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Abstract: Glioblastoma (GBM) is a type of brain cancer that is typically very aggressive and difficult to
treat. Glioblastoma cases have been reported to have increased during COVID-19. The mechanisms
underlying this comorbidity, including genomic interactions, tumor differentiation, immune responses,
and host defense, are not completely explained. Therefore, we intended to investigate the differentially
expressed shared genes and therapeutic agents which are significant for these conditions by using
in silico approaches. Gene expression datasets of GSE68848, GSE169158, and GSE4290 studies were
collected and analyzed to identify the DEGs between the diseased and the control samples. Then, the
ontology of the genes and the metabolic pathway enrichment analysis were carried out for the classified
samples based on expression values. Protein–protein interactions (PPI) map were performed by STRING
and fine-tuned by Cytoscape to screen the enriched gene module. In addition, the connectivity map
was used for the prediction of potential drugs. As a result, 154 overexpressed and 234 under-expressed
genes were identified as common DEGs. These genes were found to be significantly enriched in the
pathways involved in viral diseases, NOD-like receptor signaling pathway, the cGMP-PKG signaling
pathway, growth hormone synthesis, secretion, and action, the immune system, interferon signaling,
and the neuronal system. STAT1, CXCL10, and SAMDL were screened out as the top 03 out of the top
10 most critical genes among the DEGs from the PPI network. AZD-8055, methotrexate, and ruxolitinib
were predicted to be the possible agents for the treatment. The current study identified significant key
genes, common metabolic signaling networks, and therapeutic agents to improve our perception of the
common mechanisms of GBM–COVID-19.

Keywords: hub genes; COVID-19; GBM; co-expression network; protein–protein interaction network

1. Introduction

Glioblastoma (GBM) is one of the most dangerous diseases and is one in which the
brain and spine are affected. Due to its rapid spread, its survival rate is very low [1].
Therefore, there is a need for continuous research in this direction. Glioblastoma can have
a substantial impact on patients’ brain and immune systems. As a result, any additional
disease in these people can reduce their chances of survival [1,2]. Therefore, there is a
need to protect the glioblastoma patient from other diseases. A recent study suggested
that the boost in GBM due to viral infection and its high mortality rate might because of a
lack of specific treatment [2]. The survival status of patients during the viral–glioblastoma
association has already been proven by using in vitro xenograft models [3]. It has already
been found that the IDH1 mutation is known to be a major cause of GBM. Recently, a
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different genetic signature was found, but the reports that were out there did not say how
this signature was divided [4], whereas COVID-19 is a viral disease that originated in China
in late 2019 and, by October 2020, had spread to the entire world. People of all age groups
were affected almost all over the world. In most cases, immunocompromised people in
their forties and fifties were found to have a more severe disease [5]. The current research
has also suggested that people with cancer may be at a higher risk for the disease. Patients
with GBM spend a lot of time exposed to chemotherapy, radiotherapy, and other drugs [6].
The side effects of these treatments have been reported in immunocompromised patients.
These patients are more vulnerable to coronavirus disease and its complications. The health
of patients with GBM is extremely vulnerable to the COVID-19 infection. According to a
particular cohort study, these diseases cause a higher mortality rate in GBM patients than
in those with benign illnesses. With the long-term consequences of the previous pandemic
in mind, new policies and management are urgently needed to avert it. The detection
of disease-specific drugs for the management of virally infected GBM patients requires
advanced genomics and metabolomics data mining approaches [7]. The present research
aims to explore the interconnection between GBM and COVID-19. The latest research
advances, such as metabolic interaction, drug interaction, bioinformatics, high-throughput
sequencing, the presence of data repositories, such as gene expression microarray data,
and next-generation sequencing, have made it possible to detect various diseases and the
linkages between them. The hypoxic condition has a strong association with COVID-19, and
the effect that has been observed in GBM is highly deleterious. It is not yet fully understood
why the mortality rate of GBM patients became higher during the pandemicand what
the connection is between the GBM and the COVID-19 mechanisms and the associated
consequences. There is still a lack of sufficient information to understand this lethal
combination. In the present study, we took the GSE68848, GSE169158, and GSE4290 studies,
two of which are differential gene expression studies of GBM (GSE68848, GSE4290) and
one of whichis a study of the coronavirus2 disease. The information obtained from the
presented research will be of great benefit to the entire research community for the better
treatment of this comorbidity.

