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Abstract: Lung macrophages (Mϕs) are essential for pulmonary innate immunity and host defense
due to their dynamic polarization and phenotype shifts. Mesenchymal stromal cells (MSCs) have
secretory, immunomodulatory, and tissue-reparative properties and have shown promise in acute and
chronic inflammatory lung diseases and in COVID-19. Many beneficial effects of MSCs are mediated
through their interaction with resident alveolar and pulmonary interstitial Mϕs. Bidirectional MSC-
Mϕ communication is achieved through direct contact, soluble factor secretion/activation, and
organelle transfer. The lung microenvironment facilitates MSC secretion of factors that result in
Mϕ polarization towards an immunosuppressive M2-like phenotype for the restoration of tissue
homeostasis. M2-like Mϕ in turn can affect the MSC immune regulatory function in MSC engraftment
and tissue reparatory effects. This review article highlights the mechanisms of crosstalk between
MSCs and Mϕs and the potential role of their interaction in lung repair in inflammatory lung diseases.

Keywords: acute and chronic respiratory diseases; cell therapy; lung immunity and inflammation

1. Introduction

Mesenchymal stromal cells (MSCs) are now known to enhance the repair of injured
tissues and are emerging as possible therapeutic agents in acute and chronic inflammatory
lung diseases and in COVID-19. The interaction between MSCs and Mϕs has been shown
to be a crucial mechanism of such beneficial action in lung injury. Our review focuses
on this fascinating crosstalk. We describe the current understanding of the mechanisms
and complexity of the MSC-Mϕ interplay. We also point out the numerous gaps in our
knowledge that still hinder exploiting this mechanism for therapeutic purposes. The final
outcome of MSC-Mϕ interaction depends on multiple factors, and a better understanding
of these is essential for designing strategies to improve the efficacy of MSC treatment and
maximize positive and avoid possible negative outcomes. We also provide an overview of
the potential relevance of the MSC-Mϕ interplay, as emerging from preclinical and clinical
studies. Since the therapeutic efficacy of MSCs is still clinically unproven, this knowledge
is crucial for personalized therapy for lung injury patients.

2. The Role of Lung Tissue Macrophages in the Pathogenesis of Lung Injury
2.1. Pulmonary Mϕs as a Host Defense Mechanism

The lung is not only vital for gas exchange but also serves as a major immune organ
that protects the host from inhaled pathogens, allergens, and toxins [1]. Since pulmonary
Mϕs are fundamental for the regulation of tissue homeostasis, modulation of their function
could be used to prevent injury and promote repair both in acute and chronic lung injury.
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Both alveolar (AMϕs) and pulmonary interstitial (PIntMϕs) Mϕs are essential compo-
nents of lung innate immunity and the host defense system [2]. These Mϕs are originated
from fetal erythro-myeloid progenitors (yolk-sac-derived) [3,4], although there is some
age-dependent contribution of circulating adult monocytes to their pool [5,6].

AMϕs represent the first line of host defense. They are defined by expression of MHCII
(HLA-DR), CD11c, macrophage receptor with collagenous structure (MARCO), granulocyte–
macrophage colony-stimulating factor receptor (GM-CSFR), CD206, and CD169.

In the absence of infection, AMϕs primarily regulate the secretion of pulmonary
surfactant, i.e., the lipid–protein complex produced by alveolar type II (ATII) cells. They
are essential for lung homeostasis, as spontaneous pulmonary alveolar proteinosis (PAP)
develops in mice and humans with absent or dysfunctional AMϕs [7–9].

AMϕs eliminate the small load of typical microbes aspirated daily in the normal
host via phagocytosis and intracellular killing and by secretion of reactive oxygen species
(ROS), antimicrobial peptides, proteases, and lysozyme [10]. Macrophage functional defects
inevitably lead to increased susceptibility to a variety of bacteria, viruses, and fungi [11].

PIntMϕs mainly express MHCII, CD11b, Lyve-1, and/or CD36 [12] and act as a
second line of defense should the epithelial barrier be damaged. They constitutively
secrete interleukin-10 (IL-10), suggesting an immunoregulatory role in both mouse and
man [13–16]. They also produce platelet-derived growth factor (PDGF), suggesting they
may support fibroblast, epithelial, and endothelial homeostasis [17].

2.2. Role of Mϕ Plasticity in Lung Injury and Repair

During acute inflammation, damage-associated molecular patterns (DAMPs), cy-
tokines, and growth factors (GM-CSF and M-CSF) [18] induce the recruitment and dif-
ferentiation of residual yolk-sac-derived pulmonary Mϕs and promote their interaction
with surrounding cells. Bone-marrow-derived monocytes are also recruited to the lung
and differentiate into AMϕs upon inflammatory stimuli [19]. Cytokines and chemokines,
especially CCL2 (also referred to as monocyte chemoattractant protein 1—MCP1) and its
receptor CCR2, play a crucial role in Mϕ recruitment and polarization [20].

The activation and polarization of Mϕs into two extreme phenotypes, M1 (pro-
inflammatory) and M2 (involved in the resolution of inflammation and tissue repair),
was described in the early 1990s [21]. M1-like Mϕs start and sustain inflammatory re-
sponses, while M2-like Mϕs promote the resolution of inflammation and coordinate the
restoration of tissue integrity (Figure 1).

Mϕ balance is swayed towards an M1-like state by microbial products (lipopolysac-
charide (LPS) and other Toll-like receptor (TLR) ligands), and the pro-inflammatory mi-
croenvironment activates nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB) and signal transducer and activator of transcription-1 (STAT-1). In addition, Th-1
lymphocytes secrete interleukins (IL)-1β, IL-6, IL-17, IL-18, IL-23, interferon gamma (IFNγ),
and tumor necrosis factor (TNF)-α, and activated platelets further promote M1 polarization
(Figure 1) [22–24]. Oxidative stress and ROS increase also contribute to tissue damage [25].
In contrast, Th-2 cytokines (e.g., IL-4 and IL-13) induce M2-like or alternative Mϕ acti-
vation [26]. Different stimuli induce various subtypes of M2-like Mϕs (M2a, b, c, and d)
(detailed in an excellent review by Wang et al., 2019 [27]).

Importantly, Mϕ responses to environmental challenges are complex, and their func-
tional polarization into M1 and M2 types is an over-simplification. Rather than being an
“on-off” process, current data clearly indicate that Mϕ polarization is a continuum along
the whole spectrum between M1 and M2 phenotypes. Therefore, terms such as M1-like
and M2-like Mϕs more appropriately describe the phenotypes [28].

