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Abstract: Cleft lip and palate is one of the most common congenital birth defects and has a complex
etiology. Either genetic or environmental factors, or both, are involved at various degrees, and the
type and severity of clefts vary. One of the longstanding questions is how environmental factors lead
to craniofacial developmental anomalies. Recent studies highlight non-coding RNAs as potential
epigenetic regulators in cleft lip and palate. In this review, we will discuss microRNAs, a type of
small non-coding RNAs that can simultaneously regulate expression of many downstream target
genes, as a causative mechanism of cleft lip and palate in humans and mice.
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1. Introduction

Congenital anomalies are a major cause of infant and childhood morbidity, affecting
2–3% of all babies. Cleft lip with/without cleft palate (CL/P) is one of the most prevalent
congenital birth defects; it affects 1 in 500 babies in Asian and Native American populations,
1 in 1000 in European-derived populations, and 1 in 2500 in African-derived populations [1].
In the US, cleft lip only (CLO) occurs in 1 in 2800 babies, cleft palate only (CPO) in 1 in 1700
babies, and CL/P in 1 in 1600 babies. A total of 30% of cases of CL/P are syndromic; its
etiology is complex with multifactorial effects. For non-syndromic CL/P, it is estimated that
30–50% of cases are caused by genetic factors, and 50–70% are due to non-genetic factors
such as abnormal maternal conditions and exposure to teratogens [2–5]. Individuals with
CL/P require multidisciplinary, long-term care from birth to adulthood, with an estimated
lifetime cost of more than USD 150,000. Thus, these individuals are affected not only
aesthetically and functionally (e.g., at the level of pronunciation, swallowing and suckling),
but also economically.

Mice have been frequently used to study craniofacial morphogenesis and its underly-
ing cellular and molecular mechanisms because their developmental processes are similar
to those of humans and occur within a short window of time. Given these advantages,
genetic mutant mouse models and in vivo cell lineage-tracing methodologies have been
used to identify cellular and molecular mechanisms related to CL/P. Upper lip formation
begins with enlargement of the maxillary processes (MxPs), which develop from the first
pharyngeal arch at the lateral boundary of the stomodeum at embryonic day 9.5 (E9.5) in
mice and gestation day 28 in humans [6]. At E10.0 in mice and gestation day 32 in humans,
the ventral-lateral ectoderm surface of the frontonasal process (FNP) thickens and forms
the nasal placodes (NPs). Around the NPs, the medial and lateral nasal processes (MNPs
and LNPs) outgrow in a horseshoe shape, forming the nasal pits. At E10.5 in mice and
gestation day 35 in humans, the MxPs show rapid lateral growth and push the nasal pits

Int. J. Mol. Sci. 2023, 24, 3552. https://doi.org/10.3390/ijms24043552 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24043552
https://doi.org/10.3390/ijms24043552
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-4987-592X
https://orcid.org/0000-0003-3163-8093
https://orcid.org/0000-0003-3975-6836
https://doi.org/10.3390/ijms24043552
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24043552?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 3552 2 of 17

toward the LNPs; by E11.0 in mice and gestation day 38 in humans, the MxPs and the
MNPs push the LNPs rostrally and fuse to form the upper lip. Epithelial seams between
the MxPs, MNPs, and LNPs completely disappear by E11.5 in mice and gestation day 42 in
humans. The MxPs further push the nostrils toward the median, and the entire process of
upper lip formation is completed by E12.5 in mice and gestation day 48 in humans. Any
failure in the fusion of these processes leads to a cleft in the upper face: a failure in fusion
between the MxPs and the LNPs causes an oblique cleft and a failure in fusion between
the MxP and the MNP causes a unilateral or bilateral cleft lip. Undergrowth of the FNP or
fusion defects between the MNPs cause a midline cleft, whereas a failure in fusion between
the MxPs and the mandibular process causes a transverse cleft. A cleft in the upper lip
disconnects the orbicularis oris muscle, which plays important roles in closing the mouth,
pursing the lips, and sucking. Therefore, surgical correction aims to improve both the
aesthetic appearance and muscular dysfunctions.

In humans and mice, the palate (the roof of the oral cavity) is divided into two parts
according to the anatomical origin. The primary palate (a.k.a. the anterior palate) is
derived from the MNPs containing teethed incisors and canines, and the secondary palate
originates from the MxPs containing premolars/molars. The anterior two-thirds of the
palate constitute the hard palate, which is composed of bony elements, and the posterior
one-third is called the soft palate and comprises five skeletal muscles (i.e., the tensor veli
palatini, levator veli palatini, palatoglossus, palatopharyngeus, and muscle uvulae) that play
crucial roles in swallowing, speech, and velopharyngeal closure. Surgical correction of both
muscle disconnection and direction is important to restore proper muscular function.

