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Abstract: Ectopic calcification refers to the pathological accumulation of calcium ions in soft tissues
and is often the result of a dysregulated action or disrupted function of proteins involved in extracel-
lular matrix mineralization. While the mouse has traditionally been the go-to model organism for
the study of pathologies associated with abnormal calcium deposition, many mouse mutants often
have exacerbated phenotypes and die prematurely, limiting the understanding of the disease and
the development of effective therapies. Since the mechanisms underlying ectopic calcification share
some analogy with those of bone formation, the zebrafish (Danio rerio)—a well-established model for
studying osteogenesis and mineralogenesis—has recently gained momentum as a model to study
ectopic calcification disorders. In this review, we outline the mechanisms of ectopic mineralization
in zebrafish, provide insights into zebrafish mutants that share phenotypic similarities with human
pathological mineralization disorders, list the compounds capable of rescuing mutant phenotypes,
and describe current methods to induce and characterize ectopic calcification in zebrafish.
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1. Introduction

Calcium is central to human physiology, being a major player in the homeostasis of
mineralized tissues (e.g., bone and teeth), but also of soft tissues, where it is involved in
blood clotting, muscle contraction, nerve function, and regulation of heart rhythm, among
other processes [1,2]. Under pathological conditions, calcium may accumulate in soft tissues
increasing their stiffness and affecting their function [3]. The pathological accumulation
of calcium ions in soft tissues is defined as ectopic calcification and, while all soft tissues
can be affected, vascular and cartilaginous tissues are among those most prone to calcium
deposition leading to a pathological phenotype [4–6].

Ectopic calcification was long thought to be an aging-dependent disorder, but signifi-
cant data has recently come forward indicating that it may also result from dysfunctional
anti-mineralizing proteins [7,8]. In the latter case, circulating calcium in excess may pre-
cipitate, deposit, and accumulate in soft tissues. Deposits become progressively more
crystalline and insoluble, hardening the tissue, and affecting its function [9]. Evidence of
ectopic calcification at a young age is usually associated with a pathological condition, such
as chronic kidney disease or autoimmune diseases [10,11].

Two distinct forms of ectopic calcifications have been described in humans. Metastatic
calcification is characterized by an accumulation of calcium in soft tissues following an
increase in serum levels, while dystrophic calcification results from an accumulation of
calcium at pathologically altered sites [12]. Despite a better understanding of the patholo-
gies behind disorders characterized by ectopic calcification, there is still a lack of efficient
therapies capable of effectively preventing and treating ectopic mineral deposition [13].
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Animal models of ectopic calcification are critical to better understand the disease
pathophysiology and allow the screening of novel therapeutics [4]. While the mouse has
often been the model of choice to investigate the mechanisms of ectopic calcification and
has greatly contributed to a better understanding of calcium-associated pathologies [4,7],
it has some issues that have prevented further advances in this field. When compared
to many single-gene human diseases, loss-of-function mouse models often show exacer-
bated phenotypes and die prematurely, which limits our understanding of the pathological
mechanisms [14,15]. For example, the matrix Gla protein (MGP) is a vitamin K-dependent
protein present in the extracellular matrix and a well-documented inhibitor of ectopic min-
eralization, whose dysfunction is associated with the development of Keutel syndrome [16].
While only a few patients show vascular calcifications, the Mgp null mice die within the first
two months of age due to extensive mineralization of arteries and subsequent rupture [17].

The zebrafish (Danio rerio) has emerged as a valuable model to gain insights into
the mechanisms underlying the development of human diseases as it brings intrinsic ad-
vantages over mammalian models. Among those, it is worth mentioning that (i) a single
breeding event can produce hundreds of embryos for testing, allowing a robust statisti-
cal analysis; (ii) embryos and larvae are optically clear and develop externally, allowing
easy and direct visualization of the developmental process; (iii) amenability to genetic
manipulation and availability of tools for genetic screening and editing; and (iv) a fast
development throughout adulthood, allowing genetic experiments to be performed within
a short period [18,19]. Zebrafish has gained momentum in the last decades for the study
of bone disorders [20]—with tools and methodologies available to assess osteogenic and
mineralogenic effects [21]—and, in the present review, we provide evidence that zebrafish is
also a relevant model to study pathologies associated with tissue calcification. Based on the
analysis of scientific articles referenced in the PubMed database “pubmed.ncbi.nlm.nih.gov
(accessed on 7 December 2022)”, we also outline the current tools, techniques, and mutants
available to gain insights into mechanisms of ectopic calcification and calcium-associated
pathologies, and list compounds with the capacity to rescue mutant phenotypes and con-
tribute to the next-generation therapeutics to prevent or treat ectopic calcification disorders.