2. Results
2.1. Identification of Common Differentially Expressed Genes between GEO Studies

The distribution, characterization, and interaction of the overexpressed genes (red),
down-regulated genes (blue), and control genes (black) were represented through the
Circos layout. The Circos plot’s first track depicts the approximate length of each of the
24 human chromosomes, including the X and Y chromosomes. The second track further
categorizes the length of the chromosomes based on the expression of certain genes across
the entire genome. The fourth track shows the abnormally overexpressed genes, while the
third track represents the down- and intermediately expressed genes. As a representational
entity for the control genes that were found to remain intact during the diverse disease
scenarios, the fifth circle or track was represented by a black bar (Figure 1A). An analysis
of the COVID-19 and GBM patients against the control samples (normal individuals) in
the GSE16958, GSE68848, and GSE4290 datasets was performed to identify the common
signatures of the differentially expressed genes using p-value < 0.01 and the Log2 fold
change 1 criterion. The comparison revealed that the GSE68848 (glioblastoma) contained
6516 DEGs, 3325 of which were overexpressed and 2379 of which were low-regulated
(Supplementary_File1), whereas in the dataset GSE4290, 1381 genes were found to be
overexpressed, and 4316 genes were found to be down-regulated. The GSE69158 (COVID-
19) RNAseq study was analyzed with Galaxy servers and 3710 overexpressed and 2371
low-regulated genes were found. The shared signatures were found as 154 up-regulated
genes and 234 down-regulated genes between the selected studies. This shared up and
down pattern can be identified as the perfect signature for the common metabolic pathways
between these two diseases (Figure 1B).
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Figure 1. Distribution and status of shared differentially expressed genes and the intersection of
yellow, black, and blue modules. (A) Circos layout: First circle: characterization of the human genome
based on chromosome numbers. Second circle: locations of up-regulated genes (red), down-regulated
(blue), and control genes (black) in all 24 chromosomes. Third circle: status of differentially expressed
genes. Fourth circle: co-expression of up- and down-regulated genes. Fifth circle: only up-regulated
genes. Core region: multiple color lines depicting the interaction between hub genes. (B) Shared
up-regulated genes between studies. (C) Shared down-regulated genes between selected studies.
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2.2. Functional Analysis of Differentially Expressed Genes

DAVID and KEGG pathway analyses were used to identify the important gene ontol-
ogy for the evaluation of the functions of the identified differentially expressed genes. The
analyses revealed that the DEGs were found to be enriched in the important biological pro-
cesses between glioblastoma and COVID-19. The positive regulation of the immune system
processes and immune responses, the defense responses to other organisms, the negative
regulation of trans-synaptic signaling, and the chemical synaptic transmission (Table 1)
were found to be key biological processes. Enriched cytoplasmic vesicles, intracellular
vesicles, secretary granules, synapses, and cell junctions were identified as major cellular
components (Table 1). 2′-5′-oligoadenylate synthetase activity, Toll-like receptor 4 binding,
arachidonic acid binding, cytoskeleton protein binding, and the nucleoside-triphosphatase
regulator were the enriched cellular components involved in the COVID-19–GBM intercon-
nection network activity (Table 1).

Table 1. Gene ontology signatures of differentially expressed genes associated with SARS-CoV-2–
GBM association.

