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Abstract: The lack of knowledge about the uptake of NPs by biological cells poses a significant
problem for drug delivery. For this reason, designing an appropriate model is the main challenge for
modelers. To address this problem, molecular modeling studies that can describe the mechanism of
cellular uptake of drug-loaded nanoparticles have been conducted in recent decades. In this context,
we developed three different models for the amphipathic nature of drug-loaded nanoparticles
(MTX-SS-γ-PGA), whose cellular uptake mechanism was predicted by molecular dynamics studies.
Many factors affect nanoparticle uptake, including nanoparticle physicochemical properties, protein–
particle interactions, and subsequent agglomeration, diffusion, and sedimentation. Therefore, the
scientific community needs to understand how these factors can be controlled and the NP uptake
of nanoparticles. Based on these considerations, in this study, we investigated for the first time
the effects of the selected physicochemical properties of the anticancer drug methotrexate (MTX)
grafted with hydrophilic-γ-polyglutamic acid (MTX-SS-γ-PGA) on its cellular uptake at different
pH values. To answer this question, we developed three theoretical models describing drug-loaded
nanoparticles (MTX-SS-γ-PGA) at three different pH values, such as (1) pH 7.0 (the so-called neutral
pH model), (2) pH 6.4 (the so-called tumor pH model), and (3) pH 2.0 (the so-called stomach pH
model). Exceptionally, the electron density profile shows that the tumor model interacts more strongly
with the head groups of the lipid bilayer than the other models due to charge fluctuations. Hydrogen
bonding and RDF analyses provide information about the solution of the NPs with water and their
interaction with the lipid bilayer. Finally, dipole moment and HOMO-LUMO analysis showed the
free energy of the solution in the water phase and chemical reactivity, which are particularly useful
for determining the cellular uptake of the NPs. The proposed study provides fundamental insights
into molecular dynamics (MD) that will allow researchers to determine the influence of pH, structure,
charge, and energetics of NPs on the cellular uptake of anticancer drugs. We believe that our current
study will be useful in developing a new model for drug delivery to cancer cells with a much more
efficient and less time-consuming model.

Keywords: cell uptake; drug-loaded nanoparticle; drug delivery; anticancer drug; MD

1. Introduction

In recent decades, the number of cancers in humans has increased significantly due
to various factors and remains one of the second leading causes of death [1]. According
to global statistics, there were 18.1 million new cases in 2018, with a mortality rate of
9.1 million, excluding skin cancer [2]. Solving this problem is a major challenge that can re-
duce the number of annual deaths. Although many chemotherapeutic agents are available,
they cause serious side effects, lower therapeutic efficacy, and multidrug resistance [3,4].
Many conventional drugs are on the market to treat these diseases, but most of them have
low efficacy. Due to low solubility, low bioavailability, and low efficacy in treating these
factors, it is impossible to provide effective treatment for a long period of time [5]. To
overcome this obstacle, nanotechnology plays an important role in targeted drug delivery
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throughout the body [6]. In this case, water-soluble drugs are poorly hidden in the micelles
of drug-loaded nanoparticles using nanochemical methods and protected by a hydrophilic
molecular fragment of the micelles in the external environment, resulting in a better ratio
between the solubility of the drug and the water. This type of drug-loaded nanoparticle is
sensitive to the external environment and helps to release the drug [7] at exactly the right
location. In addition, the tailored design of smart nanoparticles (known as nanocapsules) is
now widely used to solve this problem efficiently. Recent research has shown that pacli-
taxel [8] and doxorubicin [9] can be successfully developed as efficient anticancer drugs.
The functionality of drug-loaded nanoparticles is also important for the development of
potential medical imaging and therapeutic sensors [10]. Experimental and theoretical
studies [11–13] have investigated the permeability of drugs in membranes. Distribution in
a membrane is often studied using molecular dynamics simulations (MDS) [14,15]. Due to
the high cost and potential risk to subjects involved in in vivo studies of intestinal mem-
brane permeability, in vitro models, such as the distribution in isotropic systems [16,17],
transport mechanisms with an artificial membrane [18], and a cultured monolayer of epithe-
lial cells [19,20], have proven useful tools. However, these models do not take into account
the molecular properties of the membrane, which play an important role in drug perme-
ability. In addition, numerous studies have been conducted on the size, shape, and surface
properties of nanoparticles [21] and their effects on the mechanism of cellular uptake. Many
studies have identified the pH-dependent effect [22,23] of nanoparticle behavior on the
cellular uptake mechanism through coarse-grained simulation studies [24], with a lack
of degrees of freedom, charge, structure, and energy. However, systematic knowledge
of the influence of physicochemical factors affecting the cellular uptake mechanism of
drug-loaded NPs at different pH values is limited. Therefore, the present study aims to
provide new insights into how the charge, structure, and energy of drug-loaded nanopar-
ticles affect cellular uptake by different pH parameters. The case study was developed
for the anticancer drug methotrexate disulfide polyglutamic acid (MTX-SS-PGA) loaded
preparation based on three theoretical models for (1) pH 7.0 (so-called neutral pH model),
(2) pH 6.4 (so-called tumor pH model), and (3) pH 2.0 (so-called stomach pH model). A
cellular uptake mechanism was predicted using molecular dynamics simulations (MDS)
based on extensive experimental evidence of efficient uptake by cancer cells [25]. Therefore,
in this case, we modeled polyglutamic acid as a trimmer form to avoid the complexity of
the atomistic simulation. The natural hydrophobic core of MTX is loaded/grafted with a
disulfide bond nanocarrier containing hydrophilic glutamic acid, as shown in Figure 1.
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2. Results and Discussion
2.1. Geometry Optimization and Drug Activity

