiang’ cultivar from the ‘Alba’ group has a strong
fragrance and a long flowering time (from July to September). Finally, flower color was
documented in 20 cultivars (Figure 1). The most common colors are white, purple, red, and
bicolor (mostly purple and pink). Flower color is the main varietal group-based phenotypic
character for L. indica cultivars. However, flower color-based grouping was not supported
by molecular data.
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Figure 5. Intraspecific diversity and genetic structure of 20 Lagerstroemia indica cultivars based on
nrDNA dataset. (a) phylogenetic tree. ML bootstrap support values/Bayesian posterior probabilities
are shown at each node; (b) phenotypic characterization; (c) principal component analysis; (d) popu-
lation structure analysis with K = 3, 4, 5, and 6; (e) TCS network of 10 haplotypes from the nrDNA
sequences. The number of mutational steps is shown on the lines, and the size of the pie chart
represents the number of the accessions. The black circles are extinct haplotypes, and the haplotype
for each sample is listed in Table S4.

3. Discussion
3.1. Maternal Donor of Crape Myrtle Cultivars

Crape myrtles have been cultivated as ornamental trees for more than 1600 years,
owing to their long flowering season, high resistance to pollution, and ease of training.
Although crape myrtles have more than 300 cultivars [2], the maternal donor has not
historically been clear. In this study, we used whole plastome sequences to explore the
maternal donor of crape myrtle cultivars and assess their genetic variation.

The five species of L. indica, L. fauriei, L. speciosa, L. subcostata, and L. limii have been
introduced in crape myrtle breeding programs, releasing at least 200 varieties with a wide
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range in plant size, habitat, flower color, and size [3,5]. L. fauriei, from central and southern
Japan, has been an important donor of crape myrtle, owing to its strong resistance to
mildew, disease, and cold temperatures. L. speciosa, native to Australia, Southern New
Guinea, India, and the Philippines, is a woody plant growing 25 m high [33] which is
widely cultivated as an ornamental tree in tropical and subtropical areas. L. subcostata and
L. limii, native to Southern China, are mostly shrubs or small trees; they bloom earlier [33]
and have been used to breed early-flowering cultivars [34].

Cross-breeding is one of the primary strategies for the breeding of crape myrtles, with
five main wild species involved in the breeding of its cultivars. Our phylogeny results
revealed that all 20 cultivars formed a strongly supported clade within the wild species
of L. indica (Figure 3), indicating that L. indica was the maternal donor of these cultivars.
Lagerstroemia guilinensis, narrowly distributed in Guangxi Province, is sister to L. indica in
Clade IV. Phylogeny results supported that the three species of L. fauriei, L. subcostata, and
L. limii form a separate clade (Clade III).

3.2. Phenotypic Diversity and Genetic Variation of Lagerstroemia indica Cultivars

The L. indica cultivars are rich in phenotypic diversity (Figure 1), including quanti-
tative and qualitative trait variations such as flower color, claw color, flower diameter,
flower number, length and width of inflorescence, and 1000-seed weight [6,8]. The high
degree of phenotypic diversity varies among the different varietal groups; the ‘Rubra’
group had the highest phenotypic diversity, followed by the ‘Amabilis” group and the
‘Alba’ group [6]. Based on the cluster of phenotypic characteristics, the L. indica cultivars
were further divided into five groups, and all the varietal groups did not form a clade
except the ‘Bicolor’ group [6]. Meanwhile, genetic evidence did not support the finding of
a monophyletic group within the varietal groups from either the plastome or ntDNA se-
quences (Figures 4a and 5a). Phylogenetic relationships showed there was conflict between
plastome and nrDNA datasets (Figures 4a and 5a). Topological cytonuclear discordance
is commonly observed in plant phylogenetics [14,35], and incomplete lineage sorting and
gene flow can cause cytonuclear discordance within the species or among closely related
species [36,37]. For L. indica cultivars, the intraspecific hybridization during the process of
cross-breeding may lead to the discordance between the plastome and ntDNA. Plastome
and ntDNA sequencing revealed high genetic diversity among crape myrtle cultivars. The
plastome sequences unveiled unexplored genetic variation, and 47 variable sites and 24 in-
dels were identified, giving rise to 5 haplotypes and dividing the 20 cultivars into 2 groups
(Figure 4). The ntDNA sequence included 25 variable sites and divided the 20 cultivars
into 3 clades (Figure 5). The plastome and nrDNA sequences exhibited high variability in
crape myrtle cultivars, compared to Chrysanthemum [27], sweet potato (Ipomoea batatas) [38],
and Panax ginseng [39] cultivars. Compared to the SSR and AFLP markers, the plastome
sequence markers show lower genetic variability; however, as maternal markers, it is
essential to identify the maternal parentage.