GO Category Term Name Genes Enriched % p-Value

MF Positive regulation of 2′-5′-oligoadenylate
synthetase activity 3 2.1 1.25 × 10−3

Positive regulation of Toll-like
receptor 4 binding 3 2.1 1.25 × 10−3

Positive regulation of arachidonic
acid binding 3 2.1 6.17 × 10−3

Negative regulation cytoskeleton
protein binding 32 14.55 1.00 × 10−4

Negative regulation of
nucleoside-triphosphatase

regulator activity
22 10 1.10 × 10−4

BP Immune system process 76 57.58 1.26 × 10−19

Immune response 62 46.97 1.55 × 10−16

Defense response to other organisms 44 33.33 1.88 × 10−16

Regulation of trans-synaptic signaling 32 15.09 1.78 × 10−13

Chemical synaptic transmission 38 17.92 7.34 × 10−12

CC Cytoplasmic vesicle 45 31.25 1.66 × 10−6

Intracellular vesicle 45 31.25 1.77 × 10−6

Secretory granule 24 16.67 8.60 × 10−6

Synapse 64 29.22 1.08 × 10−20

Cell junction 71 32.42 6.38 × 10−15

Based on the KEGG pathway analysis, it was found that the DEGs were enriched in
influenza A, coronavirus disease—COVID-19, the NOD-like receptor signaling pathway,
the cGMP-PKG signaling pathway, and the growth hormone synthesis, secretion, and
action pathway. The Reactome pathway analysis revealed that the DEGs were enriched in
the immune system, the interferon signaling, the innate immune system, and the neuronal
system signaling by receptor tyrosine kinase (Table 2).
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Table 2. KEGG and Reactome pathway analysis of the differentially expressed genes associated with
SARS_CoV-2–GBM association.

Pathway Source Pathway Name Genes Enriched % p-Value

KEGG Influenza A 13 14.94 2.35 × 10−6

KEGG Coronavirus disease—COVID-19 11 12.64 3.15 × 10−3

KEGG NOD-like receptor signaling pathway 9 10.34 1.02 × 10−2

KEGG cGMP-PKG signaling pathway 12 12.9 3.57 × 10−5

KEGG Growth hormone synthesis, secretion,
and action 10 10.75 8.91 × 10−5

Reactome Immune system 56 54.9 3.22 × 10−13

Reactome Interferon signaling 15 14.71 1.60 × 10−7

Reactome Innate immune system 33 32.35 3.53 × 10−7

Reactome Neuronal system 18 14.06 4.87 × 10−4

Reactome Signaling by receptor tyrosine kinases 19 14.84 1.93 × 10−3

The profiling of the biological processes indicated that the innate immune response,
the defense response, the defense response to another organism, the response to an external
biotic stimulus, the response to other organisms, the response to a biotic stimulus, the
immune system processes, the immune responses, and the biological process between
interspecies interaction and the immune effector responses were activated, and behavior,
chemical synaptic transmission, anterograde-transsynaptic signaling, synaptic signaling,
synapse and neuron projection, cell junction, cell projection, and plasma membrane-bound
cell projection were found suppressed during infection withCOVID-19 in GBM patients
(Figure 2A). The GSEA also revealed that most of the DEGs have major involvement in the
immune system processes and the immune process and defense responses (Figure 2B).

2.3. PPI Network Construction and Modules Selection

A protein interaction network was developed for differentially expressed genes
through the STRING database (version 11.0). The constructed network has164 nodes
and 228 edges (Figure 3A). The significant hub genes with the highest protein interaction
score were identified by four centrality methods, with degree 10 as the cut-off criterion
(Table 3). However, the Matthews correlation coefficient method was considered for further
analysis as it was found to have better performance in the prediction accuracy of essential
genes (Table 3).

Genes such as Signal Transducer and Transcription-1 (STAT1), CXC motif chemokine
ligand-10 (CXCL10), Sterile Alpha Motif Domain Containing-9 like (SAMD9L), X-Linked
Inhibitor of Apoptosis (XIAP), XIAP Associated Factor-1 (XAF1) Interferon Induced Protein-
44 like (IFI44L), 2′-5′-Oligoadenylate Synthetase-2 (OAS2), Interferon Stimulated Gene-15
(ISG15), 2′-5′-oligoadenylate Synthetase 1 (OAS1), and Oligoadenylatesynthetase-3 (OAS3)
were identified as key hub genes. These genes are further represented by light to dark
shades of orange color according to their low to high expression intensity. Among these
genes STAT1 was identified as the most influential gene 28 with the highest node degree
(Figure 3B).