The geometrically optimized MTX-loaded nanocarrier molecules with three different
models (the so-called neutral model, the tumor model, and the stomach pH model) of
structural analogs determine the cellular uptake mechanism. Experimental results by
Herd et al. [26] have shown that geometry is one of the most important criteria for cellular
uptake. Our results for the neutral model show that the geometry is most likely to be
cage-like (see Figure 2a). The other two simulated models also have similar cage-like
orientations (see Figure 2b,c). Yating et al. [27] reported that a spherical nanoparticle is
clearer and better taken up by cells than a rod-shaped particle; based on these observations,
our models are cage-like, spherically symmetric nanoparticles that are more easily taken
up by the cell membrane (CM). Thus, we can conclude that structural analogs are also
important criteria for influencing cellular uptake mechanisms. Liang et al. [28] reported
that the pterin moiety of the methotrexate drug plays a critical role in antimetabolite activity
because it has a binding affinity to dihydrofolate reductase within the cell; when there is
a change or substitution of any group in the pterin moiety, it decreases the drug activity.
Based on this criterion, we hypothesize here that a change in the dihedral angle affects
cellular uptake because the hydrophobic core of the pterin moiety readily penetrates the
hydrophobic tail of the lipid membrane and also affects drug activity. The pterin ring is
almost perpendicular to the drug molecule in the dihedral angle models (
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2.2. RMSD and RMSF Analysis

The coordinates of the two complex structures (POPC/MTX-SS-PGA) (pH = 7) and
POPC/MTX-SS-PGA (pH = 6.4) of the simulation studies were compared with the origi-
nal reference structure of coordinates. The derived root mean square deviation (RMSD)
between the phosphate groups (PO4

3−) of the membrane complexes with two models at
303.15 K showed that both systems reached equilibrium from the simulation at 1 ns up to
30 ns (see Figure 3a). However, in this case, the tumor model was more stable than the
neutral model, indicating that the tumor model interacted strongly with the lipid bilayer.
RMSF analysis of the two complexes showed a similar trend up to 30 ns (see Figure 3b).
The fluctuation was lowest in the region between 60 and 80 residues, indicating that there
was a strong interaction with the nanoparticles in this region.
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2.3. Area Per Lipid

The area per lipid parameter is used to measure the compactness of the lipid bi-
layer and to determine whether additional permeation density affects the membrane.
Tieleman et al. [29] reported that the calculated APL of the pure membrane is 65.8 Å2 and
depends on the different temperatures: 66 Å2 at 310 K [30] and 62 Å2 at 310 K [31]. In
our case, we observed the APL for two models of MTX-SS-PGA with pH values of 7.0
and 6.4 to be 63.94 Å2 and 63.89 Å2 at 313.15 K, respectively, as shown in Table 2 and
Figure S1 (Supplementary Information). The third model, with a pH of 2.0, destabilizes [32]
the system due to the high acidic pH of the medium during the MD production run, in-
dicating that the drug delivery process has started; we could not determine the area per
lipid for this model. In addition, the electron density for each lipid layer (POPC) refers
to the electron-rich phosphorus group in the head group region present at the maxima of
the peaks on both sides of the membrane, defined by the DHH as the distance between
the head-to-head maxima of the peaks. The DHH for the tumor model was approximately
3.8 nm (slightly smaller than the experimentally found POPC membrane (39.1 Å)), and the
neutral model was approximately 4.0 nm (slightly larger than the experimentally predicted
POPC), as shown in Figure 4. This is due to the tumor model having a stronger interaction
with the upper lipid bilayer than the neutral model due to the stronger electrostatic interac-
tion of the charge variation of −3 for the tumor model and 0 for the neutral model. With
this effect, the density of POPC in the tumor model (976.19 kg/m3) is slightly higher than
that in the neutral model (963.93 kg/m3). Finally, the density was slightly impaired in both
models compared with the POPC control. This suggests that our models did not have a
large effect on the density of the membrane when passing through the cell membrane.
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Table 2. Comparison of the structural parameters of the two models at the end of the MD simulation.