Palatogenesis starts at E11.5 in mice and the sixth week of gestation in humans. The
distal part of the MNPs develop into a pair of the intermaxillary segments and outgrow into
the oral cavity to form the primary palate; on the other hand, lateral growth of MxPs results
in a pair of palatal shelves by E12.5 in mice and the seventh week of gestation in humans.
The palatal shelves grow vertically along with the sides of the tongue and then, following
the downward tongue and jaw movement, elevate horizontally above the dorsal surface
of the tongue. Cell proliferation and extracellular matrix (ECM) secretion/remodeling,
which are regulated by growth factors and their signaling pathways, contribute to the
growth of the palatal shelves during development. The growing palatal shelves meet at
the midline of the oral cavity during E14.0–E14.5 in mice and the 7–9th week of gestation
in humans. The medial edge epithelium (MEE) seam of the palatal shelves disappears
through a combination of epithelial cell migration toward the nasal and oral epithelial
triangles, apoptosis, and epithelial-to-mesenchymal transition (EMT) by E16.5 in mice and
by the twelfth week of gestation in humans. Any failure in these steps causes a cleft in
the secondary palate [6,7]. CPO can be categorized as complete, partial (location at either
primary, secondary, or soft palate), or submucous. Submucous cleft palate does not display
obvious clefts (a tissue gap) on the palate, but the palatal processes of the maxilla and
palatine bones in the hard palate and/or the muscles in the soft palate are hypoplastic
and/or disconnected at the palate midline due to persistence of MEE. Therefore, submucous
cleft palate results in dysfunctions such as velopharyngeal incompetence and dysphemia.

Zebrafish (Danio rerio) are also widely used as an animal model in developmental
research. Although the shape and components of craniofacial structures differ anatomically
and morphologically from those in mammals, some of them show common functions
and origins. For example, the ethmoid plate is a cartilaginous structure, which forms
the roof of the oral cavity (like the hard palate) in mammals. The ethmoid palate and
mammalian hard palate develop from cranial neural crest (CNC)-derived chondrocytes
and mesenchymal cells, respectively. The molecular mechanisms and gene regulatory
networks in craniofacial development, as well as histological and functional aspects, are
conserved across species. Therefore, genetically modified zebrafish models are widely used
to investigate developmental defects, including cleft lip and palate [8,9].

The lip and palate include several cell types derived from CNC cells, mesoderm-
derived mesenchymal cells, and epithelial cells (Figure 1). In the palatal shelves, CNC cells
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give rise to fibroblasts in connective tissues, osteoblasts and osteocytes in bones, as well
as Schwan cells, which wrap around axons and act as insulators for nerve transmission
in the peripheral nervous system. Mesoderm-derived mesenchymal cells give rise to
endothelial cells and pericytes in blood capillaries and myoblasts and satellite cells in
skeletal muscles. Finally, epithelial cells give rise to basal cells, goblet cells, and ciliated
mucous cells in the nasal mucosa, nonkeratinized squamous cells in oral epithelium, and
acinar and duct cells in palatal salivary glands (the minor salivary glands located on the
palate). Recent advanced technologies, including RNA sequencing at the single-cell level,
allow us to identify not only novel cell populations and their fates in development but also
cell-type-specific gene regulatory networks for cell specification and function.
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Figure 1. Major cell types in the palate. The majority of the mesenchyme of the lip and palate is
composed of cranial neural crest (CNC) cells, which can form both bone and connective tissues.
Epithelial cells develop into nasal and oral epithelial cells, characterized by different functions and
gene expression profiles.