The protein module was developed by the PPI network of DEGs with the help of
MCODE, consisting of 10 nodes and 45 edges (Figure 3C). The biological functional en-
richment analysis revealed that the identified genes were significantly enriched in the
2′-5′-oligoadenylate synthase activity, adenyl-transferase activity, double-stranded RNA
binding, and nucleotidyltransferase activity (Table 4). These functions were found to be
significantly correlated with COVID-19, the NOD-like receptor signaling pathway, and
the antiviral mechanism because of the involvement of IFN-stimulated genes. Interferon
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signaling and cytokine signaling were the two major types of signaling that showed the
greatest enrichment evidence through KEGG pathway analysis.
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Table 3. Top 10 differentially expressed genes with their weight scores based on four centrality methods.

MCC Closeness Degree Bottleneck

Rank Name Score Rank Name Score Rank Name Score Rank Name Score

1 STAT1 367,933 1 STAT1 35.93333 1 STAT1 17 1 RAC2 52

2 CXCL10 367,932 2 SPI1 35.91667 2 CXCL10 14 2 SPI1 43

3 SAMD9L 367,920 3 RAC2 34.78333 3 SPI1 13 3 STAT1 33

3 XAF1 367,920 4 S100A9 32.45 3 RAC2 13 4 PRKCE 14

3 IFI44L 367,920 5 CXCL10 31.13571 5 S100A9 11 5 BAIAP2 13

3 OAS2 367,920 6 LILRB2 30.66667 6 OAS3 10 6 DLG4 11

3 ISG15 367,920 7 S100A8 30.2 6 SAMD9L 10 7 ADCY5 10

8 OAS1 362,886 8 PRKCE 29.93333 6 XAF1 10 7 S100A9 10

9 OAS3 362,881 9 TREM1 29.08333 6 OAS1 10 9 CACNA1C 8

10 HERC5 362,880 10 GBP5 28.71905 6 IFI44L 10 10 FXR1 6
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Table 4. Gene ontology enrichment classification of selected hub genes module.

Category Term/Function Genes Enriched Percentage p-Value

Molecular function 2′-5′-oligoadenylate
synthetase activity 3 30 7.83 × 10−8

Adenylyltransferase activity 3 30 8.74 × 10−5

Double-stranded RNA binding 3 30 1.46 × 10−3

Nucleotidyltransferase activity 3 30 7.40 × 10−3

Biological Processes Defense response to virus 8 80 2.42 × 10−11

Defense response to symbiont 8 80 2.42 × 10−11

Response to virus 8 80 2.91 × 10−10

Type I interferon signaling pathway 6 60 2.00 × 10−9

Cellular response to
type I interferon 6 60 2.14 × 10−9

Pathways Coronavirus disease—COVID-19 6 60 2.52 × 10−8

NOD-like receptor
signaling pathway 4 40 1.55 × 10−4

Antiviral mechanism by
IFN-stimulated genes 6 60 8.34 × 10−10

Interferon signaling 7 70 1.08 × 10−9

Cytokine signaling in
immune system 8 80 7.65 × 10−8

2.4. cMAP Analysis

All of the differentially expressed and hub genes were analyzed by the CMAP server.
The top 10 compounds with low connectivity scores (0.57 to 0.50 for DEGs) and (−0.89 to
−0.78 for selected hub genes) were identified (Table 5). These compounds (i.e., bexarotene,
cisapride, idebenone, hydroflumethiazide, sulbutiamine, methimazole, butorphanol-(+)-
tartrate, nefiracetam, melatonin, and lapatinib in the case of the total and the differen-
tially expressed genes and linezolid, erastin, enalapril, AZD-8055, carbamazepine, BX-795,
methotrexate, eugenol, tolterodine, and selumetinib) may act as significant therapeutic
candidates to reverse or counteract the abnormal gene expression and could be used as
promising novel therapies.

2.5. Statistical Analysis

Differential gene expression analyses were performed based on log2FC| > 2 and
p < 0.05 as statistically significant parameters. In addition, most of the statistical values
were obtained by the default statistical methods used by the different bioinformatics tools
involved in the workflow of the current research work.
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Table 5. Top 10 compounds with high negative correlations for COVID-19–GBM association with
respect to selected hub genes module and total DEG signatures.