2. Zebrafish In Vivo Models to Study Ectopic Mineralization Disorders

The successful modeling of ectopic mineralization disorders in zebrafish implies
the conservation throughout vertebrate evolution of (i) the mechanisms underlying
calcium metabolism, (ii) the sites of calcium-phosphate crystal (predominantly in the
form of hydroxyapatite) deposition, and (iii) a phenotypic response that mimics human
mineralization disorders.

Although calcium intake occurs in the kidney and intestine in mammals and the gills
and yolk skin (during development) in fish, the major principles of calcium transport and
hormonal control were found to be conserved from zebrafish to mammals [22,23]. For
instance, a loss-of-function mutation in zebrafish Trpv6—a calcium channel expressed in the
kidney and intestinal epithelia and central to calcium absorption in humans [24]—generated
a 68% reduction in systemic calcium content and significantly inhibited calcium uptake
in the yolk sac and gills in zebrafish embryos [25]. Similarly, adult zebrafish fed a diet
rich in cholesterol develop lesions in the intimal layer region of the dorsal aorta and show
macrophage infiltration mimicking the development of atherosclerosis and ectopic calcifica-
tion observed in humans [12,13]. Similar pathological outcomes were observed in zebrafish
mutants with impaired production of proteins important for lipid metabolism, such as
the low-density lipoprotein (LDL) receptor [26], the lipoprotein lipase apolipoprotein C2
(APOC2) [27,28], or the cholesterol catabolism liver X receptor (LXR) [29].

Several zebrafish models of Mendelian genetic disorders share phenotypic similarities
with the acquired forms of metastatic and dystrophic calcifications and may serve as
genetically controlled systems to study human calcification disorders. Recent studies on
small teleost fishes have allowed the identification of various genetic factors that contribute
to ectopic calcification; they are further discussed below and summarized in Table 1.

pubmed.ncbi.nlm.nih.gov
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Table 1. Zebrafish mutants to study ectopic mineralization disorders.

Name Gene * Description ZFIN ID Human Disease Reference

enpp1hu4581/hu4581

(dragonfly, dgf )
enpp1

Pyrophosphatase, role in
the

regulation of bone
mineralization

ZDB-GENE-
040724-172

Generalized arterial
calcification of infancy;

Pseudoxanthoma elasticum;
Autosomal recessive

hypophosphatemic rickets

[30]

abcc6ahu4958/hu4958

(gräte, grt)
abcc6a

Transmembrane
transporter, role in the

regulation of bone
mineralization

ZDB-GENE-
050517-18

Generalized arterial
calcification of infancy;

Pseudoxanthoma elasticum
[31–33]

klzf3212/zf3212

sa18644
kl

Anti-aging hormone, role
in the regulation of

mineral homeostasis

ZDB-GENE-
110221-1

Hyperphosphatemic
familial tumoral calcinosis-3 [34,35]

fgf23zf3214/zf3214 fgf23 Growth factor, role in
calcium ion homeostasis

ZDB-GENE-
050201-4

Autosomal recessive
hypophosphatemic rickets;

Hyperphosphatemic
familial tumoral calcinosis-2

[34]

golgb1bsl077/bsl077 golgb1
Membrane trafficking in

protein’s secretory
pathway

ZDB-GENE-
030429-9

Hyperphosphatemic
familial tumoral calcinosis [36,37]

MO2-acvr1l
MO4-acvr1l

zf1073Tg
acvr1l Activin A receptor, type 1 ZDB-GENE-

990415-9
Fibrodysplasia ossificans

progressiva [38,39]

myorg-E2I2-MO
myorg-ATG-MO myorg Putative glycosidase ZDB-GENE-

091113-62
Primary familial brain

calcification [40]

* Gene name and acronym: enpp1, ectonucleotide pyrophosphatase/phosphodiesterase 1; abcc6a, ATP-binding cassette,
sub-family C (CFTR/MRP), member 6a; kl, klotho; fgf23, fibroblast growth factor 23; golgb1, golgin B1; acvr1l, activin A
receptor, type 1 like; myorg, myogenesis regulating glycosidase (putative).

