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Abstract: The brain-derived neurotrophic factor (BDNF) is an extensively studied neurotrophin es
sential for both developing the brain and maintaining adult brain function. In the adult hippocampus,
BDNF is critical for maintaining adult neurogenesis. Adult hippocampal neurogenesis is involved
not only in memory formation and learning ability, but also mood regulation and stress responses.
Accordingly, decreased levels of BDNF, accompanied by low levels of adult neurogenesis, occurs
in brains of older adults with impaired cognitive function and in those of patients with major
depression disorder. Therefore, elucidating the mechanisms that maintain hippocampal BDNF
levels is biologically and clinically important. It has been revealed that signalling from peripheral
tissues contribute to the regulation of BDNF expression in the brain across the blood–brain barrier.
Moreover, recent studies indicated evidence that neuronal pathways can also be a mechanism by
which peripheral tissues signal to the brain for the regulation of BDNF expression. In this review, we
give an overview of the current status in the regulation of central BDNF expression by peripheral
signalling, with a special interest in the regulation of hippocampal BDNF levels by signals via the
vagus nerve. Finally, we discuss the relationship between signalling from peripheral tissues and
age-associated control of central BDNF expression.
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1. Introduction

Adult hippocampal neurogenesis is required for a wide variety of brain functions
such as memory formation [1,2], stress responses [3,4] and mood regulation [5]. Accord-
ingly, impairments in adult hippocampal neurogenesis are associated with seizures [6,7],
depression [8] and a decline in learning abilities [9]. Thus, maintaining adult hippocampal
neurogenesis is critical for preserving normal brain function.

Studies of the mechanisms that maintain adult neurogenesis have focused on the
neurogenic niche of the brain, and they revealed the roles of various growth, transcriptional
and trophic factors [10,11]. A neurotrophin brain-derived neurotrophic factor (BDNF)
in the hippocampus has been reported to be an essential factor for maintaining adult
neurogenesis, as mentioned below. Moreover, studies on the effects of exercise indicated the
possibility that signalling from peripheral tissues has the potential to regulate hippocampal
BDNF expression, at least in late adulthood [12,13]. Indeed, studies using parabiosis,
in which blood circulation is shared between old and young mice, have demonstrated
that some soluble factors in the blood migrate into the brain to affect adult hippocampal
neurogenesis [14]. In neural stem cells (NSCs) of the hippocampus in aged mice, both
the DNA methylation status and expression of the corresponding enzyme ten-eleven
translocation methylcytosine dioxygenase 2 (TET2) were decreased, which was associated
with age-dependent decline in adult hippocampal neurogenesis [14]. The circulation
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of blood from young mice through the cardiovascular system of aged mice recovered
TET2 expression and DNA methylation status in the NSCs of aged mice [14]. This study
demonstrated that parabiosis-mediated augmentation of adult hippocampal neurogenesis
results from recovered TET2 expression and DNA methylation status in NSCs, at least in
part. Molecules in the blood, such as eotaxin-1 (CCL11) [14], growth differentiation factor-
11 (GDF11) [15] and the soluble form of vascular cell adhesion molecule-1 (VCAM1) [16]
were identified as factors that affect adult neurogenesis across the blood–brain barrier.

Moreover, studies on the gut microbiota demonstrated that peripheral signalling
through the vagus nerve can regulate expression of BDNF, thus affecting adult neuroge-
nesis [17]. Recently, we found that intraperitoneal application of the chemokine CX3CL1
promotes BDNF expression and adult neurogenesis in the hippocampus through the vagus
nerve [18]. Thus, signalling from peripheral tissues appears to contribute to the regulation
of BDNF expression in the brain not only across the blood–brain barrier, but also via neu-
ronal pathways. In this review, we give a brief overview of the regulation of hippocampal
BDNF expression by peripheral tissues, with a focus on the vagus nerve-mediated pathway.

2. BDNF

BDNF is a neurotrophin regulating the viability and functional integrity of specific
neurons. The Bdnf gene is expressed beginning in early development and persisting
through adult life [19]. BDNF deletion is homozygous-lethal, and Bdnf-/- mice exhibit
gross neurodevelopmental and sensory defects [20]. In mice with heterozygous deletion
of the Bdnf gene, spatial learning is impaired, as assessed using the Morris water maze
test [21], and the proliferation of neural stem cells (NSCs) in the subgranular zone of the
hippocampus is significantly decreased compared to with wild-type mice [22]. Moreover,
more new-born neurons die in the heterozygous adult mice [22]. A hippocampus-specific
knockout of the Bdnf gene in mice results not only in decreased adult neurogenesis, but
also impaired novel object recognition and spatial learning [23].