Based on Hub Genes Module

Top 10 Drugs

S. No. Score Mechanism of Action Status Year of
Approval

1 RUXOLITINIB −0.89 JAK inhibitor Approved 2011

2 LENALIDOMIDE −0.86 Carcinogen Approved 2005

3 PAZOPANIB −0.83 VEGFR inhibitor|KIT
inhibitor|PDGFR inhibitor Approved 2009

4 PF-04457845 −0.83 FAAH inhibitor Phase: 2 N/A

5 PRT-062070 −0.82 JAK inhibitor|Syk inhibitor Phase: 2 N/A

6 TRAPIDIL −0.81 PDGFR inhibitor Phase: 1 N/A

7 EUGENOL −0.81 Androgen receptor antagonist Phase: 1 N/A

8 SR-59230A −0.79 Adrenergic receptor antagonist Phase: 1 N/A

9 UNC-669 −0.78 L3MBTL antagonist Phase: 1 N/A

Based on Total Differentially Expressed Genes

Top 10 Drugs

1 Linezolid −0.54 Bacterial 50S ribosomal subunit
inhibitor Approved 2000

2 Erastin −0.54 Ion channel antagonist N/A

3 Enalapril −0.53 ACE inhibitor Approved 1985

4 AZD-8055 −0.53 MTOR inhibitor Phase: 1 N/A

5 Carbamazepine −0.52 Carboxamide antiepileptic Approved 1968

6 BX-795 −0.52 IKK inhibitor N/A

7 Methotrexate −0.52 Dihydrofolate reductase
inhibitor Approved 1953

8 Eugenol −0.51 Androgen receptor antagonist Phase: 1 N/A

9 Tolterodine −0.51 Acetylcholine receptor
antagonist Approved 1998

10 Selumetinib −0.51 MEK inhibitor Approved 2020

3. Discussion

People with glioblastoma have been observed to experience significant changes in
their immune systems. The abrupt drop in the T-cell population is the most notable of these
alterations [8]. The connected connection between our brain and immune system is to blame;
our auxiliary pro-inflammatory cytokines help to govern this process [9]. Immunogenetic
markers, which are in charge of controlling innate immune responses, are also closely
connected to mortality in patients with GBM, COVID-19, and poor prognosis [10,11]. A
high death rate in GBM patients with a severe COVID-19 infection is mostly caused by
the suppression of the innate immune system [12]. It has also been found that innate
immunity is very important in severe COVID-19 infections, which means that targeted
therapies are needed [13]. Notably, the T-cell response is an important component of
immunological memory and may be a characteristic vaccine formulation technique. The
molecular signature discovered between the two diseases in the current investigation
further supports the above discussion.