2.1. Models of GACI and PXE

Generalized arterial calcification of infancy (GACI)—caused by mutations in the
gene Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1)—and pseudoxanthoma elas-
ticum (PXE)—caused by mutations in the gene ATP binding cassette subfamily C member 6
(ABCC6)—are rare autosomal recessive genetic disorders associated with arterial and carti-
lage calcification, and ectopic calcifications of elastic fibers, respectively [41,42]. Zebrafish
enpp1 mutants were shown to develop ectopic calcification of the skin, cartilage, heart,
intracranial space, and notochord sheet, independently of osteoblast activity. They also dis-
played higher osteoclast activity at sites of ectopic calcification, and bisphosphonates could
efficiently rescue associated phenotypes [30]. Zebrafish abcc6a mutants showed defects in
vertebral calcification and displayed ectopic calcification in soft tissues [32]. Since Abcc6a
is present in the eyes and heart of the zebrafish, extensive calcification of the ocular sclera
and Bruch’s membrane and a fibrotic heart were also observed in the abcc6a mutants [33].

Vitamin K was proposed to be central to the pathophysiology of GACI and PXE
as patients usually show a reduction in circulating vitamin K, which may be a counter-
measure against pathological mineralization [43]. While the administration of vitamin K
failed to rescue the ectopic calcification phenotype of Abcc6 knockout mice [44], it restored
mineralization levels and lowered the sites of ectopic mineralization in zebrafish abcc6a
mutants [33,43]. Interestingly, treatment with warfarin, a vitamin K antagonist, exacerbated
the ectopic mineralization phenotype in abcc6a zebrafish mutants [43]. Aberrant mineraliza-
tion in PXE pathogenesis is partly due to excessive DNA damage. In this regard, zebrafish
abcc6a mutants treated with minocycline, a DNA damage response inhibitor, had reduced
occurrences of pathological mineralization [45].
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2.2. Models of Chronic Kidney Disease

Chronic kidney disease (CKD) patients are likely to suffer from ectopic calcifications
due to a dysregulated mineral metabolism and pathological alterations in KLOTHO and
Fibroblast Growth Factor (FGF) 23 [46]. Mice deficient for αKlotho or Fgf23 have age-related
disorders, including abnormal mineral regulation and ectopic calcification [47,48]. As both
mutants share similar phenotypes, a link between the two proteins was established, and
αKLOTHO was found to function as a co-receptor of the FGF receptor and to be responsible
for activating and controlling the production of FGF23 [49,50]. αKLOTHO and FGF23
are produced in the kidney and bone tissues, respectively, and both are central to mineral
homeostasis. Changes in their expression are strongly associated with the development
of chronic kidney disease (CKD) [51,52]. Brood stocks of αKlotho and Fgf23 null mice are
difficult to maintain as they die by three months of age; this represents a major bottleneck
in the use of these murine models [47,48].

In zebrafish, αklotho expression is detected in the adult kidney and fgf23 is continuously
expressed in the corpuscles of Stannius, an endocrine gland close to the nephron that
contributes to calcium homeostasis, where Fgf23 is responsible for adjusting and regulating
calcium metabolism [53,54]. As for the mouse mutants, zebrafish mutants for αklotho
and fgf23 have a short lifespan [34]. However, the disease phenotype only occurs at
approximately five months of age, later than in the mouse model (i.e., as soon as one
month of age). Thus, zebrafish mutants can reach adulthood and reproduce, allowing
the maintenance of a mutant brood stock, a major drawback of the mouse model. Both
zebrafish mutants display ectopic calcification of the vessels throughout the body, especially
in the outflow tract of the heart and the bulbus arteriosus, a pathological calcification likely
associated with premature aging, ectopic activation of osteoclast differentiation, and age-
associated vascular calcification [34]. Indeed, in vivo studies using αklotho, fgf23, and
ennp1 zebrafish mutants have consistently shown an increase in osteoclast activity around
mineralized soft tissues, hinting at the existence of osteoclasts that develop as a response to
ectopic calcifications [30,34,55,56].