Reciprocally, when BDNF expression was chronically stimulated, neurogenesis was
significantly increased in the dentate gyrus of the adult hippocampus [24]. A substantial
amount of studies indicated that increased BDNF expression augments in vivo proliferation,
differentiation, axonal path migration and maturation of NSCs in the subgranular zone
of the hippocampus [25,26]. The BDNF is essential for maintaining adult neurogenesis in
the hippocampus.

Downregulation of BDNF expression, which is associated with decreased adult hip-
pocampal neurogenesis, occurs in brains of older adults with decreased learning abil-
ity [27,28] and those of patients with major depressive disorders [29]. Moreover, decreased
levels of BDNF expression in older adults could result in impaired memory, neurodegener-
ation and other cognitive impairments typical of Alzheimer’s disease [30]. Therefore, it
is not only biologically but also clinically important to determine how BDNF expression
levels are regulated. However, the mechanisms regulating expression levels of BDNF under
physiological and pathological conditions are not fully understood.

3. Vagus Nerve and Regulation of Constitutive BDNF Expression in the Hippocampus

The vagus nerve, which is the tenth cranial nerve, transmits information to and from
the viscera and brain [31]. It is a paired nerve consisting of sensory (afferent) and motor
(efferent) neurons and is involved in maintaining homeostasis as part of the parasympa-
thetic branch of the autonomic nervous system [31]. Involvement of the vagus nerve in
the regulation of hunger, satiety, stress responses and inflammation has been previously
demonstrated [32–34].

Recently, accumulating evidence has demonstrated that the vagus nerve has a piv-
otal role in the regulation of the BDNF expression in the brain. Gut hormones such as
cholecystokinin, GLP-1 and ghrelin bind to their specific receptors on the surface of af-
ferent vagal fibres, regulating BDNF expression in the hypothalamus and contributing to
appetite control [32,35]. Furthermore, O’Leary et al. demonstrated that vagotomy, in which
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gut-related vagal communication was ablated, decreased constitutive levels of BDNF in
the hippocampus and diminished adult hippocampal neurogenesis [36]. These findings
demonstrated that peripheral signalling through the vagus nerve contributes to the regula-
tion of constitutive levels of BDNF in the hippocampus. The mechanisms inducing vagal
tone to regulate basal levels of hippocampal BDNF expression are unknown.

More recently, we found that peritoneal cells transduced signals to the brain through
the vagus nerve, increasing hippocampal BDNF expression (Figure 1) [18]. Administration
of the chemokine CX3CL1 into the peritoneal cavity of aged mice augmented hippocampal
BDNF expression [18]. The CX3CL1-induced BDNF expression was abolished via vagotomy,
indicating that the vagus nerve is involved in the signalling pathway from administered
CX3CL1 to the hippocampus. As expected from the augmented expression of BDNF
in the hippocampus, intraperitoneal administration of CX3CL1 increased the number
of hippocampal Type-2 NSCs and improved novel object recognition memory that is
impaired by advancing age [18]. Since Type-2 NSCs are thought to be an intermediate stage
between radial glial cell-like NSCs and mature neurons [10,37], these results suggested an
increase in adult hippocampal neurogenesis. Moreover, CX3CL1 improved age-associated
phenotypic changes of peritoneal cells in aged mice, expression of the senescence marker
p16INK4a and phagocytic activity [18]. When peritoneal cells prepared from CX3CL1-treated
aged donor mice were transplanted into the peritoneal cavity of recipient aged mice, age-
related impairment of novel object recognition memory was improved. This suggests
that peritoneal cells are involved in the signalling pathway of CX3CL1-induced BDNF
expression in the hippocampus of aged mice.
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Figure 1. Crosstalk between peritoneal cells and the brain via the afferent vagus nerve. Intraperitoneal
administration of the chemokine CX3CL1 partially restores age-associated phenotypic alterations
in peritoneal cells, upregulates hippocampal BDNF expression and improves cognition in aged
mice. Intraperitoneal transplantation of peritoneal cells prepared from aged mouse donors injected
with CX3CL1 into recipient aged mice also improves cognition in recipient aged mice. CX3CL1
injected into the peritoneal cavity thus improves cognition through peritoneal cells. Furthermore,
vagotomy abolishes augmentation of BDNF expression induced via intraperitoneal CX3CL1 injection,
demonstrating that the vagus nerve is a signalling pathway that connects the peritoneal cells with the
function of the hippocampus.