The analysis of the selected gene expression datasets (GSE68848, GSE169158, and
GSE4290) also suggested the importance of the innate immune response between GBM and
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COVID-19. Despite advances in modern molecular biological research and therapeutics,
the metabolic interaction mechanisms underlying COVID-19andGBM have not been fully
understood. In the present study, the KEGG and Reactome pathways compared the differ-
entially expressed genes of COVID-19 and GBM. Through this analysis, it was found that
these genes were involved in many different biological processes, such as viral infections,
inflammation caused by tumors, and immune responses. It has been proven that viral in-
fection can initiate onco-modulation in brain tumors [14,15]. It was revealed that the genes
related to COVID-19 were found to be overexpressed in the NOD-like receptor signaling
pathway, interferon signaling, and the innate immune system, whereas the genes related to
the cGMP-PKG signaling pathway were found to be down-regulated. The up-regulation of
the NOD-like receptors is associated with poor prognosis, higher epithelial-mesenchymal
transition (EMT) signaling, and proliferation in GBM patients [14,16,17]. EMT is a reversible
biological process occurring in the epithelium. EMT eventually leads to the acquisition of a
mesenchymal phenotype, which reflects increased cell motility and resistance to genotoxic
agents [18]. These processes are mostly accompanied by the acquisition of stem cell proper-
ties in differentiated tumor cells and are necessary in enabling carcinoma cells to repress
their epithelial characteristics by turning mesenchymal [19,20]. This allows the cells to have
motility and the ability to migrate from the primary site. The N protein of SARS-CoV-2 also
induces hyper-inflammation through the NOD-like receptor, which may be an important
factor in GBM acceleration [21]. The higher expression of interferon signaling was shown
as an unfavorable prognostic factor in GBM [22–24]. The ssRNA genome and the dsRNA
replication intermediates of SARS-CoV-2 can be sensed by Toll-like receptors (TLRs) and
retinoic acid-inducible gene-I-like receptors (RLRs) in host cells. These TLRs and RLRs can
activate the interferon response via the transcription factors NfKB and IRF3/7 [25]. Though
the IFN response decreases in moderate COVID-19 patients, a paradoxically higher IFN re-
sponse is associated with severe COVID-19 disease [26,27]. This implies that GBM patients
can be at an elevated risk of severe COVID-19. The SARS-CoV-2 infection can activate
innate immune cells to release inflammatory cytokines such as interleukin-1, interleukin-6,
interleukin-8, interleukin-12, tumor necrosis factor-alpha, interferon gamma, CCL2, granu-
locyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, and
other cytokines or chemokines [28]. The induction of these cytokines is associated with cy-
tokine syndrome in COVID-19 patients. GBM patients may have a chronic innate immune
response activated, making them more vulnerable to cytokine syndrome. The cGMP/PKG
pathway is found to be significantly down-regulated in GBM. The pharmacological acti-
vation of this pathway can inhibit glioma cell proliferation. The down-regulation of the
cGMP/PKG pathway may induce aggressive glioma [29]. SARS-CoV-2 can induce ROS,
which can lead to a reduction in nitric oxide, resulting in a low cGMP/PKG pathway [30].
Thus, the SARS-CoV-2 infection may worsen glioma progression.

The GO analysis results indicated that the DEGs were enriched in biological processes
related to the activation of immune responses and down-regulatingsynaptic signaling. It is
known that glioma cells can induce neurodegeneration by down-regulating synapses [31],
whereas COVID-19 directly affects multiple regions of the brain, including direct infection
of the neural cells and severe systemic inflammation, which deluge the brain with pro-
inflammatory agents and thereby injure nervous cells. As a result, the SARS-CoV-2 infection
is also suspected of causing neurodegeneration and irreversible neuronal damage [31].

A protein interaction network was developed for the differentially expressed genes
and identified the top 10 hub genes. The gene ontology analysis suggested that the iden-
tified genes were related to the antiviral defense response. During a viral infection, the
genitourinary defense system is the first line of defense. These adaptive responses are then
necessary to direct the vital components responsible for the development and protection of
health. STAT1 activation is dependent on Syk rather than cytokine-activated JAK signaling
at the early stage of viral infection, which is important for early antiviral immunity [32].

The chemokine-to-cytokine-to-chemokine cascade (CXCL2) is an important lethality
which is essential for defense during viral infections that establish themselves in tissues [33].
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Whereas SAMD9L is a major component of the hallmark antiviral type-1 interferon re-
sponse of many cells, it shows a multifold increase following stimulation with messenger
RNA (mRNA) interferon beta. The down-regulation of p53 has been observed in the
absence of XAF1, suggesting that XAF1 modulates p53 activation during VSV infection.
Therefore, further research on XAF1 may lead to a new link between cancer and viral
infection. The links may open new avenues for its treatment [34]. IFI44L is known to
be a better option for the treatment of diseases associated with excessive IFN levels and
proinflammatory responses and to reduce viral replication [35]. Various members of the
OAS family are known to be critical for controlling DEN replication in human cells; an
innate immune pathway of the 2′,5′-oligoadenylate synthatase (OAS)/RNase L system
inhibits viral infection by responding to a pathogen-associated molecular pattern to induce
the degradation of cellular RNA [36]. Therefore, these may be important agents for COVID-
19-infected GBM individuals. ISG15 is known to directly prevent viral replication, and it
has been shown that ISG15 plays a very important role in controlling the host damage,
repair response, immune response, and other host signaling pathways [37]. The E3 ligase
activities of HERC5 have been identified in a variety of biological processes, such as protein
degradation, cell signaling, tumor suppression, and antiviral defense. Therefore, it is a very
good gene family for research exploration into COVID-19–GBM comorbidity [38].