Of note, neither AMϕs nor PIntMϕs can be defined exclusively by M1 or M2 markers,
and in the healthy lung both populations co-express markers historically considered as M1-
or M2-specific [12,29,30].
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The above-described plasticity renders Mϕs attractive candidates for therapeutic
purposes, as environmental influences can dynamically and reversibly alter their pheno-
type [23,28]. For example, our group has successfully used pluripotent stem cell-derived
Mϕs in rats to treat systemic sepsis with multi-organ involvement that includes lung in-
jury [31]. Indeed, Mϕ transplantation therapy may ultimately be used as a therapeutic
approach for lung injury, but its feasibility and effects in humans have yet to be investigated.
So far, Mϕs have not typically been considered as cells that can be directly administered
to patients with respiratory diseases, in part because they would likely elicit an immune
response. Rather, therapeutic strategies mainly focus on harnessing the plasticity of existing
pulmonary Mϕs.

In this respect, mesenchymal stromal cell (MSC) treatment offers an opportunity to
interact with host macrophage populations and modulate their function and vice versa, as
described in the next sections.

Lung tissue macrophages (Mϕs), alveolar (AMϕs) and interstitial (PIntMϕs), are
essential for host defense. AMϕs eliminate the small daily load of aspirated microbes and
regulate pulmonary surfactant. PIntMϕs have anti-inflammatory and regulatory roles [1,2].

Inflammation attracts circulating Mϕs (by CCL-2) [20] and causes Mϕ proliferation
(induced by GM-CSF) [18,19]. Pathogen sensors, TLR-4, and other TLRs cause NF-κB
and STAT-1 pathway activation and secretion of pro-inflammatory interleukins. This
environment shifts Mϕ balance towards an M1-like state and induces ROS production
causing tissue damage and edema [22–25]. Conversely, the regeneration and healing
process is mainly driven by alternatively activated (M2-like) Mϕs, with the presence of IL-4,
IL-10, TGF-β [32], and antioxidants (Nrf2/HO-1 axis) [33,34]. Mϕ polarization is reversible
and M1/M2 balance may vary depending on the local environment [27,35].
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3. MSCs in Lung Injury Treatment
3.1. Definition and Characteristics of MSCs

MSCs are multipotent cells capable of differentiating into at least three lineages:
adipocyte, chondrocyte, and osteoblast. These plastic-adherent cells have secretory, im-
munomodulatory, and homing properties. They express CD73, CD90, and CD105 and lack
the expression of hematopoietic and endothelial markers CD11b, CD14, CD19, CD34, CD45,
CD79a, and HLA-DR (ISCT’s MSC committee criteria [36]).

MSCs form a supportive, perivascular niche for hematopoietic stem cells (HSCs) in
the bone marrow and coordinate the trafficking of HSCs and monocytes [37,38]. Although
initially identified in bone marrow (BM) [39], MSCs are also present as perivascular cells in
other tissues, including muscle, umbilical cord, and adipose tissue [40].

3.2. Preclinical Studies—MSC Action, Licensing, and Genetic Modifications

Acute respiratory distress syndrome (ARDS) is the leading cause of morbidity and
mortality (30–50%) in the critically ill receiving supportive treatment. Despite some im-
provements, there is still no causal therapy available [41,42]. The hallmarks of ARDS
include alveolar epithelial–capillary barrier disruption, consequent edema formation, and
widespread uncontrolled lung inflammation. In preclinical studies (Table 1), the treatment
of ARDS rodent models with MSCs [43] or with MSC-derived extracellular vesicles (EVs)
significantly mitigated lung injury [44]. Interestingly, EVs isolated from young MSCs were
more effective [45]. Studies also demonstrated that MSCs or MSC-EVs acted by decreasing
the production of pro-inflammatory cytokines by AMϕs [44] and/or by inducing alveolar–
endothelial barrier restoration partially via mitochondrial transfer [46]. Administration
of MSCs protected rodents from ventilator-induced lung injury [47,48], with MSCs being
equally [47] or more effective than their secretome [49]. MSCs were also found to be ben-
eficial in mice with sepsis-induced lung injury. In these models, the improvement was
ascribed to the downregulation of miR-27a-5p microRNA [50] and microRNA (miR)-193b-
5p [51] in the septic lung and upregulation of their respective target genes, i.e., VAV3 and
the tight junctional protein occludin.

Several studies demonstrated that modification of MSCs can augment their beneficial
effects. The immune-modulatory and tissue-reparatory properties of MSCs can be enhanced
by pre-stimulation, i.e., licensing or by their transfection with targeted genes prior to the
treatment. Cytokine-induced pre-activation (with IL-1β, TNF-α, IFN-γ) augmented MSC-
induced repair and resolution of ventilator-induced lung injury [52]. EVs from interferon
(IFN)-γ-primed human umbilical cord (hUC)-MSCs were more beneficial in E. coli-induced
lung injury in rats than EVs from naïve MSCs [53]. MSCs cultured in hypoxic conditions
displayed more protection in radiation-induced lung injury in mice by promoting MSC
viability and improving their antioxidant capacity [54]. A hypoxic environment promoted
EV release by MSCs and enhanced their potency in suppressing airway inflammation
in asthmatic mice [55]. Hyperthermia increased the efficacy of MSC-driven immune
suppression [56].

Genetic modification of MSCs can be achieved by overexpression or silencing of
specific genes using different knock-in and knock-out technologies including CRISPR
(clustered regularly interspaced short palindromic repeats)/Cas9 gene-editing system,
RNA interference technology, etc. These manipulations could be used to control native
MSC gene expression or introduce foreign genes for specific therapeutic applications (as
reviewed in detail in Varkouhi et al., 2020 [57]).

Our group has shown that overexpression of IL-10 enhanced the efficacy of hUC-
MSCs in E. coli pneumosepsis in rats [58]. However, of note, in acid-primed lung injury
associated with the development of fibrosis, MSC treatment was harmful. Correction of
the microenvironment after acid-primed lung injury or treatment with MSCs carrying the
human IL-10 gene or hepatocyte growth factor (HGF) reversed the detrimental effects of
naïve MSCs [48]. Therefore, the lung microenvironment, disease type, and severity have to
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be taken into account as they affect MSC activation, function, and therapeutic effectiveness
in both acute and chronic lung diseases [59,60].

MSCs have been proven effective in various models of chronic respiratory diseases
too, including Chronic Obstructive Pulmonary Disease (COPD/emphysema) [61–63],
asthma [55], and bronchopulmonary dysplasia (BPD) [64]. Tang et al. [65] found that
human hUC-MSCs could attenuate bleomycin-induced pulmonary fibrosis in mice by
acting on Mϕs, reducing CD206 Mϕ number, and recruiting T-regulatory cells.