Vagal afferents primarily project to the tractus solitarius nucleus in the brainstem [38].
While neuronal projection from the tractus solitarius nucleus to the hypothalamus has been
well studied [38], projection to the hippocampus is not fully understood. In rats, chronic
vagus nerve stimulation via an electric device indicated that signalling from the vagus nerve



Int. J. Mol. Sci. 2023, 24, 3543 4 of 14

activated adrenergic neurons in the locus coeruleus and serotonergic neurons in the dorsal
raphe nucleus [39,40]. Serotonergic neurons in the dorsal raphe nucleus were required for
the augmentation of hippocampal BDNF with chronic vagus nerve stimulation [41].

These findings indicated that signalling from peripheral tissues contributes to the
regulation of basal levels of hippocampal BDNF expression through the vagus nerve.
Next, we outline findings from studies on exercise and gut microbiota to discuss current
knowledge regarding the relationships between signalling from peripheral tissues and
hippocampal BDNF expression.

4. Exercise Upregulates Hippocampal BDNF Expression

Exercise has beneficial effects on cognition [42,43], which is most prominently observed
in the older adults [44]. Moreover, exercise ameliorates symptoms of neurological disorders,
such as depression, epilepsy, stroke, Alzheimer’s disease and Parkinson’s disease [45–49].
The effects of exercise on the hippocampus include increases not only in the size of and
blood flow to the hippocampus, but also synapse plasticity and adult neurogenesis and
induction of morphological changes in dendrites and dendritic spines [42,43,50].

In animal models, moderate exercise induces BDNF expression in various regions of
the brain, most robustly in the hippocampus [42]. In mice, voluntary exercise with wheel
running increased BDNF levels in the dentate gyrus after only a few days of exercise [51].
These levels were maintained throughout several weeks of exercise [48]. Blocking BDNF
signalling inhibits the exercise-induced improvement of acquisition and retention in a
spatial learning task [52,53]. While controversial results have been reported with young
animals [54], BDNF signalling appears to be associated with the beneficial effects of exercise.
The underlying mechanism by which exercise induces hippocampal BDNF expression
remains to be determined.

Irisin is a myokine secreted from skeletal muscle during exercise. It consists of
112 amino acids and is cleaved from fibronectin type III domain containing protein 5
(FNDC5) [55]. Exercise increases Fndc5 gene expression in the skeletal muscle, increasing
in circulating irisin [55,56]. Overexpression of Fndc5 in the liver induces elevation of the
blood level of irisin [57], which is associated with increased hippocampal expression of Bdnf
and other neuroprotective genes [57]. These findings suggest that irisin can be a molecule
connecting exercise with hippocampal BDNF expression.

However, exercise also increases FNDC5 expression in various regions of the brain,
including the hippocampus [57–59]. Forced expression of FNDC5 in primary cortical
neurons increases BDNF expression, and reciprocally, knockdown of FNDC5 reduces
BDNF. This appears to suggest that FNDC5/irisin expressed in neurons induces BDNF
expression in an autocrine and/or paracrine manner. Furthermore, a meta-analysis of
twelve studies in eight manuscripts has concluded that chronic resistance exercise training
induces a moderate decrease in circulating irisin, while endurance exercise training failed
to show a significant difference [60]. It is currently unknown whether irisin secreted from
the skeletal muscle after exercise can contribute to the regulation of BDNF expression in
the hippocampus.

Cathepsin B is also a myokine of which secretion is upregulated after exercise [61].
Secreted cathepsin B into the circulation can cross the blood–brain barrier [61]; moreover, it
runs increased hippocampal expression of cathepsin B and BDNF [61]. Contribution of the
vagus nerve to the cathepsin B-induced hippocampal BDNF expression is unknown.

Interestingly, exercise also increases the expression level of CX3CL1 [62] of which
intraperitoneal administration increases hippocampal BDNF expression [18]. A secretome
analysis of human muscle biopsies demonstrated that 938 gene expressions were altered in
the muscle after acute exercise. In those genes, 29 genes encoded putative secreted proteins.
CX3CL1 is included in the 29 genes and its increase in plasma levels after exercise was
confirmed with an ELISA assay [62]. Therefore, CX3CL1 could also be a candidate for
factors connecting exercise with hippocampal BDNF expression.
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While there are many candidates for molecules connecting exercise and brain func-
tion [63,64], the mechanism is not fully understood. Contribution of the vagus nerve to the
exercise-induced BDNF expression in the hippocampus has not been reported.