Drug mining was performed for the total differentially expressed and important
hub genes. The top 10 potential compounds with negative connectivity scores, including
linezolid, erastin, enalapril, AZD-8055, carbamazepine, BX-795, methotrexate, eugenol,
tolterodine, and selumetinib, were selected. These compounds showed efficiency in revers-
ing the DEG trends. Out of the total selected compounds, AZD-8055 and methotrexate
are of particular interest in our study. The PI3K/Akt/mTOR pathway is found to be
activated in almost 90% of all GBM cases [39]. AZD-8055 is a MTOR kinase inhibitor
that can inhibit both AKT and MTOR signaling [40]. DNA or RNA viruses can activate
the PI3K/AKT/MTOR pathway, and MTOR inhibition can suppress viral protein syn-
thesis [41]. The SARS-CoV-2 infection is shown to increase MTORC1 by rewiring the
host cell metabolism. Thus, inhibiting MTOR signaling can target both the GBM and the
SARS-CoV-2 viral loads.

Methotrexate has been used as first-line therapy for rheumatoid arthritis (RA) for
the last 40 years. RA is an autoimmune and inflammatory disease. Methotrexate is anti-
inflammatory and can decrease cytokine profiles. Methotrexate can increase adenosine
levels, which in turn activates the adenosine receptors. The activated adenosine receptors
can promote an overall anti-inflammatory state. Thus, methotrexate use can reduce the
severe cytokine syndrome profile of COVID-19andcan be selectively toxic for glioma stem
cells by targeting folate metabolism [42].

From a drug design standpoint, hub genes and their associative networks are always
of interest; thus, the mining of essential agents that can reverse the abnormal trend during
COVID-19–GBM comorbidity was also performed, and 10 essential agents were screened
for counteracting the disease condition. The compounds that were looked at might be
able to change how hub genes talk to each other and how their network works as a whole.
Roxolitinib, lenalidomide, pazopanib, PF-04457845, PRT-062070, Trapidil, Eugenol, SR-
59230a, and UNC-669 were the top drugs discovered using this method. Out of these drugs,
ruxolitinib was of particular interest because of its high negative correlation value. It is a
JAK2-specific inhibitor and thus can down-regulate JAK-STAT signaling. Many patients,
including those with COVID-19 and the heavy inflammatory syndrome, were successfully
treated with ruxolitinib [42], and it was also safe for GBM patients. In a case study, COVID-
19-associated ARDS was also successfully treated using ruxolitinib [43]. Patients with GBM
who received ruxolitinib in addition to temozolomide and radiation had significantly better
OS and PFS than those who only received temozolomide and radiation [44]. Linezolid is
also a good way to treat COVID-19 patients who have bacterial nosocomial pneumonia.
Pieces of evidence suggested that COVID-19 patients who were suffering from bacterial
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pneumonia and receiving an intravenous dose of 600 mg of linezolid every 12 h for 7 to
10 days recovered and were discharged from the hospital.

It has been reported that AZD-8055 is a powerful, selective, and orally accessible
ATP-competitive mammalian target of rapamycin kinase inhibitor with anticancer activity,
and so, it may be a promising treatment for GBM patients [40]. However, methotrexate
belongs to a group of drugs called antimetabolites. Methotrexate cures cancer by reducing
the growth of cancer cells. The same medication was also utilized during COVID-19 and
showed noteworthy effects in cytokine storm scenarios. In light of the current study, we
can therefore consider methotrexate a reasonable option [45]. Ruxolitinib, the third most-
screened medicine, is known for inhibiting JAK1 and JAK2 and thereby inhibiting tumor
invasion and tumorigenesis in human GBM, and it was also employed during COVID-19 for
combined antiviral and anti-inflammatory therapy [46,47]. As a result, these medications
already demonstrated their efficacy during the pandemic in patients who were already
suffering from various ailments. In order to effectively personalize treatment, additional
study is therefore required to explore the efficacy of these drugs.