Table 1. Preclinical studies (in vitro and in vivo) of MSC treatment in lung conditions.

Preclinical Model Intervention (MSCs/EVs) Outcome Mechanism References

Human-monocyte-
derived Mϕs in

noncontact co-culture
with hMSCs.

Stimulation of co-cultured
cells with LPS or BALF

from patients with ARDS.

MSCs suppressed
pro-inflammatory

cytokine production
by Mϕ.

Increased M2 Mϕmarker
expression and

augmented phagocytic
capacity of Mϕs.

[44] Morrison et al., 2017

MSCs cultured under
different temperatures

in vitro in co-culture with
Mϕ.

hBM-MSCs and Mϕ.

MSCs cultured at higher
temperatures induce more

IL-10 and less TNFα
production in Mϕs

(M2-like phenotype).

Nuclear translocation of
HSF-1 and induction of

COX2/PGE2 pathways by
hyperthermia in MSCs
promoted M2-like Mϕ

phenotype change.

[56] McClain-
Caldwell et al.,

2018

Polymicrobial
sepsis-induced lung injury

in mice and in vitro.

Murine MSCs or
MSC-conditioned media.

Attenuation of sepsis and
TNF-induced miR-

193b-5p upregulation.

miR-193b-5p was
decreased by MSCs while
its target gene OCLN was
increased in lungs from
septic mice and in vitro.

[51] DosSantos et al., 2022

Escherichia coli (E.
coli)-induced ARDS

in rats.
hUC-MSCs and

hBM-MSCs.

Improved animal survival,
systemic oxygenation, and
lung compliance by both

hUC- and BM-MSCs.

Decrease in
pro-inflammatory
cytokines in BALF,

increase in IL-10, and ROS
reduction in lung tissue.

[43] Curley et al., 2017

LPS-induced ALI in mice.
Adoptive transfer of

AMϕs pretreated with
hMSC-derived EVs.

Reduced inflammation
and lung injury in

LPS mice.

Mϕ changes induced by
mitochondrial transfer

from EVs to AMϕs during
pretreatment.

[44] Morrison et al., 2017

LPS-induced ALI in mice. MSC-EVs derived from
young and aging MSCs.

Young MSC-EVs
alleviated LPS-ALI, while
aging MSC-EVs did not.

Aging MSC-EVs failed to
be internalized and did

not induce Mϕ
phenotypic change.

[45] Huang et al., 2019

LPS-induced ALI in mice. MSC-EVs. EVs reduce lung injury.
Restoration of

mitochondrial respiration
in the lung tissue.

[46] Dutra Silva 2021

Ventilator-induced ALI
in rats.

Rodent BM-MSCs or their
secretome.

Restored systemic
oxygenation, lung

function, and structure by
both MSCs and their

secretome.

Decreased lung
inflammation (TNFα,

IL-6), and increase in IL-10;
role of KGF in lung repair.

[47] Curley et al., 2012

Ventilator-induced ALI
in mice. Murine BM-MSCs. Lungs were protected

from injury.

Improved lung function
and reduced oxidative
stress and collagen-1

expression.

[48] Islam et al., 2019

Ventilator-induced ALI
in rats.

Rodent BM-MSCs or
their secretome.

MSCs were more effective
in reducing lung injury
than their secretome.

Improved oxygenation;
reduction in lung edema,

alveolar inflammation,
and IL-6 levels.

[49] Hayes et al., 2015

Polymicrobial
sepsis-induced lung injury

in mice.
Murine MSCs.

MicroRNA (miRNA) and
transcriptome analysis of

septic mouse lungs
showed that MSCs
induced a shift in

transcription profiles
favoring reconstitution of

‘sham-like’
expression patterns.

MSCs downregulated
miR-27a-5p and

upregulated its target gene
VAV3 in septic lungs.

[50] Younes et al., 2020

Ventilator-induced ALI
in rats.

hBM-MSCs, naïve and
cytokine-pre-activated

(with IL-1β,
TNF-α, IFN-γ).

Cytokine pre-activation
enhanced the capacity of

MSCs to promote
injury resolution.

Mechanism dependent on
KGF secreted by MSCs. [52] Horie et al., 2020
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Table 1. Cont.

Preclinical Model Intervention (MSCs/EVs) Outcome Mechanism References

Radiation-induced
pneumonia and late

fibrosis in mice.

Murine BM-MSCs
cultured in normoxic and

hypoxic environment.

Therapeutic effect of
MSCs exposed to hypoxia

was more pronounced
compared to MSCs

exposed to normoxia.

Hypoxia-treated MSCs
were more viable and
resistant to hypoxia

decreasing oxidative stress
in lungs by HIF1-α.

[54] Li et al., 2017

Chronic asthma mouse
model—challenged with

ovalbumin (OVA).

hUC-MSCs-derived EVs
from MSCs cultured in

normoxic (Nor-EVs)
and hypoxic

(Hypo-EVs) conditions.

Hypo-EVs were more
effective than Nor-EVs in

attenuation of
chronic asthma.

TGFβ1 pathway was
decreased and miR-146-5p
increased. The effect was

more pronounced if
Hypo-EVs were used.

[55] Dong et al., 2021

E. coli-induced pneumonia
in rats.

EVs from naïve or
interferon (IFN)-γ-primed

hUC-MSCs.

EVs from IFN-γ-primed
hUC-MSCs more

effectively attenuated lung
injury than EVs from

naïve MSCs.

Enhancements of Mϕ
phagocytosis and
bacterial killing.

[53] Varkouhi et al., 2019

E. coli-induced ARDS.
Naïve and IL-10
over-expressing

hUC-MSCs.

IL-10-UC-MSCs were
more efficient in

decreasing structural lung
injury compared to naïve

UC-MSC or
vehicle therapy.

AMϕs from naïve and
especially from

IL-10-UC-MSC-treated
rats enhanced Mϕ

phagocytosis via increased
Mϕ HO-1, an effect

blocked by PGE2 and
LXA4 inhibition.

[58] Jerkic et al., 2019

Acid-primed lung injury
in mice.

Murine BM-MSCs,
environment correction, or

MSC-carrying human
IL-10 or HGF gene.

MSCs worsened
acid-primed lung injuries
associated with fibrosis
and high levels of ROS

and IL-6.

Correction of oxidative
stress with GPx-1, or
treatment with MSCs
carrying IL-10 or HGF

after injury reversed the
detrimental effects of

naïve MSCs.