2.3. Model of Primary Familial Brain Calcification

Primary familial brain calcification (PFBC) is a rare progressive neurodegenerative
disorder characterized by bilateral brain calcifications and associated with symptoms of
dementia, Parkinsonism, and dystonia [57,58]. In 2018, mutations in the gene Myogen-
esis regulating glycosidase (MYORG) have been linked to the development of autosomal
recessive PFBC [59,60]. The central role of Myorg in the disease was confirmed by the
observation of irregular bilateral brain calcifications in Myorg knockout mice at nine months
of age [58]. Because the development of PFBC in the murine model requires a long period
of time, alternative solutions were pursued, and zebrafish provided a timelier model. Ze-
brafish larvae where myorg expression was knocked-down using morpholinos (Table 1)
exhibited multiple calcifications in the brain already at two days post-fertilization [60],
demonstrating the suitability of zebrafish morphants over mouse mutants.

2.4. Other Models That Remain to Be Assessed

Mutations in the genes golgin b1 (golgb1) and activin A receptor, type 1 like (acvr1l)
have been associated with the development of hyperphosphatemic familial tumoral cal-
cinosis (HFTC) [37] and fibrodysplasia ossificans progressiva (FOP) [39]—rare disorders
associated with the development of ectopic calcification [61,62]. While there is no data
showing that zebrafish mutants for golgin b1 and acvr1l develop ectopic calcification, it is
unknown whether these fish simply failed to do so, or it was not observed or reported as
it was not the focus of these studies. So far, mutations in the zebrafish orthologs of many
single-gene human diseases—associated with ectopic mineralization disorders—faithfully
mimicked disease phenotype and show pathological calcium deposition. Therefore, it
is likely that many zebrafish mutants for genes associated with calcium mineralization
disorders—whose phenotype has yet to be published—may develop ectopic mineralization
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phenotypes. Zebrafish mutants that may develop ectopic calcifications, and are therefore
promising targets for the development of new models, are summarized in Table 2.

Table 2. Zebrafish mutants yet to be investigated.

Name Gene * Description ZFIN ID Human Disease

la028295Tg
sa8734 nt5e 5′-nucleotidase, role in hereditary

arterial/articular calcification syndrome ZDB-GENE-040426-1261 Calcification of joints and
arteries

sa37832 ankha Inorganic pyrophosphate transport
regulator ZDB-GENE-050913-33 Chondrocalcinosis 2

sa12038
sa32626 slc34a2a High-affinity inorganic phosphate:sodium

symporter ZDB-GENE-000524-1 Pulmonary alveolar
microlithiasis

la022442Tg
sa37585 slc34a2b High-affinity inorganic phosphate:sodium

symporter ZDB-GENE-030709-1 Pulmonary alveolar
microlithiasis

sa9319 gnas GTPase ZDB-GENE-090417-2 Osseous heteroplasia,
progressive

sa39971 mgp Inhibitor of vascular mineralization ZDB-GENE-060928 Keutel syndrome

sa12462 samd9l Inflammatory response and the control of
extra-osseous calcification ZDB-GENE-130530-738 Normophosphatemic

familial tumoral calcinosis

sa41932 fam20a Golgi-associated secretory pathway
pseudokinase ZDB-GENE-081022-117 Enamel renal gingival

syndrome

sa20589 casr Parathyroid hormone secretion and renal
tubular calcium re-absorption regulator ZDB-GENE-050119-8 Familial hypocalciuric

hypercalcemia syndrome
* Gene name and acronym: nt5e, 5′-nucleotidase, ecto (CD73); ankha, ANKH inorganic pyrophosphate transport
regulator a; slc34a2a/b, solute carrier family 34 member 2a/b; gnas, GNAS complex locus; mgp, matrix gla protein;
samd9l, sterile α motif domain containing 9 like; fam20a, FAM20A golgi associated secretory pathway pseudokinase; casr,
calcium-sensing receptor.