As stated above, both genetic and environmental factors can contribute to CL/P cases
in humans. Several potential non-genetic risk factors have been reported: cigarette smok-
ing [10,11], alcohol consumption [12,13], obesity [14,15], high dietary glycemic index [16],
and abnormal nutrient/vitamin conditions [17–19]. Moreover, appropriate folic acid sup-
plementation can reduce the risk of developing spina bifida and CL/P in humans [20,21]. It
is also known that some chemicals and drugs cause mutagenesis (i.e., they act as mutagens),
but some do not directly induce genetic mutations [22]. Therefore, there is the possibility
that some substances may increase or decrease the risk for CL/P through epigenetic mech-
anisms such as regulation of non-coding RNAs, including microRNAs (miRNAs), transfer
RNAs, ribosomal RNAs, small interfering RNAs, and long non-coding RNAs, as well as
chromatin modifications such as methylation and acetylation.
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miRNAs are single-strand non-coding RNAs containing 21–23 nucleotides that can
anti-correlatedly and post-transcriptionally regulate the expression of multiple target
genes [23–25]. miRNAs are transcribed as double-strand pri-miRNA and then cleaved by
the DROSHA/DGCR8 complex to generate pre-miRNAs in the nuclei. pre-miRNAs are
translocated to the cytoplasm by exportin-5 (XPO5) and cleaved by DICER, an enzyme cru-
cial for miRNA maturation, to form miRNA/mRNA duplexes. Eventually these duplexes
attach to Argonaute, a part of the RNA-induced silencing complex (RISC), resulting in loss
of one strand and generation of mature miRNAs, which can bind to the 3′-untranslated re-
gion (UTR) of the target mRNAs [26,27]. miRNA biogenesis is conserved across species [28].
Importantly, there are multiple binding sites for different miRNAs on the 3′-UTR of the gene;
therefore, gene expression is influenced by multiple miRNAs in a spatiotemporal manner.
Accumulating evidence indicates that miRNAs play a crucial role in embryogenesis and
that altered miRNA expression is associated with various birth defects [29]. In agreement
with the importance of miRNAs and their processing enzymes in normal craniofacial devel-
opment and CL/P in humans [30–33], mice with a deficiency for Dicer (DicerF/F;Wnt1-Cre
and DicerF/F;Pax2-Cre conditional knockout mice) display severe craniofacial deformities,
including cleft palate in both primary and secondary palates [34–36]. In zebrafish, mutants
homozygous for point mutation dicer1sa9205 exhibit smaller eyes, craniofacial dysmorphism,
and aberrant pigmentation, thus resembling the mouse phenotypes [37].

In the past decade, an increasing number of studies have showed that expression of
some miRNAs is drastically altered under pathological conditions [38,39]. These so-called
pathogenic miRNAs may suppress genes that are crucial for development and homeostasis,
affecting prognosis, drug resistance, and morphogenesis (Figure 2). Several studies have
used RNA-seq to identify miRNA expression during normal lip/palate development
as well as in non-syndromic CL/P [40,41]. In addition, mice with loss of function of
miRNAs (Dicer1F/F;Wnt1-Cre) display severe craniofacial anomalies [35], indicating that
some miRNAs are crucial for normal craniofacial development. An increasing number of
studies with wild-type mice treated with specific inhibitors for each miRNA may provide
some perspective on how an adequate expression of miRNAs is essential for normal
orofacial development.
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Figure 2. The cause of cleft lip with/without cleft palate (CL/P) and cleft palate only (CPO). Both
genetic and environmental factors can contribute to the etiology of clefts. Environmental factors
can alter the epigenetic status, including miRNA expression, DNA methylation, and chromatin
modification. These epigenetic factors can be categorized into two groups: intrinsic and extrinsic
factors. Chemical-induced cleft models are useful to study the contribution of pathogenic miRNAs to
cleft lip and cleft palate.
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2. microRNAs Related to Cleft Lip

As of 2022, 55 mouse genes and more than 400 human genes had been reported as
related to cleft lip and palate [42,43] in the gene datasets available at CleftGeneDB (https:
//bioinfo.uth.edu/CleftGeneDB/index.php?csrt=15984704412663399126, accessed on 28
October 2022). Bioinformatic analysis and consequent experimental validation identified
miRNA-mediated gene regulatory networks in cleft lip (Figure 3). For instance, mmu-
miR-124-3p suppresses cell proliferation in cultured mouse embryonic lip mesenchymal
(MELM) cells through downregulation of cleft lip-related genes Bmpr1a, Cdc42, Itf88, Pbx3,
and Tgfbr1 [42]. In agreement with this function in MELM cells, mmu-miR-124-3p can
suppress cell proliferation in other cell types, for instance, human keratinocytes (HaCaT)
through FGFR2 [44], human non-small cell lung cancer and nasopharyngeal carcinoma cells
through STAT3 [45,46], and colorectal cancer cells through PRPS1 [47]. Under physiological
conditions in C57BL/6J mice, mmu-miR-124-3p expression in the MxPs is upregulated
at E12.5 and E13.5 compared to E10.5 and E11.5 [42]. This suggests that miR-124-3p is
expressed at very low levels during normal lip development.
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in human castration-resistant prostate cancer [50], and FZD4 in human oral squamous
cell carcinoma [51]. In addition, hsa-miR-497-5p inhibits cell proliferation through down-
regulation of target genes in several human cancer cells, e.g., MAPK1 in cervical cancer
cells [52], PDL1 or SLC7A5 in human colorectal cancer cells [53], and WNT3A in human
nasopharyngeal carcinoma cells [54]. Thus, miR-124-3p, miR-655-3p, and miR-497-5p may
play a key role in cell proliferation as tumor suppressors in cancers and CL/P inducers
in development.