[48] Islam et al., 2019

COPD rat cigarette
smoke model. hUC-MSCs and hUC-EVs.

Both transplantation of
hUC-MSCs and

application of EVs
reduced lung

inflammation and
ameliorated the loss of

alveolar septa and
their thickening.

Both hUC-MSCs and EVs
decreased mononuclear
infiltration and reduced

the levels of NF-κB
subunit p65 in
COPD lungs.

[63] Ridzuan et al., 2021

Hyperoxia-induced
bronchopulmonary

dysplasia (BPD) in rats.
hUC-MSC-EVs.

EVs ameliorated the
impaired alveolarization

and pulmonary artery
remodeling.

MSC-EV prevented
hyperoxia-induced

reduction in
CD163-positive (M2-like)
Mϕ both in alveolar and
interstitial compartment.

[64] Porzionato et al., 2021

Mouse-bleomycin-
induced

pulmonary fibrosis.
hUC-MSCs.

MSCs attenuated
pulmonary fibrosis and
promoted lung repair by

interacting with Mϕs.

Mϕs interferon-sensitive
sub-cluster induced by
MSC infusion caused

T-regulatory cell
recruitment by CXCL9/10.

Number of CD206 Mϕs
involved in fibrosis

was reduced.

[65] Tang et al., 2021

Regardless of whether MSCs or their derivatives were used in the studies, their
interplay with monocytes/macrophages is a key mechanism of therapeutic benefits [66,67].
As summarized in Table 1, most studies found Mϕ involvement in the beneficial effects of
MSCs in lung injury or described a role for alveolar IL-10 increase in the effect. It should be
noted that IL-10 secretion mainly originates from Mϕs or neutrophils and is involved in
Mϕ polarization towards an M2-like phenotype [68,69].

Co-culture experiments provide direct evidence for a role of MSC/Mϕ interaction.
MSCs were shown to enhance Mϕ phagocytic [70,71] and anti-inflammatory capacity [72].
Moreover, MSC-derived exosomes inhibited M1 and promoted M2 polarization in LPS-
stimulated Mϕs [73], and MSCs primed with Mϕ-derived conditioned media exhibited en-
hanced immunomodulatory potential [74]. Further evidence for a key role of the MSC/Mϕ
interaction was obtained in in vivo lung disease models. Specifically, systemic Mϕ de-
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pletion experiments showed that both monocyte recruitment to the lungs and MSC/Mϕ
interaction are crucial for the favorable MSC effects in pulmonary diseases. Selective AMϕs
depletion reversed the therapeutic benefits of MSC treatment in a mouse model of allergic
asthma [75] and in an E. coli ARDS mouse model [70]. Treatment of mice with BM-MSCs
prevented the development of obliterative bronchiolitis after tracheal allografts, and this
effect was eliminated by systemic depletion of Mϕs [76]. Systematic depletion of Mϕs also
weakened the therapeutic effect of MSC-derived exosomes or MSCs in mouse models of
severe asthma [73] and allergic airway inflammation [77], respectively.

While the general role of the MSC/Mϕ interaction is now well documented, the details
of this interplay remain poorly defined. A better understanding of this crucial interaction
is essential since the therapeutic efficacy of MSCs in ARDS and other lung diseases remains
unproven. More mechanistic insights into the MSC/pulmonary Mϕ interaction will be
needed for the optimization and personalization of MSCs in respiratory diseases.

4. Crosstalk between MSCs and Mϕs—Mechanisms of Action

The MSC-Mϕ crosstalk is now known to affect both cell types. Several mechanisms
have been implicated as a vital mediator of these effects (see Figure 2). Most studies point
out that administering live MSCs is much more effective therapeutically, although some
studies have shown immunomodulatory effects and benefits of apoptotic MSCs instilled
into septic animals [78,79]. Thus, improving MSC viability was seen as an important factor
in augmenting cell efficacy in clinical trials for moderate to severe ARDS [80] precisely
because the MSC-Mϕ dyad is the key for the full spectrum of MSC action [66,81–83].
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4.1. Contact-Dependent MSC-Mϕ Interaction
4.1.1. Receptor-Dependent Interaction

Many studies found a bidirectional effect of direct MSC-Mϕ contact, affecting both
cell types, that is important for the beneficial effects. Direct contact between MSCs and
pro-inflammatory Mϕs has been shown to reinforce tumor necrosis factor-stimulated
gene-6 (TSG-6) production by MSCs, further promoting Mϕs switching to an M2-like
phenotype and suppressing T cell proliferation [84], and to lead to upregulation of CD200.
Interaction with CD200R on Mϕs in turn facilitated the reprogramming of Mϕs towards
an anti-inflammatory phenotype [84].

4.1.2. Microtubular Network

Recent studies have shown that the transfer of MSC extracellular vesicles (EVs) and
mitochondria (Mt) to Mϕs could happen via a tunneling nanotubule formation that estab-
lished direct MSC-Mϕ contact [70,85].

Mitochondrial transfer to injured cells [86] or Mϕs through nanotubes seems to be
facilitated by mitochondrial Rho-GTPases [87,88] enhancing cell oxidative phosphorylation
and Mϕ phagocytosis in in vitro and in vivo models of ARDS [70,85,89].

4.2. MSCs and Mϕ Secretome—Paracrine-Mediated Mechanisms

The majority of evidence to date supports the notion that the effects of MSCs on Mϕs
or donor cells are largely paracrine, i.e., through secreted factors [90].

The MSC/Mϕ secretome (Table 2) consists of proteins (cytokines, chemokines, etc.),
nucleic acids, lipids, and EVs that act as bioactive molecules involved in MSC/Mϕ crosstalk.
Moreover, these factors may mimic therapeutic effects of MSC transplantation [90,91].

Table 2. Key factors secreted by M1-like and M2-like Mϕs and MSCs alone and the effects of MSC-Mϕ
interaction on secreted factors.