Lipid Membrane POPC/MTX-SS-PGA (pH = 7.0) POPC/MTX-SS-PGA (pH = 6.4) POPC (Exp)

Time 30 ns 30 ns
Area per lipid (Å2) 63.94 ± 0.01 63.89 ± 0.01 65.8 (Å2)
Density (kg/m3) 963.93 ± 0.001 976.19 ± 0.001 39.1 (Å) [33]
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2.4. The Thickness of the Membrane

The thickness of the membrane can be determined by quantifying the electron density
profile using the X-ray scattering of a liquid crystalline lipid membrane [33,34]. The electron
density profile is calculated by the following formula: electron charge = atomic number—
partial electron charge at the center of an atom. The density profile is divided into different
groups, such as POPC (1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine), phosphate
(PO4

3−), glycerol, water, MTX, and the acyl chain, as shown in Figure 4. Considering these
two models, although both models show similar trend behavior, in the case of the density
of the phosphate (PO4

3−) group of the neutral (Figure 4a), there is a decrease (100 kg/m3)
compared to the tumor pH model (Figure 4b) (475 kg/m3); this is due to the tumor model
nanoparticles strongly interacting with the cell membrane at the top of the head group
regions (NH4

+) as the neutral pH model; this is due to the electrostatic interaction that
occurs in the charge variation from neutral to tumor pH range (0 and −3 charge). In other
areas, a very similar distribution was observed for both models (e.g., MTX, acyl chain,
POPC, and water). In the middle of the inner bilayer, the density decreased, indicating the
residence of the acyl chain of the phospholipid headgroups. The decrease in water density
in the middle is due to the absence of water molecules in the middle bilayer. This indicates
that no water molecules migrate through the lipid tail. In general, the density profile shows
that the two models have a similar trend, except for the head groups. Our density curve
shows that the parameters of our MD force field fit our problem well. However, in the
case of the stomach, the pH model is destabilized during MD simulations because it is a
highly acidic medium, as observed in this study [32]. The selection of the POPC membrane
model is based on previous studies [35] on the role of anticancer drugs in the presence of
cholesterol within the POPC membrane.

2.5. Order Parameters

The order parameters were calculated for the POPC acyl chain in the presence of the
tumor and neutral models and are shown in Figure 5. The results show that they agree well
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with previous simulations and experiments [36,37]. In both models, the order parameter of
the C2 atom in both sn1 and sn2 is a deviation due to the orientation of the C2 chain in the
acyl-chain region. The sn1 chains have a higher order parameter than sn2 because they are
located near the head group of the phospholipid chain. The study by Vermeer et al. [37]
showed that the SCD of the C-D bonds is located near the head group, a similar behavior
was observed in our MD simulations. Considering the unsaturated chain of POPC, the
number of atoms 9 and 10 decreases due to the unsaturated bond in both models (see
Figure 5a,b), but the tumor model decreases completely compared to the neutral model.
Moreover, the high chain length of sn1 of the SCD bonds gives more weight to the acyl chain
than to the oleyl group of sn2 of POPC. The diagram clearly shows that the SCD chain of
the sn1 acyl chain is above ~0.2 in the near aqueous phase, as shown in Figure 5a,b). In the
tumor model, the SCD of sn1 is organized as a plateau from the first to the fifth segment, but
in the case of the arrangement of sn2, the value of the SCD bond has completely decreased,
indicating that the acyl chain of the tail part decreases, and after the arrangement of the
sixth carbon of sn1, the SCD bond of ~0.175 decreases. In contrast, the sixth carbon in sn2
decreases again after a slight increase in the SCD bond (~0.125) and the end of the carbon.
A similar behavior is observed in the tumor model with maximum values of ~0.2 in the
aqueous phase for the acyl chain, as well as in the neutral model. The minimum values
of ~0.075 sn2 occurred in the tumor model, while they are almost zero in the case of the
neutral model; this is due to the presence of a double bond [29]. The calculated values
of the order parameters are in agreement with the theory and experiment. However, an
error was found in SCD due to the theoretical error limit in simulations compared to NMR
spectroscopy methods.
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2.6. Mean Square Displacement (MSD)