5. Gut Microbiota and BDNF Expression in the Brain

Germ-free mice, which are mice grown up without any exposure to micro-organisms,
exhibit reduced BDNF levels in the cortex and hippocampus, and showed increased anxiety-
like behaviour (Table 1) [65]. Consistently, depleting gut bacteria in mice via treatment with
antibiotics beginning at weaning impairs memory retention and causes a reduction of BDNF
in the brain [66]. Probiotic treatment with Bifidobacterium breve 6330 from postnatal day 28
to day 70 elicited a two-fold increase in the expression of hippocampal BDNF in normal
rats [67]. Oral administration of Lactobacillus johnsonii CJLJ103 increased BDNF expression
in the hippocampus [68]. When Lactobacillus plantarum IS-10506 was administered to rats via
a gastric tube daily for 7 days, BDNF levels in the hippocampus increased from 15 µg/mL
to approximately 23 µg/mL [69]. Some prebiotics, such as fructo-oligosaccharides and
galacto-oligosaccharides, have regulatory effects on BDNF, neurotransmitters and synaptic
proteins [70,71]. These reports indicate that the gut microbiota upregulates BDNF levels in
the hippocampus.

Table 1. Effects of gut bacteria on hippocampal BDNF expression.

Animal Condition Hippocampal BDNF
Expression Reference Number

NMRI mouse Germ-free ↓ [65]

NIH Swiss mouse Antibiotics ↓ [66]

Sprague Dawley rat Bifidobacterium breve 6330 ↑ [67]

Male ICR mouse Lactobacillus johnsonii CJLJ103 ↑ [68]

Male Wistar rat Lactobacillus plantarum IS-10506 ↑ [69]

Male Sprague Dawley rat Prebiotics ↑ [70]

Female Swiss Webster mouse Germ-free ↑ [72]

BALB/c mouse Antibiotics ↑ [73]

NIH Swiss mouse Germ-free and colonisation with gut
bacteria of SPF # BALB/c mouse ↓ [73]

BALB/c mouse Germ-free and colonisation with gut
bacteria of SPF NIH Swiss mouse ↑ [73]

Young Sprague Dawley rat Faecal microbiota transplantation from
aged rat ↓ [74]

Aged Wister rat A probiotics mixture VSL #3 ↑ [75]

Senescence-accelerated mouse
prone 8 (SAMP8) Lactobacillus paracasei K71 ↑ [76]

# Specific pathogen free.

Contrary to the gut microbiota-dependent elevation of the BDNF levels in the hip-
pocampus, Neufeld et al. demonstrated that germ-free Swiss Webster female mice showed
increased BDNF expression in the dentate granule layer of the hippocampus, which was
accompanied by anxiolytic behaviour in the elevated plus maze [72]. Oral administration
of nonabsorbable antibiotics, such as neomycin, bacitracin and pimaricin, to BALB/c mice
altered the composition of the gut microbiota, including increased Lactobacilli, Firmicutes
and Actinobacteria and decreased Proteobacteria and Bacteroidetes populations [73]. Coin-
cidentally, the antibiotic treatment increased the BDNF expression in the hippocampus but
decreased it in the amygdala. Moreover, the colonisation of germ-free NIH Swiss mice with
microbiota from specific pathogen-free grade BALB/c mice exhibited decreased hippocam-
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pal BDNF levels and reduced exploratory behaviour [73]. Reciprocally, the colonisation
of germ-free BALB/c mice with microbiota from specific pathogen-free NIH Swiss mice
increased the exploratory behaviour and hippocampal levels of BDNF [73]. These reports
potentially suggest that the composition of the gut microbiota is an important factor for
regulation of BDNF levels in the hippocampus.

While these reports demonstrated that probiotics affect BDNF levels in the hippocam-
pus, a meta-analysis of 11 trials (n = 648 participants) indicated that more large-scale,
high-quality, randomised controlled trials are needed to make reliable conclusions in their
relationship [77].