M1-like Mϕs M2-like Mϕs MSCs
MSC-Mϕ Interaction

MSCs * Mϕ

IL-1α, Il-1β [92,93]
IL-6, 12, 23 [69,92,94]
TNF-α [92–94]
CCL-2, 8, 10, 15, 19, 20
[66,90,92]
CXCL-9, 10, 11, 16, 17
[95,96]
ROS (by Nox-2), NO
(by iNOS), [92,94,97,98]

IL-4,10, 13 [77,92,93]
CCL-1, 17, 18, 22, 24
[92,95,99]
CXCL-13 [100]
CXCL-12 [101]
TGF-β [94,95,102]
SDF-1 and VEGF
[103,104]
Arg-1 [23,92]
HO-1 [98]

CCL-1-2, 4-5 [66]
CXCL-8, 10, 12 [66,105]
KGF [47,105]
INDO [106], TSG-6
[107]
Ang-1, VEGF, HGF,
IGF-1 [105,108–110]
EVs, Mt, MiRs
[53,111–113]

CCL-2, 5, 7 [66,114]
CXCL-8-12 [66]
KGF [52,105,115,116]
NO, TGFβ [34,117]
INDO, TSG-6
[107,118,119]
Ang-1, VEGF, HGF,
IGF-1 [108–110,120,121]
COX-2/PGE2, LXA4
[34,97,122–124]
Rv-D1, Rv-E1, E2,
Protectins [125]
EVs, Mt, MiRs
[51,53,91,113,126–132]

↑ M2 Mϕ and their ILs
(by STAT 3,6, PPARγδ
[30,56,95]
↓ M1 Mϕ and their ILs
[109,133]
HO-1, antioxidants
[34,134]
IL-10 [32,123]
TGF-β [32,95,132]
Arg-1 [92,135]

* MSCs secrete mostly the same factors with or without Mϕs; however, interaction with Mϕs increases the quantity
of these secreted factors; ↑ upregulation; ↓ downregulation.

4.2.1. Role of Cytokines, the COX/PGE2/EP4 Axis, Heme Oxygenase, and Chemokines in
MSC-Mϕ Interaction

Several secreted factors were shown to play key roles in MSC/Mϕ interplay, including
cytokines and chemokines that are important mediators in inflammation [117].

Cytokines

IL-6, produced by MSCs and present in the inflammatory environment, is a very impor-
tant regulator of Mϕ polarization toward an IL-10-producing M2-like phenotype. This polar-
ization is initiated by MSC/Mϕ cell–cell contact and is also dependent on other factors secreted
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by MSCs, including the antibacterial molecule indoleamine (INDO) [136] and keratinocyte
growth factor (KGF) [47]. The ability of MSCs to favor the emergence of CD4+CD25+FoxP3+

regulatory T cells (T-regs) [137] also affects Mϕ polarization. Importantly, activated MSCs
secrete TSG-6 that interacts with CD44 on resident Mϕs and decreases the secretion of pro-
inflammatory factors by reducing TLR2/NFκ-B signaling [118,138,139].

COX/PGE2/EP4 Axis

The secretion of prostaglandin (PG)E2 by MSCs serves as a crucial regulator of
MSC/Mϕ interaction controlling inflammation and tissue homeostasis, repair, and re-
generation [124].

PGE2 is derived from arachidonic acid by cyclooxygenase synthases (constitutively
active COX1 and inducible COX2) and PGE synthases [140]. The studies by Németh and col-
leagues [123] have revealed that BM-MSCs, especially if activated by LPS or TNF-α, release
PGE2 that acts on the Mϕs through PG receptors (EP2 and EP4) triggering IL-10 secretion.
The role of PGE2 and the mechanism involving IL-6 and IL-10 was later confirmed and elab-
orated by many other groups in a variety of injury and disease models [122,133,141–143].

Heat shock factor 1 (HSF1) translocation into the nucleus of MSCs was also shown to
induce the COX2/PGE2 pathway and MSC-directed immune suppression [56]. Moreover,
Nox-2-dependent ROS production was crucial for Mϕ bacterial killing and dependent on
PGE2 and phosphatidylinositol 3 (PI3)-kinase [97].

Growth Factors and HO-1

TGF-β secreted by MSCs skewed LPS-stimulated Mϕ polarization towards the M2-like
phenotype and improved Mϕ phagocytic ability via the Akt/FoxO1 pathway [5].

Naïve UC-MSCs increase HO-1 expression and phagocytic capabilities in hMϕs. This
effect is augmented by transfection of MSCs with IL-10 and is abolished by PGE2 and
lipoxygenase A4 blockade. This mechanism was also verified in a co-culture of MSCs and
Mϕs isolated from rat lungs with induced E. coli pneumosepsis [58] and from the peritoneal
cavity of septic rats [34].

Vascular growth factor (VEGF) and angiopoietin-1 (Ang-1), secreted by MSCs or
present on MSC-EVs in the form of mRNA, have been found to be important not only
for the restoration of vascular stability but also for the repair of acute lung injury [109] or
resolution of allergic asthma in mice [108] through Mϕ immunomodulation.

Chemokines

Chemokines also play a prominent role as a nexus between MSCs and Mϕs [66]. MSC-
derived CCL-2 acts as Mϕ and monocyte chemoattractant protein (MCP-1). This chemokine
forms a heterodimer with MSC-derived CXCL-12 and triggers Mϕ IL-10 production and
M2-like Mϕ polarization. Consequently, CCL-2-null MSCs lose their anti-inflammatory
potential [83]. Furthermore, IFN-γ upregulates CCL2 expression in MSCs; therefore, CCL2-
deficient MSCs were ineffective when administered into IFN-γ- or IFN-γ receptor-deficient
recipients or failed to suppress allergen-induced lung inflammation [77]. Other chemokines
in tandem with CCL-2 could increase Mϕ anti-inflammatory potential including stromal-
derived factor-1 (SDF-1 or CXCL12) [105,144], CCL4 (MIP-1β), and CCL5 (RANTES) [145].
The role of these chemokines is summarized in a comprehensive review by Galipeau [66].

4.2.2. Role of MSC-Derived Extracellular Vesicles (EVs), mRNA, MicroRNA, and
Mitochondrial Transfer in Immunomodulation through Mϕs

MSCs have been known to release EVs that contain a variety of cargos including endo-
somal and plasma membrane, intracellular organelles (e.g., mitochondria—Mt), cytokines,
growth factors, signaling lipids, mRNAs, and regulatory miRNAs [146]. EVs released by
MSCs might be as effective in therapy as whole MSCs. Thus, MSC-EVs represent an appeal-
ing option for cell-free regenerative medicine [147] as their content could be delivered to
immune cells present in an inflammatory environment (M1-like Mϕs, dendritic, CD4+Th1,
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and Th17 cells), promoting their phenotypic switch into immunosuppressive M2-like Mϕs,
tolerogenic DCs, and regulatory T cells [91]. Moreover, EVs could be exploited as attractive
tools for diagnostic and therapeutic agent delivery [148]. A meta-analysis screening 52 arti-
cles [149] demonstrates the clear potential of MSC-EVs as a therapeutic tool for acute and
chronic lung diseases in particular. MSC-EVs or exosomes are already being used in a few
dozen clinical trials in [150] and [151], including in some COVID-19 pneumonia trials.