Figure 6 shows that the POPC bilayer with nanoparticles (MTX-SS-PGA (pH = 7.0)
and MTX-SS-PGA (pH = 6.4) shows near linearity resulting from the entire simulation
time, although the tumor model shows a decrease in the diffusion coefficient of 0.75 nm2

compared to the neutral model (1 nm2), suggesting that the condensation effect is due to
the order [38] membrane. This is because the charge variation (−3) under this pH 6.4 tumor
model strongly interacts with the top of the lipid bilayer, which leads to more order in the
lipid bilayer than in the neutral model (the charge is zero). From this observation, our MD
results show that the effect of lipid ordering is stronger in the tumor model than in the
neutral model.
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2.7. Potential Mean Force (PMF)

The membrane of drug permeation studies can be determined in the solubility-
diffusion relationship, although it is a critical calculation of the PMF curve, which is directly
related to the relative solubility. In the case studied, we used two models of MTX-SS-PGA
nanoparticles with two different pH values (7.0 and 6.4) to estimate the permeation/cell
uptake of drug-loaded nanoparticles from the water phase to the membrane phase for
tumor and neutral models, as shown in Figure 7. Considering the neutral model, it can
be seen (Figure 7) that the free energy barrier from the water interface to the membrane is
higher than the free energy barrier of the tumor model. This indicates that a nanoparticle
with a pH of 7.0 is clearly preferable to a pH of 6.4 (shown in Supplementary Video S1). This
result indicates that the bilayer permeation of the neutral model is preferred over that of
the tumor model. Based on the inhomogeneous solubility-diffusion model [39] developed
using the MD study, the permeation/cellular uptake of drug-loaded nanoparticles is one
of the factors that depend on the solubility of the molecule in water, hydrophobic lipid
environment, free energy values, and so on. Based on this assumption, the energy profile
shows that the tumor model concepts have deep energy minima compared to the neutral
ones, as shown in Figure 7, suggesting that passive transport is a simpler inhomogeneous
solubility diffusion model, although both drug-loaded nanoparticles have a deep energy
profile at the lipid bilayer interface. This could be due to the number of atoms present in
the model. It could be mentioned that there were several difficulties in the calculation of
the barrier, especially for the model with a neutral pH (shown in Supplementary Video S1),
which could be due to the slow diffusivity of permeation through the lipid bilayer. Similar
studies were performed by Frezard and Yacoub et al. [40,41], who attributed the passive
transport mechanism to the presence of cholesterol, which can reduce the free area and
volume of the liquid membrane, affecting drug transport. Both models (tumor and neutral)
on the left side of the curve (Figure 7) clearly show that the higher energy barrier can be
associated with the characterization of nanoparticle permeation into the hydrophobic tail
of the bilayer core as higher in energy. As a result, the bulk region of the water phase
has decreasing energy for both nanoparticles (MTX-SS-PGA pH (7.0 and 6.4)). Therefore,
the free energy (∆G) increases from the interior of the water surface to the membrane of
the hydrophobic tail of the center of mass of the bilayer (COM). However, from the free
energy profile, it is clear that nanoparticles with a tumor pH penetrate the bilayer more
easily than neutral particles. There is a controversy; in this case, the difference in free
energy (Figure 7) may be the cause of the increase in the head group of the density map,
i.e., different domains at different locations. How does this affect the density profile of
the different regions? In contrast, the tumor model (Figure 7) is easily taken up by the cell
membrane, and the density map of the head group (Figure 5) is not well reduced. This
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might be due to a strong interaction with the lipid head groups because the charge of the
model is−3, so the electrostatic interaction of opposite forces affects the density of the head
groups. Instead, the neutral model interacted with the lipid bilayer headgroups, which is
due to the amphiphilic nature of the nanoparticle. Therefore, the density-energy profile
(head groups) is much more affected by the tumor model (Figure 4) than by the neutral
model. In addition, the geometry of the structure is also important for cell uptake because,
in the case of our models, a more cage-like structure penetrates more easily into the models
without significant interference from the bilayer; consequently, even with energetic criteria,
energy is the determining factor for the permeation mechanism of nanoparticles from the
water phase into the membrane interior. In this context, cell uptake can affect the NP charge,
structure, and energy criteria of NPs to allow the drug/nanoparticle to permeate from the
water phase into the membrane.
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phase to the center of the lipid bilayer. The reaction coordinates are shown from the center-of-mass of
the drug-loaded nanoparticle to the center-of-mass of the lipid bilayer in the normal direction to the
z-direction of the lipid bilayer interface.