Further evidence showed that most of the crape myrtle cultivars are of hybrid origin,
even interspecific hybrids (for example, some cultivars from America) [5,12]. The structure
of the ntDNA also supported the finding that most of the selected cultivars were at least
two crosses (Figure 5d). Several studies showed the cultivars mostly tended to group
by geographic regions [29]. With wide sampling, the crape myrtle cultivars also showed
the same pattern [12]. Interestingly, according to the morphological database, several
cultivars exhibited similar traits when forming a clade, such as the same flower color
(e.g., “Yinbianhong’ and ‘Hongzhuashenzi’). This indicates that they have a similar genetic
background (Figures 4 and 5).

3.3. Utility of Plastome and nrDNA for Accessing Genetic Diversity of Cultivars

With the advantage of next-generation sequencing technologies and bioinformatics
tools, plastomes and ntDNA can be assembled from genome skimming data, avoiding the
high experimental technology requirements of chloroplast isolation and purification [40-42].
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Plastomes are maternally inherited and structurally conserved in most angiosperm plants,
and ntDNA sequences are variable, leading these markers to be widely used for tracking
the evolution and species identification of plants at both high and low taxonomic levels.
Therefore, the plastome markers rbcL, matK, ycfl, and ITS are typically selected as the DNA
barcodes for land plants [43,44]. Some of the regions of the plastomes, including the ndhF,
trnH-psbA, and trnL-F, have been identified as mutation hotspot regions [45]. For the wild
species of Lagerstroemia, four variable loci, trnD-trnY-trnE, rrnl6-trnl, ndhF-rpl32-trnL, and
ycfl, were discovered in the Lagerstroemia plastomes [30].

Plastome sequences are widely used to infer phylogenetic relationships at different
taxonomic levels. The phylogeny of the species in Lagerstroemia was well resolved based
on the whole plastome sequences from this paper and from previous studies [30,32,46],
revealing the maternal donor of crape myrtle cultivars. Only a few studies have assessed
the intraspecific variation of the whole plastomes and ntDNA sequences [18,20,21,47,48].
The plastid genome markers have less use in analyzing the genetic diversity of cultivars,
owing to their limited polymorphic sites. In this study, we sequenced the whole plastome
and nrDNA of common and representative crape myrtle cultivars to assess the variations
in these sequences. In total, 47 SNPs and 24 indels, and 28 SNPs in plastome and ntDNA
sequences, respectively, were identified among these 20 crape myrtle cultivars.

Mutation rate variation among different lineages of plastomes and ntDNA sequences
has been examined in various studies [49-51]. Most of the cultivars originated from one
species, and it is difficult to discover the genetic difference owing to these variations
occurring at the intra-specific level or even the intra-group level. However, more variable
sites were identified in the crape myrtle cultivars. There are three main factors which
have the possibility of introducing more genetic variations. First, at least five wild species
(L. indica, L. fauriei, L. speciosa, L. subcostata, and L. limii) are involved in the formation of
crape myrtle cultivars [2,3,52], leading to broad genetic variation. Second, most of the
cultivars were formed by hybridization, and cross-breeding is one of the primary strategies
for the breeding of crape myrtles. Third, longer cultivation and selection based on traits
such as flower color and number of flowers per inflorescence have led to the maintenance
of more genetic variations.

Additional studies have shown that the plastome has mutational hotspot regions and
that the IR region was better conserved than SC regions. In the crape myrtle cultivars’
plastome, intra-specific variable sites and indels were mostly located in the SC regions and
the trnK-UUU-rps16 spacer region. The ycfl gene demonstrated higher variability. The
nrDNA internal transcribed spacer (ITS) sequences are highly variable in the kingdom
Plantae, with a potentially high resolution of inter- and intra-specific relationships [53].
ITS sequences have been used to authenticate ginseng cultivars [54], assess the genetic
variability and relationship of banana cultivars (Musa L.) [55], and conduct molecular
identification of Malaysian pineapple cultivars [56].

4. Materials and Methods
4.1. Sampling, DNA Extraction, and Sequencing

Twenty L. indica cultivars representing different varietal groups and flower morpholo-
gies were collected (Figure 1 and Table 1), including all four varietal groups (four cultivars
in the ‘Bicolor’ group, five cultivars in the ‘Alba’ group, nine cultivars in the “Amabilis’
group, and two cultivars in the ‘Rubra’ group) [1,6,31]. The selected cultivars represented
different flower numbers and flowering times (Table 1). We also downloaded the plastome
sequences of all the published wild relatives of L. indica to elucidate the maternal origin of
crape myrtle cultivars.