Several studies demonstrated that the mechanism of the beneficial effects of MSC-EVs
are executed, at least in part, through their interaction with Mϕ.

An in vitro co-culture of MSCs with Mϕs enhanced their M2-like polarization mainly
through MSC-derived exosomes [126,152]. Infusing MSCs lacking exosomes led to a lower
number of M2-like Mϕs in vivo. Further, the hyperoxia-induced reduction in CD163-
positive Mϕs was prevented by MSC-EVs in a rat model of bronchopulmonary dyspla-
sia [64]. In an ALI E. coli endotoxin mouse model, instilled MSC-EVs reduced pulmonary
edema and lung inflammation by decreasing Mϕ inflammatory protein-2 levels in the BAL
fluid [153].

A co-culture of MSCs or MSC-EVs with regulatory Mϕs (M2b subset) amplified the
pro-resolving properties of Mϕs [154], while EVs from (IFN)-γ-primed MSCs were more
efficient than ones from naïve MSCs in enhancing Mϕ phagocytosis [53].

Exciting data suggest that mitochondrial transfer from MSC-EVs to recipient cells,
including Mϕs, is an important mechanism for enhancing Mϕ anti-inflammatory and
regenerative capacity in injury and inflammation. Using a co-culture system consisting
of MSCs and Mϕs, Yuan et al. [155] showed that MSC-derived Mt were transferred into
Mϕs, which contributed to their M2 polarization. The beneficial outcome of ALI in mice
subjected to the adoptive transfer of AMϕs pretreated with MSC-EVs was dependent on
EV-mediated mitochondrial transfer [44].

In addition to the above-described cargo, different MSC-MV-derived microRNAs were
also found to be important mediators in Mϕ switching towards an M2-like phenotype,
including miR-223 [126] and miR-182 [152]. The alleviation of ARDS in mice was found to
be mediated by miR181 [156] while miR-466 contributed to MSC-EV-induced improvement
in a multidrug-resistant pseudomonas aeruginosa pneumonia mouse model [157].

Combined, these studies provide evidence that EVs and their cargo are indeed key
mediators of the effects of MSCs. An improved understanding of the role of the EV cargo
will be a key aspect of improving the design of MSC therapy.

4.3. Role of Autophagy, Mitophagy, and Oxidative Stress in MSC-Mϕ Interplay

Autophagy, the main cellular mechanism for degrading and recycling intracellular
proteins and organelles, plays an important role in maintaining bioenergetic homeostasis
in health and disease and may contribute to the therapeutic action of MSCs [158]. The
modulation of autophagy may also change Mϕ efficiency and polarization. Indeed, BM-
MSCs were shown to exert beneficial effects in a mouse model of sepsis acting primarily by
enhancing mitophagy in Mϕs and decreasing mitochondrial ROS, thus inhibiting NLRP3
inflammasome activation [159]. The activation of autophagy, HO-1, and mitochondrial
biogenesis occurs after MSC exposure to Mt isolated from somatic cells. During tissue
injury, MSCs are prompted by Mt released from damaged cells to donate Mt to injured
cells, thereby enhancing tissue reparation [129].

Oxidative stress, frequently present in inflamed and damaged tissue, is also known to
activate autophagic processes [160,161]. BM-MSCs are able to modulate autophagy in Mϕs
through the PI3K/Akt/HO-1 signaling pathway [162] and protect rats against liver I/R
injury via the promotion of HO-1-mediated autophagy [136].

In an MSC-Mϕ co-culture system and mouse model of silicosis [163], MSCs reduced
intracellular oxidative stress. This was attributed to targeting depolarized Mt and releas-
ing MVs containing entire Mt selected for mitophagy, lysosomes, and several miRNAs
(especially miR451a). The vesicles formed by this process are then engulfed and reutilized
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by Mϕs causing the repression of TLR and NF-κB signaling in Mϕs and decreasing the
production of inflammatory and pro-fibrotic mediators.

MSC/Mϕ bidirectional communication plays a pivotal role in promoting the regen-
eration and recovery of injured lungs. In the environment of damaged lungs, Mϕs are
activated (M1-like phenotype), secreting, among others, pro-inflammatory cytokines (TNF-
α, IL-1α, IL-1β, IL-6) [92,93], chemokines (CCL2, CCL8, CXCL-9, CXCL-10) [66,90,92],
ROS, and NO [97,98,123]. These factors trigger the COX-2 pathway in MSCs which pro-
duces PGE2 [97,123,124], resolvins (Rv-D1, Rv-E1, Rv-E2), protectins [125], and lipoxins
(LXA4) [34] which are actively involved in lung reparation [164]. These factors also trigger
IL-10 secretion from M1-like Mϕs, enhance their phagocytic properties, and induce the
switch towards M2-like anti-inflammatory Mϕs [90,93]. M2-like Mϕs are characterized
by the expression of CD163, CD206, and FIZZ1 [92]. CD200 [84] and TGS-6 [118] secreted
by MSCs act on Mϕ receptors (CD44 and CD200R) promoting polarization to the M2-like
phenotype. They also inhibit T cell proliferation favoring T-regs that assist in restoring
immune homeostasis. Anti-inflammatory molecules KGF [47,52,105,116] and INDO [107]
secreted by MSCs have direct antibacterial effects but also promote Mϕ activation and
phagocytosis [165] and regulate Mϕ recruitment and polarization [115,166]. Direct con-
tact between MSCs and Mϕs [84] and nanotube formation allow the direct transfer of
MSC-derived MVs [146,163] and Mt from the MSCs to Mϕs to enhance Mϕ phagocyto-
sis [119]. EVs released by MSCs [53,91,112,113,126,127,130,131] and their cargo of proteins,
miRNA [51,157], and cellular compartments, including Mt [155], might be as effective as
whole MSCs as therapeutics.

5. Therapeutic Potential of MSC-Mϕ Interaction and Lung Injury Resolution

The MSC-Mϕ interplay has a pivotal role in lung injury combating inflammation
and promoting injury resolution [66,71,72,95,111,167]. For tissue recovery, crucial effects
include the dampening of inflammation, release of IL-10 by Mϕs, and favourable effects
of eicosapentaenoic acid (EPA) and its derivatives, resolvins (Rv- D1, E1, and E2) and
protectins secreted by MSCs [125]. EPA also gives rise to eicosanoids and their metabolites
PGE2 and lipoxin A4 in MSCs [58,97,123]. These are key for IL-10 induction and enhanced
Mϕ phagocytosis, contributing to the resolution of inflammation and tissue recovery. EPA
pre-conditioning of MSCs further reduces sepsis-induced lung injury and leads to faster
recovery [125].