Interestingly, in the miRNA, transcription factor (TF), and non-TF networks, there is
a common consensus subnetwork consisting of five TF genes (GLI2, PAX3, PAX7, PAX9,
and SATB2), three non-TF genes (FGFR1, RARA, and SUMO), and five miRNAs (miR-
27b, miR-133b, miR-205, miR-376b, and miR-376c) in humans and mice [55]. In cultured
human and mouse lip mesenchymal cells, miR-27b inhibits cell proliferation through
gene suppression of PAX9 and RARA; miR-133b inhibits cell proliferation through gene
suppression of FGFR1, PAX7, and SUMO1; and miR-205 inhibits cell proliferation through
gene suppression of PAX9 and RARA [55]. miR-27b-3p has been reported to be a tumor
suppressor, inhibiting cell proliferation and migration through target gene expression in
several cancer cells: TAB3 in hepatocellular carcinoma [56], MLL4 in glioblastoma stem
cells [57], TMED5 in gastric cancer cells [58], and CTNNB1 in ovarian endometrial cells [59].
Overexpression of miR-133b suppresses cell proliferation viability and migration in various
cancer cells: prostatic carcinoma cells through ZNF587 [60] or SDCCAG3 expression [61],
cervical cancer cells through ARFGEF1 expression [62], and lung adenocarcinoma through
CDCA8 expression [63]. Interestingly, miR-133b is upregulated in the exosomes secreted
from skeletal muscle cells in limb and trunk muscles during development, regulating
expression of the serum response factor (SRF) and myoblast differentiation in mice [64–66];
miR-133b is also thought to contribute to lip muscle development. miR-205 suppresses
cell proliferation and migration in breast cancer cells through KDM4A [67], glioma cells
though VEGFA [68], and gastric cancer cells through FAM84B [69], and miR-205-3p is
downregulated in the nucleus pulposus of the intervertebral disc, which derives from the
notochord, in mouse models for intervertebral disc degeneration [70]. Moreover, miR-205-
3p suppresses WNT/β-catenin signaling, resulting in suppression of cell proliferation and
ECM synthesis [70].

The miRNAs described above can commonly inhibit angiogenesis through down-
regulation of target genes. In fact, miR-205 downregulates VEGA in gastric cancer [71],
hepatocellular carcinoma [72], and the extracellular vesicles from diabetic ulcers [73],
whereas miR133b in the exosomes secreted from bone marrow mesenchymal stem cells
downregulates FBN1 [74] and miR-27b downregulates AMPK in brain microvascular en-
dothelial cells [75], CDH5 (a.k.a. VE-cadherin) in ovarian cancer [76], and VEGFC in gastric
cancer [77]. Since angiogenesis is critical for tissue growth and development, these miRNAs
may play a role in various tissue processes from morphogenesis through angiogenesis.

3. microRNAs Related to Cleft Palate

An increasing number of studies show that miRNAs are involved in both normal
palate and CL/P development in humans and mice (Figure 4).

As of 2021, 395 genes (CPO: 367 genes; anterior cleft: 16 genes; posterior/soft palate
cleft: 15 genes; submucous cleft: 37 genes; and CLP: 44 genes) were reported as genes
related to cleft palate in mice and 131 genes in humans [78,79] (the updated list of genes
is available at CleftGeneDB; Table 1). A total of 365 mouse strains show complete cleft
of the secondary palate, 44 mouse strains exhibit CLP, 14 mouse strains display anterior
cleft palate, 16 mouse strains present posterior cleft palate (soft palate cleft), and 37 strains
have submucous cleft palate. Overexpression of miR-374a-5p, miR-4680-3p, and miR-133b
suppresses cell proliferation through the regulation of genes related to human cleft palate
in cultured human palatal mesenchymal cells: ARNT, BMP2, CRISPLD1, FGFR2, JARID2,
MSX1, NOG, RHPN2, RUNX2, WNT5A, and ZNF236 by miR-374a-5p; ERBB2, JADE1,
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MTHFD1, and WNT5A by miR-4680-3p; and FGFR1, GCH1, PAX7, SMC2 and SUMO1 by
miR-133b [78].
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Sh3pxd2a Shh Sim2 Skor2 Slc13a4 Slc32a1 Slc35d1 Slmap Smad7 Smo
Smoc1 Snai2 Snx3 Sos1 Sox2 Sox5 Sox9 Sox11 Spry2 Sufu Sumo1 Tapt1
Tbc1d32 Tbx1 Tbx2 Tbx22 Tcof1 Tctn2 Tent5c Tfap2a Tgds Tgfb2 Tgfb3
Tgfbr2 Tgfbr3 Tmem107 Trppc10 Trp53 Trp63 Trps1 Ttc21b Twist1 Ugdh