6. Effects of the Gut Microbiota on Major Depression Disorder and Stress Responses

Blood BDNF levels are thought to correlate with BDNF levels in the brain [78]. De-
creased BDNF levels in blood are observed in major depressive disorder (MDD) patients,
and increased BDNF levels correlate with improved depressive symptoms [79,80]. Be-
sides, adult hippocampal neurogenesis is also implicated in anxiety- and depression-
related behaviour. Promoting adult hippocampal neurogenesis through inactivation of the
proapoptotic Bax gene in neural progenitor cells decreased anxiety- and depression-related
behaviours induced via chronic treatment with corticosterone [81]. Reciprocally, ablation
of adult hippocampal neurogenesis with irradiation blocked the antidepressant effects of
fluoxetine antidepressant [82]. These reports demonstrate close relationships among BDNF
levels, adult hippocampal neurogenesis and anxiety- and depression-associated behaviour.

An animal study demonstrated that antidepressant serotonin-specific reuptake in-
hibitor increased BDNF expression and adult neurogenesis in the hippocampus, which
was accompanied by decreased depressive behaviour [83]. In humans, antidepressants
recovered decreased levels of blood BDNF in MDD patients and improved related symp-
toms [84,85]; BDNF itself has antidepressant effects [86]. Animal studies using a chronic
stress model identified that the administration of Clostridium butyricum or Faecalibacterium
prausnitzii attenuated depressive behaviour, which was accompanied by increased BDNF
levels [87,88]. In chronic stress-induced depressive mice, Bifidobacterium longum subsp. in-
fantis E41 increased BDNF levels and ameliorated depressive behaviour [89]. Several other
strains of lactic acid bacteria and bifidobacteria also improve depressive symptoms [90,91].
A randomised, double-blind, placebo-controlled, multicentre clinical trial study with 63
healthy participants over 65 years old, demonstrated that an administration of probiotics
containing Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI for 12 weeks
increased serum BDNF levels and improved mental flexibility and stress scores [92]. Thus,
the augmentation of BDNF expression via gut bacteria is effective for improving anxiety-
and depression-associated behaviour.

7. Mechanisms of Gut Microbiota-Induced Regulation of Brain BDNF Expression
7.1. Signalling Pathways to the Brain

Despite the large body of evidence supporting the influence of gut microbiota on
BDNF expression in the hippocampus, the precise mechanisms of crosstalk between the
gut microbiota and the brain remain incompletely understood. Several mechanisms have
been proposed as signalling pathways by which micro-organisms in the peripheral tissues
influence processes in the brain. These pathways include signalling pathways via the
vagus nerve [93], the immune system [94], the hypothalamic–pituitary—adrenal (HPA)
axis [95,96], short-chain fatty acids (SCFAs) [97–99], tryptophan metabolism [100] and
bacteria-produced neurotransmitters [97,101,102]. Since this review focuses on the vagus
nerve-mediated signalling, we mentioned SCFAs that have been reported to activate the
vagus nerve through direct interaction [103,104] and the vagus nerve-mediated pathway.

SCFAs are carboxylic acids with aliphatic tails consisting of 1–6 carbon atoms [105–107].
SCFAs are speculated to play a pivotal role in gut microbiota–brain crosstalk. Acetate,
propionate and butyrate comprise over 95% of SCFAs produced in the gut [108]. Both
acetate and propionate can be digested into butyrate by butyrate-producing bacteria such as
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Faecalibacterium prausnitzii and Eubacterium rectale [109,110]. Following production, SCFAs
are absorbed by colonocytes, primarily via H+-dependent or sodium-dependent monocar-
boxylate transporters [111]. SCFAs that are not catalysed in colonocytes are transported
into the blood and digested in hepatocytes, except for acetate [112]. Therefore, only a small
portion of SCFAs produced in the colon reach the other tissues [113]. Nonetheless, uptake
of SCFAs into the brain was demonstrated in rats with injection of 14C-SCFAs into the
carotid artery [114,115]. SCFAs are detectable in human cerebrospinal fluid at an aver-
age concentration of 17.0 pmol/mg for butyrate and 18.8 pmol/mg for propionate [116].
Furthermore, the levels of butyrate in mouse brains supplemented with live Clostridium
butyricum reached a range from 400 to 700 pmol/mg, which was approximately ten times
higher than that in the peripheral blood [117,118]. Several other strains of lactic acid
bacteria and bifidobacteria also increase butyrate, accompanied by an improvement of
depressive symptoms [90,91].