5.1. Reparatory Potential of MSC-Mϕ Interaction in Chronic Lung Diseases

The reparative effect of MSCs and MSC-Mϕ interaction allowed their use not only
in acute but also in chronic lung injury [61,62,149,168,169], as mentioned before. MSCs or
their secreted factors and EVs were found to be beneficial in many models of chronic lung
injury including in allergic, ragweed, or ovalbumin-induced asthma models [55,170,171].
In asthmatic mice, TGF-β production by MSCs increased the presence of regulatory Mϕs
and T cells, which helped restore cytokine balance and prevented harmful allergic re-
sponses [172,173]. In bronchopulmonary dysplasia (BPD) mouse models, MSC-EVs re-
duced lung injuries partly by increasing M2-like interstitial/alveolar Mϕ polarization and
their anti-inflammatory and anti-proliferative action [64,130]. In COPD, MSCs act by atten-
uating the airway infiltration of neutrophils and Mϕs, leading to decreased production of
IL-1β and IL-6 while increasing IL-10 and the levels of growth factors (VEGF, HGF, EGF,
TGF-β), therefore boosting tissue repair [63]. Similarly, in models for idiopathic pulmonary
fibrosis (IPF), MSCs or MSC-derived EVs could attenuate lung fibrosis by acting on Mϕs
by promoting ATII cell proliferation and by inhibiting lung fibroblast proliferation [65,131].
MSC-derived EVs were also able to prevent or reverse lung fibrosis in bleomycin-treated
mice by modulating pulmonary Mϕ phenotypes, shifting them to an immunoregulatory
and anti-inflammatory phenotype [131].

However, collecting more data on the mechanisms of MSC action and MSC-Mϕ inter-
action in clinical studies and particularly in chronic lung disease is imperative. Randomized
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controlled trials with large cohorts of patients and with a mechanistic approach are needed.
Clinical trials in IPF, asthma, silicosis, and COPD conducted so far are mainly oriented to
assessing the safety of the treatment, with single or two MSC doses and mostly focused on
the short-term effects of therapy [62,174–177].

Despite the encouraging results from these studies, special attention needs to be paid
to the possibility of worsening lung function and fibrosis caused by the administration of
MSC in the chronic stage of IPF [178].

5.2. Clinical Studies

MSCs are being tested in clinical trials in critically ill patients with sepsis, ARDS,
COVID-19 pneumonia, ARDS with malignances, pulmonary emphysema, pulmonary arte-
rial hypertension, aplastic anemia, cancer, and liver cirrhosis, as well as for the prevention
of graft vs. host disease (GVHD), etc. The treatments assessed involve autologous or
allogeneic BM-MSCs, umbilical cord MSCs, or exosomes derived from MSCs. Moreover,
allogeneic MSCs are also safely used in some clinical studies including trials for pulmonary
emphysema and patients with COVID-19 ARDS.

These clinical studies use MSCs or MSC-EVs in lung injury treatment [179], most
frequently in ARDS [80,180,181] including SARS-CoV-2 infection (Table 3).

5.3. MSC-Mϕ Interaction in COVID-19—More Studies Are Needed

In addition to the above described effects, antiviral properties have also been attributed
to MSCs and MSC-EVs. MSCs could inhibit virus replication and shedding through IDO
and LL37 secretion and improve influenza-induced viral pneumonia and ARDS due to anti-
inflammatory and reparative potential, partly through the interaction with Mϕ [182,183].

SARS-CoV2 enters cells, including alveolar epithelial and lung capillary endothelial
cells, through the widely expressed angiotensin-converting enzyme 2 (ACE2) receptor [184].
MSCs are ACE2-negative, and therefore they are resistant to SARS-CoV-2 infection and
retain their immunomodulatory activities when encountering the virus [185,186]. This
important feature favors MSC therapeutic use in COVID-19 [187]. Interaction with innate
immune cells, especially Mϕs, and molecules secreted by MSCs and Mϕs, described above,
could dampen immune hyper-activation in SARS-CoV-2 infection. Further, MSCs also
have anti-fibrotic and lung reparatory effects [188]. Thus, MSCs or MSC-derived EVs could
be used in a potential supportive and/or curative strategy for COVID-19, especially in
critically ill patients [127,186,189]. So far, dozens of clinical trials have been performed
in COVID-19 patients with severe disease [190]. Since most of these are still ongoing,
limited preliminary data are available [189]. The results so far from studies registered on
the US ClinicalTrials.gov page (Table 3) are promising, showing the absence of adverse
effects in COVID-19 patients treated with MSCs or MSC-EVs [191–193], reduced expression
of pro-inflammatory cytokines [194], and improved recovery time [195]. Some studies
from non-US goverment pages (China, Iran) showed an increase in IL-10 expression with
improved lung function outcomes [196] and, mortality, as well as positive effects on chest
imaging results [197] and oxygen saturation in the MSC-treated COVID-19 group [195,198].

Table 3. Randomized controlled trials of MSC therapy in severe ARDS (including ARDS caused
by COVID-19).

Study Type/Patient Cohort Intervention Outcomes Measured
and Results Reference/Trial Number

Phase 1
moderate–severe ARDS

12 patients (pts).

Adipose MSCs—allogeneic
1x i.v. -1 million cells/kg

or placebo.

No cell toxicity or SAEs. No
improvement in length of hospital

stay or ventilator-free days or
change in biomarkers.

[199] Zheng et al., 2014
NCT01902082

Phase 1 (STAR)
9 (pts.);

moderate-to-severe ARDS.

BM-MSCs—allogeneic 1x i.v.:
1, 5, or 10 million cells/kg (3

pt./each dose).

Safety trial: single dose of
allogeneic BM-MSCs was safe and

well tolerated.

[180] Wilson et al., 2015
NCT01775774
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Table 3. Cont.

Study Type/Patient Cohort Intervention Outcomes Measured
and Results Reference/Trial Number

Phase 2a (STAR)
Moderate–severe ARDS

60 ventilated pts.

BM-MSCs allogeneic—1x i.v.:
2:1 either 10 million/kg of MSCs

or placebo.

28-day mortality did not differ
after adjustments for APACHE

III score.

[80] Matthay et al., 2019
NCT02097641

Nested cohort within a phase 2a
(STAR); moderate–severe ARDS

27 pts.