2.8. Hydrogen Bonding and Radial Distribution Functions

Although the two models (neutral and tumor) have a cage-like structure, the cellular
uptake of NPs differs because of the different structures, charges, and energetics of the
NP system; based on these criteria, the tumor pH model penetrates the cell membrane
faster than the neutral model. For this reason, the number of hydrogen bonds increased
more in the tumor model than in the neutral model, indicating that the solubility ratio was
higher in this model. The average number of hydrogen bonds of the tumor model is four
within the time axis, but in the maxima at 8 h-bonds by 300 ps; in the case of the neutral
model, the average of the number of h-bonds is three, and in the maxima at five by 100
and 250 ps, as shown in Figure 8a,b. The RDFs describe the probability of finding one
particle to another with a distance between r and r + dr, where the bond distance is deeper
at the transition of the nanoparticle from the aqueous phase to the membrane interior with
solubility and distance criteria with the phosphate and nitrogen atoms of a lipid bilayer
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with oxygen atoms of the nanoparticle. In this RDF, the distance between two atoms, such
as the “O” atom of the nanoparticle and the “P” and “N” atoms of the membrane interface,
is uniquely described. In the tumor model, the two peaks show a higher probability by
~19.0 and ~3.0 of the distance of the O-P atoms in Figure 9a. In the other higher distribution
possibility, with about ~25 and ~20 of the distance of O-N atoms in a higher likelihood ratio
than the O-P atoms in Figure 9b, a similar trend was also observed for the neutral model
(Figure 9c,d) nanoparticles. The value of a higher likelihood ratio of ~20.2 and ~3.8 for the
spacing of the distribution peaks for the O-P bond and the two similar peaks appeared
in the range of ~25.0 and ~21.0 for the distribution of the O-N bond ratio. From this,
the presence of a higher solubility and distance ratio of nanoparticles to membrane head
groups (P and N atoms) is understandable, indicating that both nanoparticles at pH 7.0
and pH 6.4 have stronger interactions with an upper layer of membrane head groups. Due
to this stronger interaction of neutral and tumor pH nanoparticles with the membrane, the
penetration force is ultimately possible, but in contrast, the solubility ratio of tumor pH
nanoparticles would be higher than that of neutral ones, leading to the confirmed higher
penetration force at the membrane interface.
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2.9. Dipole Moment and FMO Analysis

In general, the magnitude of the dipole moment plays an important role in the
solvation-free energy of an aqueous medium [42]. Based on this assumption, there is
a significant difference in the magnitude of the dipole moments in all three models in our
case. For example, the tumor pH model has a significantly higher dipole moment (Debye)
of 32.5 D than the neutral and stomach pH models, which are given in Table 3 as 5.3 D and
28.8 D, respectively. Therefore, higher dipole moments have the possibility of a stronger
free solvation energy with the aqueous phase because of the interaction of high preferential
dipole moments with the environment. In this assumption, the tumor pH model may have
a higher free solvation energy with water and thus has more stability while penetrating the
cell membrane because this solubility criterion is also an important factor in deciding the
cell uptake. The second place is the stomach pH model (destabilized by the high acidity
of the medium), and the last place is the neutral model. From the frontier orbital, the
chemical reactivity [43] and cytotoxicity [44] of the nanoparticles can be deduced. At pH
7.0, the orbital HOMO is delocalized in the phenyl ring part of methotrexate (MTX) and the
LUMO in the pterin ring part of MTX with the transition of π→π*(HOMO-LUMO), but in
contrast, the transition of π→σ* is the localization of the HOMO-1-LUMO+1 delocalized
orbitals at the pterin ring for HOMO-1 and the LUMO+1 at the disulfide bond, shown in
Figure S2 (Supporting Information); in the case of the tumor pH model, it localizes the
HOMO-LUMO transition of n→π* at the “C=O” group of a glutamic acid moiety at HOMO
orbitals and the pterin ring at the LUMO orbital. Similarly, the same transition (n→π*)
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was observed at HOMO−1-LUMO+1, as shown in Figure S3, in the stomach pH model,
with the “C = O” group of the glutamic acid moiety delocalized at the HOMO orbital and
the LUMO shown orbitals of the pterin ring of the MTX moiety delocalized at the n→π*
transition (HOMO-LUMO), but the σ→π*(HOMO-1-LUMO+1) transition observed in the
σ-orbital at the disulfide bond and in the π*-orbital at the pterin ring is shown in Figure S4.
Taking into account the energy gap, the tumor pH model shows a very low energy gap
(0.06 eV) at the HOMO-LUMO transition, indicating a higher chemical reactivity with a
highly potent cytotoxic effect [44] than another model, such as neutral (0.13 eV) and the
second highest chemical reactivity of the energy gap (0.09 eV) in the pH 2.0 model; the
values are listed in Table 3.
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Table 3. The properties of dipole moment and energy gap (HOMO-LUMO) for models.