Vax1 Vegfa Wdpcp Wdr19 Wls Wnt5a Wen Zeb1 Zmynd11
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Table 1. Cont.

Cleft Type
(# of Genes) Mouse Type Genes

Spontaneous
Abn Acan Am Cacnal2 Col11a1 Crn Csp2 Far Fgf9 Gli3 Hpmd Lmbr1

M9bei Mut1679 Oca2 Oel Pad Pc Pcp
Ptd Rpl38 Sho Sme Srn Srt Ur Zeb1

Compound mutant

Adamts9;Adamts20 Adamts20;Ptch1 Adamts20;Vcan Akap8;Fign
Arid5b;Pdgfra Ard5b;Zfp950 Bmi1;Pcgf2 Bmp2;Bmp4 Bmp4;Bmp7

Bmp2;Bmp4;Bmp7 Boc;Cdon Chrd;Nog Chrd;Tbx1 Dlx1;Clx2 Clx5;Msx1
Dph1;Ovca2 Dph1;Ovca2;Trp53 Ednrb;Spry2 Ephb2;Ephb3 Eya1;Six1

Eya1;Sumo1 Fgfr1;Fgfr2 Fuddle;TCZ-tau Fzd1;Fzd2 Fzd2;Fzd7
Fzd2;Vangl2 Fzd2;Fzd7;Wnt3a Fzd2;Fzd7;Wnt11 Gab1;Met Gad1;Gad2

Gas1;Shh Gdf11;Mstn Gdf11;Wfikkn1 Gdf11;Wfikkn2 Golga5;Golgb1
Gsc;Gsk3a H19;Igf2r Hspa5;TCZ-tau Hoxa1;Hoxa2 Igf2;Rr27

Inhba;Inhbb Insig1;Insig2 Irf6;Sfn Itga5;Itgav Itgb6;Itgb8 Kat6a;Tbx1
Kdf1;Sfn Kif20b;TCZ-tau Lbr;Tm7sf2 Lgr4;Lgr5;Lgr6 Lgr5;Lgr6

Lhx6;Lhx8 Lrp6;Rspo2 Mapk1;Mapk3 Mdm2;Mdm4 Mmp14;Mmp16
Msc;Tcf21 Ncor2;Ncor2 Nectin1;Nectin4 Osr2;Pax9 Pax9;Msx1

Pax9;Sostdc1 Pbx1;Pbx2 Pbx1;Pbx2;Pbx3 Pdgfra;Pdgfrb Pdgfra;Plekha1
Phc1;Phc2 Prrx1;Prrx2 Ptprf;Ptprs Pygo1;Pygo2 Ror1Ror2 Ror2;Wnt5a

Ror1;Wnt9a Shh;Six3 Six1;Six4 Snai1;Snai2 Sox5;Sox6 Spry1;Spry2
Tbx2;Tbx3 Tfap2a;Tfap2b Tgfb1;Tgfb3 Vax1;Vax2 Yap;Taz

Partial CPO: anterior
(16 genes)

Single gene mutation Codn Ctnnb1 Fgfr2 Gsc Lims1 Runx1 Shh Shox2 Sox11 Tbx1 Tbx3 Tgfb3

Compound mutant Boc;Cdon Map3k7;Smad4

Partial CPO: posterior/soft palate
(15 genes)

Single gene mutation Bnc2 Dlx5 Foxf2 Hic1 Hox3a Mef2c Mfcs4 Pax3 Rspo2 Sim2 Smo Tbx1
Tgfbr1 Tgfbr2 Tshz1

Compound mutant Dlx5;Mef2c

Submucous cleft palate
(37 genes)

Single gene mutation
Acvr1 Amer1 Apaf1 Arid5b Asph Bmp4 Csrnp1 Dlx5 Eda Eya4 Fras1