3. Tools to Study Ectopic Calcification in Zebrafish
3.1. Genetic-Based Approaches to Develop Mutant Lines

Most zebrafish models initially used to study ectopic mineralization have been devel-
oped through forward genetic approaches. In a screening to identify novel regulators of
osteogenesis and bone mineralization, a mutant named dragonfish (dgf) showed ectopic
mineralization in the craniofacial and axial skeleton [63]. This mutant was later reported
to have altered enpp1 expression and it remains today one of the most used and well-
described models of ectopic calcification [30]. The Zebrafish Mutation Project, a large-scale
N-ethyl-N-nitrosourea (ENU) mutagenesis project, has generated a mutant archive of over
40,000 alleles covering 60% of zebrafish protein-coding genes, with many mutants yet to
be characterized [64]. In relation to this article, four zebrafish mutants for αklotho were
identified and are available from zebrafish stock centers. Each mutant has an allele with
one point mutant that induces a premature stop in four out of five exons. At this point, only
αklothosa18644 studies—targeting exon 3—have been reported and the phenotype closely
matches the loss-of-αKlotho function previously reported in zebrafish [35].

Reverse genetics has also been successfully applied to zebrafish. Morpholino anti-
sense oligomers (MOs) are the preferred method of gene knockdown in zebrafish [65,66]
and the initial approach taken at generating ectopic calcification in zebrafish models.
Injection of abcc6a-specific MOs in zebrafish eggs induced cardiac malformations and
developmental defects in 8 dpf morphant larvae similar to those observed in GACI pa-
tients [67]. Similarly, myorg-specific MOs induced brain calcification in 2 dpf morphant
larvae [40]. CRISPR/Cas9 genome-editing technology has also been successfully applied to
zebrafish [68,69] making it possible to phenotype F0 generation zebrafish (founders), also
known as crispants, within weeks [70]. As many zebrafish mutants are already available,
CRISPR/Cas9 is a promising tool to accelerate the study of ectopic mineralization in situa-
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tions in which (i) a mutant is not available; (ii) to investigate a gain of function; (iii) and to
target important functional domains.

3.2. Techniques for the Detection of Abnormal Calcium Deposition

The detection and quantification of calcium deposition in zebrafish can be achieved
through a variety of techniques that are based on the optical detection of changes in lumines-
cence, fluorescence, or absorbance of an organic indicator that specifically binds to calcium
ions [71]. Several water-soluble dyes can be used to detect tissue calcification, calcein and
alizarin red S—that emit green and red signals, respectively, when bound to calcium-based
crystals—have been mostly used in zebrafish [72]. Both dyes can be used in vivo—e.g., live
staining without the sacrifice of the animal—allowing the real-time detection of calcium
deposition [73]. Repetitive alizarin red S staining performed at low concentrations can be
applied to zebrafish without affecting bone growth and mineralization [74]. Furthermore,
alizarin red S can be combined with alcian blue, a polyvalent basic dye that stains cartilage
in blue, allowing the visualization of calcium deposition within cartilaginous tissues [74].
Calcein and alizarin red S have similar efficiency in staining calcium deposits, thus the
choice of using either dye often depends on the usage of transgenic fish models to comple-
ment the fluorescent reporter protein. As most transgenic fish models use enhanced green
fluorescent protein (eGFP) [75,76], alizarin red S staining is often preferred over calcein.

Von Kossa’s staining is also a very popular method to detect the presence of abnormal
deposits of calcium-phosphate crystals in the body. This histological method is based on
the transformation of calcium phosphate salts into silver phosphate salts, which undergo
photochemical degradation when illuminated with a UV light, leading to the formation of
dark silver deposits [77]. While its first usage dates back to more than a century, von Kossa’s
staining remains a widely used method to detect the presence of vascular calcification in
human tissue samples [78,79].

3.3. Radiographic Methods

Histological techniques used to detect ectopic calcification have limitations associated
with the physical sectioning of hard tissues that often result in tissue loss or incomplete
tissue sectioning. In addition, visualization of calcium deposition in elongated structures
(e.g., blood vessels) and in a single section is extremely difficult. Micro-computed tomogra-
phy (micro-CT) is commonly used for the 3D imaging and analysis of skeletal structures
and other calcified tissues [80,81]; it utilizes X-rays to create cross-sections of a physical
object to render a 3D image. Traditional micro-CT scans have been a reliable method for
visualization of calcified bone tissues in zebrafish but it has lacked the resolution and tissue
contrast to detect ectopic calcification [82]. However, recent advances in micro-CT and
high-resolution imaging have reached a point in which direct visualization of nanoscale
structures and the detection of ectopic calcification sites are possible [83,84]. Similarly,
Raman spectroscopy, which is used to distinguish changes in biomolecules (e.g., minerals)
present in tissues [85], has already been applied to the diagnosis of human calcification
disorders [86,87] and represents a promising tool for the detection of ectopic calcification
in zebrafish embryos, as it allows both the visualization and profiling of calcium deposits
across mineralizing and soft tissues [88,89].