pH Dipole Moment (Debye) Energy Gap (∆EH-L)

7.0 5.3 0.13 eV
6.4 32.5 0.06 eV
2.0 28.8 0.09 eV
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2.10. Implications for the Results

The results of Ningning Ma et al. [21] suggested that the cellular uptake of nanopar-
ticles is influenced by size, shape, and surface area in previous reports. In addition,
Behzadi et al. [45] suggested that variation in the colloidal stability of nanoparticles in
biological media is also an important factor in discriminating cellular uptake rather than
size, surface area, or surface charge (ζ). Therefore, we propose different parameters of
NPs, such as charge, structure, and energy, calculated for three models with different pH
values. In the third model of the stomach pH range, drug-loaded nanoparticles release the
drug at this time, while the glutathione enzyme breaks the disulfide bond (MTX-SS-PGA)
and begins to release the anticancer drug, as experimentally demonstrated [25]. This effect
could be related to a more acidic environment [32], leading to the destabilization of the
system during the production step (Figure 10). As a result, the nanoparticles begin to
release the drug. The uptake in the tumor model is much shorter than in the neutral model.
These results may be useful for developing a new methodology for drug development
using a nanoparticle carrier medium.
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3. Computational Methods
3.1. Case Study with Molecular Dynamics (MD) Simulations

In the present study, we developed three different models of drug-loaded nanoparticles
(MTX-SS-PGA) that respond to the pH of different organ sites (Figure 11). The first model
was for pH 7.0 (the so-called neutral pH model), the second model was for pH 6.4 (the
so-called tumor model), and the third model was developed for pH 2.0 (the so-called
stomach pH model).

For these three models, the uptake and knowledge of the delivery process were
obtained by fully atomistic MD simulations. In the present study, we hypothesize that
the three different models of charge, structural analogs, and energetics strongly influence
the cellular uptake mechanism at different pH media intervals. The models developed
(Figure 11) will be optimized with a full atomic method to capture the cellular uptake and
release process at different organ sites in the human body. From the barrier analysis, among
the three models, the pH of the tumor (~6.4-mouth pH range) in which cells are taken up is
faster than the neutral pH of the model, which is confirmed by the PMF curve obtained
from the umbrella sampling and WHAM analysis methods. This will help us to understand
the mechanism of drug-loaded nanoparticles with cell behavior in the human body. From
this point of view, the third model with stomach pH (2.0) was used for drug delivery
based on the results of MD simulations. In this case, the model is destabilized because
the acid-labile [32] environment of drug-loaded nanoparticles is less stable in an acidic
environment. Most importantly, our computational studies will be useful for predicting
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the mechanism of cellular uptake of drug-loaded nanoparticles and for providing useful
insights into the drug delivery process.
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3.2. Generation of the Models and Parameterization