Inhba Krt5 Lrp4 Meis2 Ndst1 Nog Recql4 Schip1 Six3 Sgpl1 Smad4 Smo
Sostdc1 Tbx1 Tbx3 Tbx22 Tgfb3 Tgfbr1 Tgfbr2 Tiparp Zfp640 Zfp950

Compound mutant Map3k7;Smad4 Shh;Six3 Smad4;Irf6 Smad4;Trim33

CLO
(23 genes)

Single gene mutation Bmp4 Cplane2 Ermp1 Folr1 Gli3 Kynu Mks1 Pbx1 Pgap2
Ptch1 Rpgrip1l Sp8 Tbx1 Tgfbr1

Spontaneous Clf2 Knyn Rpl38 Wnt9b

Compound mutant Aldh1a2;Aldh1a3 Bbs7;Ift88 Gdf1;Nodal

CLP
(44 genes)

Single gene mutation

Bmpr1a Cdc42 Cplane1 Ctnnb1 Dzip1l Ednrb
Ermp1 Esrp1 Folr1 Ift88 Ihh Kif3a Kynu Lrp6 Mirc1 Mks1

Pbx1 Pgap2 Rpgrip1l Rspo2 Sox11 Tfap2a Tgfbr1 Trp53
Trp63 Ttc21b Wdr19 Wnt9b

Spontaneous Clf2 Knyn Rpl38 Tbx10 Zeb1

Compound mutant Bbs7;Ift88 Esrp1;Esrp2 Fgf8;Tfap2 Hhat;Ptch1 Lrp6;Rspo2 Mirc1;Mirc3
Msx1;Pax9 Pbx1;Pbx2 Pbx1;Pbx3 Pbx1;Wnt9b Rspo2;Wnt9b

Overexpression of miR-374-5p suppresses cell proliferation in several cells: in hu-
man non-small cell lung carcinoma cells by suppressing NCK1 expression [80], and in
human neural stem cells by suppressing HES1 expression, which promotes neural stem
cell differentiation [81]. On the other hand, miR-374-5p shows protective effects in cell
viability, reducing apoptotic cell death induced by either oxygen/glucose deprivation
(an infant hypoxic-ischemic encephalopathy model) in rat PC12 neuronal cells [82] or by
LPS in human pulmonary microvascular endothelial cells [83]. Interestingly, maternal
circulating hsa-miR-374-5p is strongly associated with the risk of small-for-gestational-age
birth and preterm delivery in humans [84,85], suggesting that miR-374-5p may influence
cell proliferation and survival in development.

A total of 44 cleft palate genes are common in humans and mice. A bioinformatic
analysis revealed that miR-140-5p is a potential pathogenic miRNA that specifically induces
cleft palate in both humans and mice [86]. Overexpression of miR-140-5p suppresses genes
that are crucial for palate formation (Pdgfra for the primary palate, Pax9 for the secondary
palate, and Bmp2 and Fgf9 for both primary and secondary palate) in human and mouse
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palatal mesenchymal cells. However, the role of miR-140-5p seems to vary per cell type. Its
overexpression induces adipogenic differentiation and lipogenesis through suppression of
PDGFRα in pre-adipocytes [87] and alleviates pyroptosis by targeting Ctsb in chondrocytes
treated with LPS (an osteoarthritis (OA) model) and in articular cartilage in OA mice [88].
On the other hand, overexpression of miR-140-5p suppresses osteogenic differentiation by
targeting SATB2-mediated ERK1/2 and P38MAPK signaling pathways in human vascular
smooth muscle cells [89]. Moreover, miR-140-5p binds to NRF2, which is a key molecule for
anti-oxidative stress and cellular toxicity, enhances the NRF2/HO-1 signaling pathway, and
suppresses cell proliferation, cell migration, and angiogenesis in breast cancer cells under
hypoxia conditions [90]. In zebrafish, overexpression of miR-140 results in a cleft between
lateral elements of the ethmoid plate, a structural analog of the palate in higher vertebrates,
through the suppression of Pdgfra [91]; in mice, miR-140 null mice exhibit submucous
cleft palate with hypoplastic palatal bones [92]. Thus, a fine-tuned, precise amount of
miR-140 would be crucial for palate development. A single nucleotide polymorphism
(SNP) in pre-miR-140 responsible for decreasing miR-140-5p expression is associated with
an increased risk of non-syndromic CL/P (nsCL/P) in humans [93]. SNPs in PDGFRA are
also associated with risk of developing nsCL/P, with one SNP found at the 3′-UTR near a
binding site for miR-140 [94]. These results suggest that the miR-140–PDGFRA axis plays a
crucial role in CL/P.