The precise mechanisms for the effects of SCFAs on the brain remain largely unknown.
Several studies, however, demonstrated that sodium butyrate, a histone deacetylase in-
hibitor, has antidepressant-like effects [119–122]. Wei et al. used a rat depression model
to examine the effects of sodium butyrate on DNA methylation in the prefrontal cor-
tex [122,123]. The depressed rats exhibited decreased expression of ten-eleven translocation
methylcytosine dioxygenase 1 (TET1), which catalyses the conversion of DNA methylation
to hydroxymethylation. The administration of sodium butyrate decreased depressive-
like behaviour on the forced swim test and increased TET1 levels, which was negatively
correlated with Bdnf methylation, subsequently resulting in BDNF upregulation. These
findings indicate that the antidepressant effects of sodium butyrate could be mediated via
the upregulation of BDNF expression. Butyrate produced by gut microbiota could regulate
central BDNF expression through the alteration of DNA methylation.

In addition to the possibility of migration into the brain, SCFAs are reported to activate
vagal afferent fibres [103,104]. A study with primary culture of neurons from nodose ganglia
demonstrated that butyrate directly interacts with neurons and activates intracellular Ca2+

signalling [104]. Intraperitoneal injection of butylate suppressed food intake in fasted mice
and the effect was abolished with vagotomy [104].

7.2. Vagus Nerve-Mediated Pathways

Given the close physical proximity, gut bacteria can activate the vagus nerve, ex-
erting effects on the brain. Specific bacterial strains regulate vagus nerve signalling to
communicate with the brain, altering behaviour. Administration of a subclinical dose of
the diarrhoea-causing pathogen Campylobacter jejuni increased anxiety-related behaviour
and c-Fos immunoreactivity in vagal afferents and in the tractus solitarius nucleus [124].
Since expression of c-Fos gene is upregulated immediately after the stimulation of neu-
rons [125], this result indicated the stimulation of vagal afferents. The beneficial effects of
Lactobacillus rhamnosus JB1 on anxiety- and depression-related behaviours were blocked
via vagotomy [126]. Lactobacillus reuteri improved both the social behaviour in animal
models of autism and wound healing in a vagus nerve-dependent manner [127]. The
probiotic B.longum NC3001 reversed inflammation, colitis-induced anxiety and alteration
of hippocampal Bdnf mRNA levels in mice [128]. The anxiolytic effects of B.longum NC3001
were absent in mice that had undergone vagotomy [128]. These findings demonstrated that
the vagus nerve is one of the major signalling pathways from gut microbiota to the brain.

However, it is unclear whether the vagus nerve is activated by physical interaction
with bacteria or by molecules produced by bacteria. While butyrate can activate vagal
afferent nerve responses, the contribution of this interaction to the regulation of hippocam-
pal BDNF expression is unknown [103,104]. The mechanisms by which vagal afferents
are activated by the gut microbiota to increase hippocampal BDNF expression remain
incompletely understood.
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8. Peripheral Signalling and Hippocampal BDNF Levels in Aged Animals

Cognitive function gradually decreases with advancing age. Age-associated reduc-
tion in hippocampus volume is accompanied by altered dendritic branching, decreased
dendritic spines and decreased adult neurogenesis [129]. BDNF has a central role in these
processes, and its involvement in age-associated cognitive decline has been studied exten-
sively [74,130–133]. Oh et al. interrogated microarray data from the orbitofrontal cortex of
209 healthy subjects, ranging from 16 to 96 years old, to identify the expression levels of
both the BDNF gene and its specific receptor TrkB. The authors found that both expressions
were downregulated in an age-associated manner [130]. Infusion of BDNF into the medial
entorhinal cortex of aged rats for 28 days improved spatial memory [131]. Lentiviral gene
delivery of BDNF into the entorhinal cortex restored age-related impairment of visuospatial
leaning in aged rhesus monkeys [131]. Moreover, exercise improves both hippocampal
BDNF expression and adult neurogenesis in aged animals [12,13]. Together, these reports
indicate that depletion of BDNF/TrkB signalling contributes to the age-associated decline
of cognitive function.