The first neutral pH model describes the neutral pH model, which may represent
parts (organs) of the human body, such as the liver (pH ~7.0). In most cases, the neutral
pH model is less taken up by the cell membrane than by the ionic states of the particles,
especially the anionically charged particles [46–48]. The second tumor pH (tumor model)
describes the anionically charged particles (−3), which have the highest affinity [49] for
the CM and consequently are captured by the CM with a higher order of magnitude of
efficiency, although with lower uptake, than the cationically charged particles (third model).
The anionic surface-charged particles significantly reduced the non-specific interaction
with the plasma membrane and the overall uptake of CM, while restoring the ability to
induce the specific interaction at the target cells. The third model of the stomach pH
model of positively charged (+2) particles have the highest uptake compared to neutral
and negatively charged particles [50,51] due to higher internalization with CM and because
negatively charged CM has a strong affinity for positively charged particles. The two
models (tumor and stomach) were created using the dimorphite-DL [52] program under
the control of the neutral model. The program provides SMILE formatted structural
information with the corresponding pH values, and on this basis searches the pKa values
from the database to generate at the end all possible conformations of the structural analogs
in the form of a SMILE formatted file considering the pH value of the molecule, once we
obtained a molecular geometry optimized with the B3LYP exchange-correlation function
of the 6-31G* basis set using the DFT theory of the Gaussian 09 package [53]. Using this
optimized geometry of nanoparticles, the RESP charge was generated based on HF/6-
31G* using GAMESS-US [54]. The optimized geometries of the three different pH models
were confirmed with energy-minimized conformations by vibrational analysis without
imaginary frequency.

3.3. MD Setup

Three models of MD simulation, (1) a pH~7.0 of drug-loaded nanoparticles, (2) a
pH~6.4, and (3) a pH~2.0, consisting of a classical POPC membrane with 64 lipids per
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leaflet, were performed using a CHARMM-GUI [55] membrane builder with a force field of
CHARMM36 FF [56] for lipids. All simulations were performed using a TIP3P water model
with additional CHARMM36 force field parameters. The generated model was solvated
with TIP3P [57] water molecules on total charge replaced by counterions. Neutralities of
POT+ and Cl- were added to the membrane composition for each simulation box.

3.4. Equilibration and Production Setup

Each structural model was placed in this solute membrane simulation box and equi-
librated with different types of equilibration steps using a multistep protocol [57]. Seven
different types of short-term equilibration steps were performed with different thermostat
conditions, force constants with different position-limited values, and others to maintain
the stability of the membrane and allow the water molecules to equilibrate. In the equi-
librium step, the pressure (P = 1 atm) and temperature (T = 303.15 K) were kept constant
by maintaining a damping force coefficient value of 0.5 ps−1 with a piston start-up time
of 50 fs. At the same time, the Berendsen thermostat [58] was used for pressure control
and subsequent equilibrium steps with a semi-isotropic Noose–Hoover scheme [59] to
control the pressure at the thermostat with a piston drop of 25 fs. The simulation setup of
2 fs used the integrated equation of motion Verlet algorithm [60]. An isothermal-isobaric
ensemble (NPT) was used for the periodic condition. The LINCS [61] constraint algorithm
was applied to all h-bond involving atoms. The particle mesh Ewald (PME) method [62]
was used to extract all long-range electrostatic interactions with a spatial cut-off point
of 12 Å. The Lennard–Jones interactions were applied to a cut-off value of 10 Å, which
is further truncated to 12 Å. A SHAKE [63] algorithm was applied under a holonomic
constraint to capture all covalent bonds associated with hydrogen atoms. MD simulations
and analyses were performed using the Gromacs 2020.2 software package [64].

3.5. Potential Mean Force (PMF) Simulations

The umbrella sampling approach was used to calculate the potential mean force of
the free-energy profile for these models. Calculating the partitioning of the three models
between the membrane and the surrounding water is also possible. For the three models of
the upper layer in the aqueous phase of water at a tensile force of 1000 kJ/mol·nm2 with a
tensile speed of −0.2 nm/s, an attempt was made to pull the drug-loaded nanoparticles
toward the center of the membrane by a total of 30 Å in the scheme of the semi-isotropic
NPT ensemble. During the simulation time, the snapshots from the top (z = 30) to the center
(z = 0) were saved every 1 Å interval time, with a total of 30 windows to calculate the PMF
curve. Because of the symmetrical nature of the bilayer, the remaining half of the distance
reflects the same. Starting from this point, the reflectance data along the z-axis of the
windows around 30 and 29 in the middle of the double layer are the same for the remaining
distance. In each window, the production run was performed up to 1 ns, with a force
constant of 1000 kJ/mol·nm2 with a total sampling of 1 µs of the nanoparticles entering
the membrane. During the simulation, the configurations were saved every 1 ps; at the
end, WHAM [65,66] analysis was used to combine the biased, distributed, and reweighted
analysis to calculate the PMF curve.