Mutations in TBX1 cause CL/P or CPO in humans and mice [95–97], whereas over-
expression of Tbx1 suppresses Zeb2 expression in Hela cells, which induces EMT and
reduces stemness [98,99], cell proliferation, and keratinocyte differentiation [100]. TBX1
binds to the 3′-UTR of a miR200b/200a/429 cluster (an EMT suppressor) and induces
miR-200b/200a/429 expression, resulting in the suppression of Zeb2 and miR-203 in Hela
and A549 cells [98]. miR-200b/200a/429/miR-203 negatively regulates Zeb2 expression.
As expected, expression of miR-200b-5p, 429-3p, and 203-3p is significantly downregulated
in palatal epithelial cells, and expression of Zeb1 and Zeb2 is upregulated in the developing
palate in Tbx1 null mice. These findings suggest that the TBX1–miR-200b/200a/429 and
miR-203–ZEB2 loop is important for epithelial cell differentiation, EMT, and stemness in
the palatal epithelium, and their dysregulation results in CL/P. Indeed, miR-17-92 null
mice (miR-17-92-/-, miR-17-9-/-;miR-106b-25+/-, and miR-17-92-/-;miR-106-/- mice) display CLP
through upregulation of Tbx1, Tbx3, Fgf10, Shox2, and Osr1 expression [101]. On the other
hand, overexpression of the miR-17-92 cluster suppresses expression of E2F1, a transcrip-
tion factor, and inhibits cell proliferation through dysregulation of the cell cycle in mouse
embryonic palatal mesenchymal (MEPM) cells [102]. Moreover, transgenic mice expressing
inhibitors for miR-17-92 and miR-17-18 exhibit complete CPO through upregulation of
Tgfbr1 and Tgfbr2 expression [103].

Human linkage analyses suggest that mutations in non-coding miRNA regions are
associated with susceptibility to nsCL/P. For instance, miR-152 hypomethylation leading
to overexpression is frequently detected in nsCL/P, and overexpression of miR-152 in ze-
brafish results in craniofacial cartilage dysmorphism [104]. An SNP in rs539075, located in
the CDH2 intron where it is suggested to encode miRNAs, is associated with nsCL/P [105].
Mutations in CDH2, which plays a role in EMT, cause syndromic or non-syndromic Peters
anomaly, characterized by corneal opacity, hypertelorism, and thin upper lip [106]. Thus,
some SNPs are related to the production of miRNAs, while others are related to the binding
of miRNAs. For instance, several intronic SNPs located within or near miRNA-binding sites
(rs1048201/miR-496 in FGF2, rs3733336/miR-145 in FGF5, and rs546782/miR-187 in FGF9)
are suggested to constitute a risk for nsCL/P [107]. rs12532 within the 3′-UTR of MSX1
may affect the binding to miR-3649, leading to a decrease in risk of developing nsCL/P
through the regulation of MSX1 expression [108]. Interestingly, miR-let7-3p expression is
downregulated in both the plasma from mothers carrying a nsCL/P fetus and lip tissues
from nsCL/P individuals [109]. The inhibition of miR-let7-3p suppresses cell proliferation
through HHIP upregulation and GLI2 downregulation in human oral keratinocytes. Thus,
maternal miR-let-3p expression may become a potential diagnostic biomarker for nsCL/P
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during pregnancy. Interestingly, expression of miR-378 shows sex differences (i.e., downreg-
ulated in female nsCL/P individuals and upregulated in males) [110]. Increasing evidence
suggests that maternal miRNA expression and SNPs in miRNA biogenesis enzymes or
the 3′-UTR of CL/P-associated genes can be used for screening CL/P during pregnancy.
To date, each miRNA-specific inhibitor or mimic, which can modify miRNA expression
independently, is developed industrially. Several researchers have succeeded in inducing
or rescuing developmental defects by administering these inhibitors/mimics to pregnant
mice or zebrafishes. In the near future, these techniques can be applied to repair or reduce
the severity of CL/P during pregnancy in humans.

4. microRNAs Involved in Chemical-Induced Cleft Lip and Cleft Palate

The underlying pathogenic mechanisms in CL/P and CPO are complicated by both ge-
netic and non-genetic factors. Human cohort studies show that maternal exposure to several
drugs and chemicals that act as teratogens induces nsCL/P [111,112]. For example, diox-
ins/TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) [113], phenytoin [114], antibiotics [115],
corticosteroids [116], smoking [117], a high dose of alcohol [12,118], and heavy metals [119]
are known teratogens for nsCL/P. Human linkage analyses show that mutations in genes
related to TCDD metabolism (AHRR, ARNT, and CYP1A1) and a copy number change in
AHR are associated with increased risk of CL/P [120,121]. Moreover, mutations in CYP1A1
and GSTT1 in combination with maternal smoking increase the risk of developing CL/P in
humans [122,123]. These findings suggest that gene–environment interactions contribute
to the pathogenesis, susceptibility, and prevention of CL/P.