Total genomic DNA was extracted using the modified CTAB method [57]. DNA quan-
tity and quality were examined by electrophoresis in 1% agarose. Total DNA was sheared
by an ultrasonicator to 350 bp fragments, and a paired-end DNA library for Illumina HiSeq
X-ten platform sequencing was constructed. Each sample yielded approximately 5 Gb
of data.
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4.2. Plastome and ntDNA Assembly

Trimmomatic 0.36 [58] was used to conduct a quality control of the raw data within
the default parameters. Plastome and nrDNA sequences were assembled using the GetOr-
ganelle toolkit [59] with k-mer lengths of 95. If GetOrganelle failed, we used the following
method to assemble it: The SPAdes 3.6.1 program (k-mer = 95) [60] was selected to assemble
the contigs using the clean data. Plastome contigs, which were selected using the Blast
program [61], were manually assembled using Sequencher 5.4.5 (Gene Codes Corporation,
Ann Arbor, MI, USA, http:/ /www.genecodes.com, accessed on 10 July 2022). Gaps and
assembly errors were filled and checked using the clean reads that were mapped to the
contigs using Geneious Prime (Biomatters Ltd., Auckland, New Zealand) [62]. Plastomes
were annotated using the perl scripts Plann.pl [63], with the published genome of L. indica
(GenBank accession number: KX263727) as the reference sequence. Annotation errors and
missing genes were checked and manually added with Geneious Prime. Our annotation of
plastomes and ntDNA sequences was submitted to GenBank.

4.3. Plastome and nrDNA Variation Analyses

All the plastome and ntDNA sequences of the 20 cultivars were aligned using MAFFT
7 [64]. We identified intra-species polymorphism, including SNPs and indel markers. SNPs
were identified and calculated using MEGA 7.0 [65], and DnaSP 6 [66] was used to identify
the indels. Their number, location, and direction were calculated using the ‘Dahua Zhaolu’
chloroplast genome as the standard reference to determine the mutation direction.

4.4. Phylogenetic Analyses

To infer the maternal origins of the 20 L. indica cultivars, we combined the plastome
data of cultivars with 4 wild L. indica samples, 19 other wild Lagerstroemia species, and
5 Lythraceae species used as outgroups (Table S1). The plastome and ntDNA of cultivars
were also used to infer phylogenetic relationships, with four Lagerstroemia species as the
outgroups according to the phylogenetic relationships of Lagerstroemia. Phylogenetic
analyses were performed using the maximum likelihood (ML) and Bayesian inference (BI)
methods. For both analyses, the best-fit substitution mode GTR+GAMMA was chosen by
ModelFinder [67] under the Bayesian information criterion. ML analysis was conducted in
RAXML-NG [68], and the best tree was selected to calculate the node support values using
500 rapid bootstrap replicates.

BI analysis was performed in Mrbayes v3.2 [69]. Markov chain Monte Carlo (MCMC)
simulations were run for 10 million generations, with a sampling of 1000 generations. The
stationary phase was examined using Tracer 1.6 [70], and the first 25% of the sampled trees
were discarded. The majority-rule consensus tree was generated using the remaining trees
and estimated posterior probabilities.

4.5. Genetic Variation and Diversity Analyses

Plastome and ntDNA sequences of the 20 cultivars were used for structure and PCA
analyses. The population structure used the filtered intraspecific SNPs and an admixture
model-based clustering method implemented in Admixture v1.3. The optimal number of
clusters was evaluated by running the K-means clustering algorithm (K =1 to K = 10). The
most likely number of clusters was determined based on CV error. Principal component
analysis (PCA) was conducted using Plink [71], and the ggplot package [72] in R was used to
draw the figure. Both of these data were used to perform network analyses. The haplotype
data were exported in DnaSP v6 [66], and the haplotype frequencies were performed in
Arlequin v3.5 [73]. PopArt v1.7 was used to build the TCS network [74].

4.6. Phenotypic Analyses

Four phenotypic characters were used for phenotypic analyses. We analyzed the
varietal group according to the classification system of Zhang [1]. The 20 cultivars included
four varietal groups. The flower numbers in the inflorescence were divided into four
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classes: less than 100, 100-150, 150-200, and more than 200. Flowering time was divided
into four periods: early flowering (before July), middle flowering (July and August), late
flowering (September), and flowering long. The flower color was divided into four groups:
white, purple, red, and bicolor (mostly purple and pink).

5. Conclusions

In this study, based on plastome and nrDNA, we discovered the genetic variations of
crape myrtle (L. indica) cultivars and identified genome-wide variances, which contribute to
better understanding the origin and relationships of the cultivars. The phylogenetic tree of
the plastome, including wild species and cultivars, reveals the maternal origins of cultivars.
The structure results of the nrDNA show that most of the cultivars are of hybrid origins.
The haplotype identification and phylogeny provide novel insights into the cultivation
history of crape myrtle cultivars.
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