3.6. Area Per Lipid (APL)

The area per lipid analysis was used to extract the molecular packing of the lipid
bilayer. The value of APL provides information about the arrangement of lipids and the
structural and dynamic properties of the membrane. When calculating the APL, the normal
bilayer is considered along the z-axis. The APL can be calculated using Equation (1):

APL =
Lx Ly

Nlipid
(1)

Here, Lx and Ly are the lengths of the box direction in x and y. Nlipid indicates the
number of lipids present in one leaflet.
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3.7. Order Parameters

The order parameter SCD can determine the lipid acyl chains present in the lipid
bilayer, and the amount of SCD can easily be compared with the experimental SCD values
from 2H NMR and 1H-13C NMR. This allows the relative orientation of C–D relative to the
normal bilayer to be calculated. This can be determined by the following Equation (2).

SCD = 0.5 <3cos2θ − 1> (2)

where θ indicates the angle between the normal bilayer and vector joining C-D (in our case,
C-H in the simulation); <> determines an average ensemble.

3.8. Lateral Diffusion Coefficient

Lateral diffusion is used to measure the ability of lipids to move through leaflets;
it is an important dynamic property to be characterized and measured by the diffusion
coefficient derived from Equation (3).

D(τ) = limτ→∞ (MSD(τ)/4τ) (3)

where τ is the elapsed time and MSD is the mean square displacement of the selected lipids
in the center of the mass of the XY plane, averaged over the different initial times and the
number of lipids.

4. Conclusions

In this work, we address the problem of cell uptake by drug-loaded nanoparticles
predicted by MD simulations, suggesting that the tumor pH model is easier to uptake
than the neutral model. The influence of cellular uptake by the NP’s charge, structure,
and energetics of NP is based on the system. However, the stomach pH model begins
to deliver the drug in a more acidic environment. In a more acidic environment, the
nanoparticle was not more stable under these conditions during the production step, which
was verified by MD trajectories. In our case, we found that the permeation of drug-loaded
nanoparticles did not affect the membrane architecture. The analysis of the APL, density,
thickness, and order parameters imparts a similar trend of convergence, although they
vary with the pH model. The observation of the PMF curve indicates that the tumor pH
model has a lower energy barrier than the neutral model, confirming that drug-loaded
nanoparticles cross the membrane easily. Density analysis shows that the peak of the
phosphate headgroup is more reduced in the neutral model than in the tumor model.
This means that the tumor pH nanoparticles have stronger interactions with the head
group (NH4

+) of the cell membrane. In contrast, the neutral model has neutrally charged
(0 charge) nanoparticles that do have possibly less interaction with the headgroup region
of the cell membrane maybe due to less electrostatic force. Furthermore, the mechanism
of cellular uptake is elucidated by the hydrogen bonding analysis, RDF. It was found
that the tumor model has more hydrogen bonds with water and the membrane, which
can be more easily taken up by the cell membrane than the neutral model. The dipole
moment and HOMO-LUMO analysis show that the magnitude of the dipole moment can
have a free solvation energy with the water phase as a result of the polarizing force with
the environment. According to our analysis, the tumor pH has a high dipole moment
of 32.5 D compared to other models, which will ultimately affect the penetration forces
within the cell membrane. HOMO-LUMO, the analysis shows us the nature of the orbital
transitions in the ground state geometry, which could indicate the delocalized charges
where they are placed within the molecule. Based on this, we could express the bioactivity
of the molecules. In this context, tumor pH has a very low energy gap, which is less
stable and has high chemical reactivity than other models, but both transitions (n→π*)
are the same (HOMO-LUMO and HOMO-1-LUMO+1); secondly, it has a lower energy
gap of the pH 2.0 model and, finally, the neutral one. This analysis suggests that all three
models have high chemical reactivity, possibly exceeding the interaction of nanoparticles
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with the cell membrane, and that remarkable cytotoxicity is always hindered due to this
high potency in acidic environments, such as the pH range of the tumor and the stomach.
Our results are consistent with the experimental methods for the neutral model; drug-
loaded nanoparticles were found to be highly capable of pH-dependent cellular uptake by
the NP criteria of charge and geometry, and the energy-dependent internalization of the
mechanism was observed. In this context, we propose a mechanism of action when these
models penetrate the cell membrane by using our observation of the subtle importance
of cell-penetrating drug-loaded nanoparticles in interaction studies with the lipid bilayer.
However, our proposed results show that these methods are useful for designing different
modeled drug-loaded nanocarriers with different concentrations and pH values, which
will be more useful for future research on cancer treatment.
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