BM-MSCs—allogeneic 1x i.v.:
10 million/kg, n = 17 pts,
and placebo, n = 10 pts.

MSC treatment significantly
reduced airspace total protein,
Ang-2, IL-6, and soluble TNF

receptor-1 concentrations.

[181] Wick et al., 2021
NCT02097641

Phase 1/2a
COVID-19 ARDS

24 pts (1:1).

UC-MSCs—2x i.v. (100 million
cells/infusion) + heparin; placebo

vehicle + heparin.

No AEs and SAEs with cell
treatment; improvement of
patient survival and time

to recovery.

[195] Lanzoni et al., 2021
NCT04355728

Phase 1
COVID-19 with mild–severe

ARDS (REALIST)
9 pts.

UC-MSCs-CD362 (Syndecan-2)
enriched (ORBCEL-3)—1x i.v.:

100, 200, or 400 million
cells/infusion (3 pts/each dose).

Well tolerated and no
dose-limiting toxicity. Safe to

proceed to Phase 2 trial.

[192] Gorman et al., 2021
NCT03042143

Phase 1/2a
COVID-19; critically ill

40 pts (1:1).

UC-MSCs + standard care
(Oseltamivir and

Azithromycin)—1x i.v. 1 million
cells/kg or

placebo + standard care.

Improved survival rate,
no changes in ICU stay

or ventilator use, and no AEs.
IL-6 reduced

[194] Dilogo et al., 2021
NCT04457609

Phase 2
COVID-19 with severe ARDS

100 pts, (2:1).
UC-MSCs—3x i.v. (40 million

cells/infusion) or placebo.

Improvement in whole-lung
lesion volume and no

difference in SAEs.

[191] Shi et al., 2021
NCT04288102

Phase2b
COVID-19 with

mild–severe ARDS
45 pts.

UC-MSCs—3x i.v. 1 million/kg =
21 pts,

or placebo = 24 pts.

No SAEs associated with repeated
cell infusions. PaO2/FiO2 changes
did not differ between the groups.

[193] Monsel et al., 2022
NCT04333368

6. Discussion and Conclusions

The overall objective of this review was to provide an overview of up-to-date knowl-
edge of MSC-Mϕ crosstalk and its importance in acute and chronic pulmonary disease
treatment and resolution of lung injury. The beneficial effects are thought to be due to
bidirectional MSC-Mϕ communication, which is attributed to direct contact, soluble factor
secretion/activation, and organelle transfer. Further, MSC-derived EVs represent an ap-
pealing option for cell-free regenerative medicine. Their delivery in a pro-inflammatory
environment dominated by M1-like Mϕs could promote Mϕ transition towards immuno-
suppressive and pro-reparatory M2-like cells. Moreover, EVs could be used as an attractive
tool for diagnostic and therapeutic agent delivery.

It is important to note that the outcome of the MSC-Mϕ interaction depends on many
factors, and the final outcome is not always beneficial. The environment, disease stage,
and other components of innate and adaptive immunity could all influence the MSC-Mϕ
interplay and its consequences. More research is clearly needed to define these factors in
specific diseases and disease stages and to make this interaction predictable and modifiable,
assuring favorable outcomes.

Importantly, the clinical use of MSCs is still restricted, and clinical trials conducted so
far have mainly investigated the safety of MSC-based therapy in acute and chronic lung
diseases and in patients with diseases resistant to other therapeutic options. This clearly
precludes the immediate use of MSCs in lung diseases, even though novel therapeutic
approaches are desperately needed. More critically, there is no effective treatment for
ARDS, a condition that develops and progresses rapidly and has high mortality [200]. For
this reason, most of the clinical studies exploring the use of MSCs or their derivatives
are conducted in ARDS patients [200,201]. However, these studies were carried out with
a relatively small number of enrolled patients. Therefore, large-scale clinical trials are
lacking. The manipulation of MSC-Mϕ interaction described in this review represents an
attractive option for the improvement of MSC efficacy in the treatment of lung diseases.
However, more detailed studies are needed. These should include cytokine measurements
and the isolation of monocytes and Mϕ from plasma, BALF, and patient lung biopsies
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to characterize Mϕ phenotype, phagocytic properties, and secretion profiles. Moreover,
since the effect of MSCs depends on the microenvironment, a better understanding of
the composition of the microenvironment in lung diseases is paramount for developing
appropriate strategies to control MSC action and MSC-Mϕ crosstalk. Our increasing
knowledge and understanding of the mechanisms of action of MSCs and the MSC-Mϕ
interaction in particular, together with use of cell-free MSC derivatives (conditioned media,
EVs, Mt), could help develop strategies for the effective treatment of lung injury. Ideally,
this should happen in the imminent future as there is a substantial unmet medical need for
efficacious treatment options.
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AEs = adverse effects; ALI = acute lung injury; Ang-1 = angiopoietin-1; Ang-2 = angiopoietin-2;
APACHE score = Acute Physiology, Age, Chronic Health Evaluation score; ARDS = acute respiratory
distress syndrome; CCL and CXCL = chemokine C-C or CXC motif ligand; CCL-2 = MCP1, monocyte
chemoattractant protein 1; cMyc = Cellular Myelocytomatosis Oncogene; COX-2 = Cyclooxygenase-2;
EVs = extracellular vesicles; GM-CSF = granulocyte–macrophage colony-stimulating factor;
GPx-1 = glutathione peroxidase-1; HGF = hepatocyte growth factor; HIF-1α = hypoxia-inducible
factor 1-alpha; HO-1 = hemoxygenase-1; HSF-1 = heat shock factor; IL = interleukin; INDO = in-
doleamine; i.v. = intravenous; KGF = keratinocyte growth factor; KLF 4 = Krüppel-like factor 4;
LX = lipoxin; NF-κB = nuclear factor kappa-light-chain-enhancer of activated B cells; Nrf2 = nuclear
factor erythroid 2-related factor 2; Mt = mitochondria; MiRs = microRNAs; NFκB = nuclear factor
kappa B; NO = nitric oxide; OCLN = the tight junctional protein occludin; PDGF = platelet-derived
growth factor; PGE2 = prostaglandin E2; ROS = reactive oxygen species; PPARs = peroxisome
proliferator-activated receptors; Rv = resolvin; SAEs = serious adverse effects; STAT = signal trans-
ducer and activator of transcription; TGF-beta = transforming growth factor-β; TLR = Toll-like
receptor; TNF alpha = tumor necrosis factor α; TSG-6 = TNF-stimulated gene-6; VEGF = vascular
endothelial growth factor.
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