4. Materials and Methods
4.1. Data Collection and Processing

The GSE68848, GSE169158, and GSE4290 gene expression datasets were collected from
the NCBI-GEO [48]. These expression datasets were selected because of the clear classifica-
tion between the diseased and the control genes for the respective diseases. GSE68848 has a
total of 580 samples, which were categorized as mixed, GBM (diseased), oligodendroglioma,
astrocytoma, unknown (uncategorized), and non-tumor (control). Only the diseased and
control samples were considered in our study. The SARS-CoV-2 viral infection versus the
mock infection dataset was obtained from GSE169158, and the DEGs were identified with
the Galaxy server [49]. The GSE4290 study collected 23 samples from normal patients as
controls and 81 samples from patients with diseased glioblastomas. The analysis of the
common DEGs between the diseased and the control samples was conducted with the
GEO2R package (LIMMA, Linear Models for Microarray Data). Moreover, the screening of
the DEGs was performed with a 0.05 p-value as a threshold.

4.2. Enrichment Analysis of Genes and Pathways of Differentially Expressed Genes

Gene ontology enrichment and KEGG pathway [50] analysis were carried out by
DAVID (Database for Annotation, Visualization, and Integrated Discovery) and GO-profiler
(gene ontology analysis module developed in R) [51].

4.3. Construction of PPI Network and Selection of Hub Genes

The STRING app and Cytoscape were used in association to construct the PPI network
and its visualization. MCODE (Molecular Complex Detection, a plugin for Cytoscape)
was applied to screen the significant modules of the protein–protein interaction [52]. The
parameters were set as confidence score > 0.4, cut-off degree = 2, cut-off node score = 2,
k-core = 2, and maximum depth = 100 to evaluate the significant interaction between the
DEGs. Hub genes have a high correlation in candidate modules that might be involved
in important biological processes, and they were screened and investigated through MCC
(maximal clique centrality), looseness, degree, and bottleneck approaches [53]. The MCC
method was considered the most significant method to identify hub objects in this study
because it could capture more essential genes in comparison to other methods in the top-
ranked list of both high- and low-degree genes. As a result, the top ten hub genes identified
by the MCC method were investigated further in the current study.

4.4. Connectivity Map (cMAP)

The cMAP database was used to find potential agents by comparing the identified
molecular signatures of the differentially expressed genes associated with COVID-19–GBM
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comorbidity. Small therapeutic molecules with negative connectivity enrichment scores
were selected based on >0.05 as a cut-off criterion [44].

5. Conclusions

The presented study provides some significant insights into the mechanisms underly-
ing the impact and risk of SARS-CoV-2 infection on GBM patients. The COVID-19mortality
rate was found to be much higher in patients with comorbidities as compared to the SARS-
CoV-2 infection. This fact suggests that, in this comorbidity (GBM–COVID-19), it would be
preferable for each to reuse disease-specific drugs that do not adversely affect the other’s
metabolic pathways. The differentially expressed genes were screened and selected at
the intersection of theCOVID-19and GBM expression studies. Their potential functions
were annotated by GO analysis and pathway analysis. The DEGs were mostly enriched in
the viral infection pathways and the tumor-induced inflammation and immune response
pathways, and it was found that these pathways have significant interactions with the
mechanisms of GBM. Subsequently, several key hub genes that may play an important role
in COVID-19–GBM were demonstrated by PPI analysis.

The one-drug, one-target, and one-disease approach is less common these days. How-
ever, given the rapidity with which the negative effects of multi-target medications were
observed in people already suffering from pandemic diseases, only single-target, disease-
specific drugs can be effective in these circumstances. A total of 19 drugs have been
identified that can reverse the tendency towards abnormal expression during disease states
without affecting each other. AZD-8055, methotrexate, and ruxolitinib may have more
promising potential in this regard. This study may provide a valuable clue for the treatment
research on GBM patients experiencing COVID-19infection and on its prevention.
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