Non-coding RNAs and methylation status may explain how CL/P-associated gene
expression is altered by teratogens. Exposure to several chemicals (e.g., retinoic acid,
dexamethasone, dioxins) induces cleft palate in mice and in humans [124–126]. Retinoic
acid (atRA) induces expression of miR-124-3p [127,128] and miR-106-5p [129] in cultured
MEPM cells and the developing palatal shelves in mice. miR-124-3p can inhibit cell
proliferation through suppression of genes crucial for palate development, and miR-106-
5p induces apoptosis and compromises phosphatidylcholine synthesis/cell membrane
synthesis though suppression of Tgfbr2. Importantly, a specific inhibitor for miR-124-
3p normalizes cell proliferation under atRA treatments and prevents cleft palate in 65%
of atRA-induced cleft palate mice. More recently, another candidate miRNA, miR-340-
5p, was identified in atRA-induced cleft palate mice [128]. Therefore, treatment with a
combination of miR-124-3p and miR-340-5p inhibitors can prevent cleft palate with almost
full penetrance [128]. This suggests that it is possible to prevent CL/P by normalizing
maternal pathogenic miRNA expression. Dexamethasone, on the other hand, inhibits
cell proliferation through miR-130-3p induction, which suppresses Slc24a2 expression, in
cultured MEPM cells [130]. Overexpression or downregulation of miR-130-3p induces or
suppresses cell proliferation, migration and invasion, respectively [131,132], whereas its
suppression inhibits cell proliferation, TNFα-induced cell migration, and pro-inflammatory
cytokine production in MH7A cells (a human rheumatoid arthritis synovial cell line) though
upregulation of KLF9 [133].

In mice, exposure to phenytoin is related to cleft lip [134]. Phenytoin induces miR-196a-
5p expression and inhibits cell proliferation through the suppression of Pbx1, Pbx3, and
Rpgrip1l in cultured MELM cells [135]. In the MxPs and the NPs, miR-196a-5p expression
drastically drops down during E10.5 to E12.5 [135]. miR-196a-5p suppresses cell prolifera-
tion and promotes osteogenic differentiation in human Wharton’s jelly umbilical cord stem
cells (WJCMSC) and suppresses bone formation in WJCMSC-sheet transplanted rat calvaria
through suppression of Serpinb2 [136]. Moreover, it causes an imbalance in proliferation and
apoptosis through Foxo1 expression in vascular smooth muscle cells treated with oxidized
low-density lipoprotein [137], and inhibits cell proliferation, migration, and tumor invasion
in several cancer cells [138–140]. Co-transfection of miR-196a-5p/10b-5p/615-3p induces
the fate determination of paraxial mesodermal cells and skeletal muscle differentiation in
embryonic stem cells [141]. miR-196a-5p in extracellular vesicles secreted from myoblasts
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inhibits osteoclastogenesis through a reduction in mitochondrial energy metabolism in
mouse pre-osteoclastic Raw264.7 cells, while it promotes osteoblastogenesis in MC3T3-E1
cells [142]. miR-196a-5p also induces osteogenic and adipogenic differentiation in mes-
enchymal stem cells derived from the bone marrow [143]. Taken together, miR-196a-5p
may be involved in various developmental processes during palate formation.

In summary, modulation of miRNA expression may be key in understanding the
toxicity of chemicals and congenital birth defects. In this review, we discussed selected
CL/P mouse models and speculated that expression of some miRNAs is commonly altered
by exposure to various chemicals. If we can detect these unique pathogenic miRNAs
before or during pregnancy, they may become new biomarkers for diagnosis and potential
therapeutic targets to prevent or reduce the risk of chemical-related birth defects.

5. Conclusions

An increasing number of studies suggest a contribution of miRNAs to cleft lip and
cleft palate development in humans and mice. Bioinformatic approaches using both
sequencing (miRNA-seq and mRNA-seq) and reported cleft-related genes are striking in
the identification of miRNAs related to cleft palate. In addition, chemical-induced cleft
models can help us identify the underlying mechanisms and allow us to test potential
clinical interventions to prevent cleft lip and cleft palate.
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