Since signalling through the vagus nerve affects constitutive expression levels of hip-
pocampal Bdnf [36], it could be an important question whether vagal tone contribute to
the age-associated regulation of hippocampal BDNF expression. We found that vagotomy
had no effect on basal BDNF expression in the hippocampus of aged (15–16 months old)
mice [18]. However, vagus nerve-mediated signalling elicited via CX3CL1 administra-
tion into the peritoneal cavity augmented BDNF expression in the hippocampus of aged
mice [18]. Contrary to aged mice, young mice (6–7 weeks old) with vagotomy showed
decreased basal BDNF expression in the hippocampus [36]. Considering the age-associated
decrease in hippocampal BDNF expression [130], these findings potentially suggest that the
effect of vagal tone on hippocampal BDNF expression decreases with ageing. Nevertheless,
signalling through the vagus nerve still has the potential to upregulate the hippocampal
BDNF expression in aged mice. This supports the notion that age-associated alterations in
vagus tone contribute to age-associated decline in hippocampal BDNF expression.

Concerning the effects of the gut microbiota, hippocampal BDNF expression in aged
rats (20–24 months old) was approximately 50% of that in young rats (3 months old) and
faecal microbiota transplantation from aged rats into young rats decreased hippocampal
BDNF expression levels to those in aged rats [74]. Coincidently, faecal transplantation
from aged rats into young rats altered the gut microbiota composition of young rats,
with pronounced increases in the bacteria populations abundant in aged rats, such as
Prevotella, Bacteroides and Parabacterioides [74]. This suggests a close relationship between
gut microbiota and hippocampal BDNF expression. In aged rats, administration of VSL
#3, a probiotic mixture, suppressed inflammation by decreasing IL-10 expression and
increased expression of BDNF and synapsin in the hippocampus [75]. A diet supplemented
with Lactobacillus paracasei K71 improved cognitive performance in ageing-accelerated mice
through the upregulation of hippocampal BDNF expression [76]. These reports demonstrate
the possible involvement of the gut microbiota in the age-associated regulation of BDNF
expression. However, these reports did not address the question of whether the vagus
nerve is involved in the gut bacteria-induced alteration of hippocampal BDNF expression.

Taken together, signalling from peripheral tissues elicited through exercise, gut bacteria
and intraperitoneal CX3CL1 administration are closely associated with the regulation of
hippocampal BDNF expression in aged mice.

9. Conclusions

Accumulating evidence indicates the involvement of the gut microbiota in the reg-
ulation of BDNF expression in the hippocampus. Moreover, signalling elicited via the
intraperitoneal administration of CX3CL1 promotes hippocampal BDNF expression in
aged mice [18]. CX3CL1 induces phenotypic changes in the peritoneal cells of aged mice,
and transplantation of the peritoneal cells prepared from aged mice treated with CX3CL1
was enough to improve novel object recognition memory impaired by advancing age. This
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finding potentially indicates that the gut microbiota is not the sole mechanism by which
peripheral tissues regulate hippocampal BDNF expression. These reports indicate that
signalling from peripheral tissues affects BDNF expression in the adult hippocampus.

The peripheral signalling via the vagus nerve is seemingly one of the mechanisms by
which peripheral tissues regulate the constitutive level of hippocampal BDNF. The gut mi-
crobiota is a potential mechanism that corresponds to vagal tone regulation of constitutive
hippocampal BDNF expression. However, most studies supporting this hypothesis have
employed an inoculation of specific bacteria species. While some bacteria strains affect
the regulation of hippocampal BDNF expression, the contribution of the vagus nerve has
not been elucidated for most bacterial species and strains. Only a few specific bacteria
strains are known to stimulate hippocampal BDNF expression in a vagus nerve-dependent
manner [124,126–128]. The mechanism by which vagal tone is stimulated to upregulate
constitutive level of hippocampal BDNF is still unknown.

Both peripheral tissue-initiated signalling across the blood–brain barrier and via the
vagus nerve are implicated in age-associated changes of adult neurogenesis through the
regulation of hippocampal BDNF expression. Moreover, beneficial effects of exercise are
evident in aged animals. These findings might imply that signalling from peripheral tissues
contributes to the ageing of brain function through the regulation of central BDNF expres-
sion. Further elucidating the relationship between vagus nerve-mediated hippocampal
BDNF induction and blood factors regulating adult hippocampal neurogenesis is also
essential to understand how peripheral tissues regulate hippocampal BDNF expression.
Considering that the blood factors alter DNA methylation in NSCs in the hippocampus [14]
and that Bdnf gene expression is regulated in part by the DNA methylation status [134], the
effects of vagal nerve signalling on the DNA methylation status of cells in the hippocampus
are an important future scientific question. Further studies are required for elucidation of
the mechanism through which peripheral tissues regulate central BDNF expression.
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