3.4. Ectopic Calcification-Inducing Drugs

The identification of compounds that induce phenotypical changes similar to those
observed in pathological conditions is of the utmost interest as these compounds allow
quick, easy, and cost-effective access to in vitro or in vivo disease models. Although
the precise mechanisms that lead to ectopic calcification remain to be better understood,
molecules that disrupt the balance between pro- and anti-mineralizing pathways have
often been associated with pathological mineralization [90,91].

Vitamin K vitamers are central to bone mineralization through their role in the carboxy-
lation of several vitamin K-dependent bone-related proteins, such as osteocalcin, matrix
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Gla protein, and Gla-rich protein [92–94]. Warfarin and other vitamin K antagonists inhibit
the activity of vitamin K epoxide reductase and consenquently the recycling of vitamin
K back to its active form. Sodium warfarin has been used in anticoagulation therapy in
humans for seven decades [95,96], but long-term treatments have been associated with
systemic arterial calcification [97,98], and warfarin is contraindicated during pregnancy
as fetal exposure can lead to the development of warfarin embryopathy, a rare condition
associated with abnormal bone and cartilage growth [99]. Mice treated with warfarin
showed significant cardiovascular calcification that compromised cardiovascular func-
tion [100]. In zebrafish, embryonic exposure to warfarin has also been associated with
ectopic calcification, and a decrease in γ-glutamyl carboxylase activity and embryonic
lethality [101,102]. Long-term exposure of zebrafish to warfarin led to the development
of warfarin embryopathy-associated phenotypes [101,103,104]. Similarly, adult zebrafish
exposed to 25 mg/L of sodium warfarin for fifteen days developed vascular calcification,
further supporting its suitability as an ectopic calcification-inducing drug (Figure 1).
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3.5. Screening of Drugs to Rescue Pathological Calcification Disorders

Therapeutic strategies to efficiently counteract the accumulation of calcium ions in
soft tissues responsible for ectopic mineralization disorders have yet to be developed.
Antiresorptive drugs have been tried, but they were only able to delay and not prevent
disease progression [105,106]. The inherent advantages and a similar response to anti-
mineralizing compounds (Table 3)—when compared to mouse models—provide the proof-
of-concept necessary to validate zebrafish as a fast high-throughput screening model for
the identification of novel anti-mineralizing drugs.

Table 3. Compounds to rescue ectopic mineralization in zebrafish.

Compound Mutant Rescue Effect Reference

Etidronate (100 µM) enpp1−/− Rescues aspects of the dgf phenotype [30]
abcc6a−/− Reduced spinal mineralization [107]

Vitamin K1 (80 µM) enpp1−/−
Reduces hypermineralization [43]

abcc6a−/− [43,107]

Sodium thiosulfate (20 µM) abcc6a−/− Reduced spinal mineralization [107]

Magnesium citrate (10 mM) abcc6a−/− Reduced spinal mineralization [107]

Minocycline (3 µM) abcc6a−/− Reduced aberrant mineralization [45]
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4. Conclusions

Ectopic calcification disorders are medical conditions that affect the well-being and life
expectancy of many people worldwide and for which therapeutics remain to be developed.
To improve the current scenario, the complex mechanisms underlying these disorders
must be better understood. Until recently, most of the information regarding pathological
calcification was collected from human patients and mouse models, two biological systems
with inherent limitations. Zebrafish models have recently emerged with the potential to
provide new and fast insights into pathological mechanisms, as they can overcome some of
these limitations (e.g., knockout mice being non-viable) and accelerate the collection of data
with phenotypic alterations occurring at early stages of development. As for mammalian
systems, zebrafish ectopic calcification models develop calcification in most soft tissues, and
the detection of sites of ectopic calcification could be detected early during development
(as soon as 2 dpf, the period at which zebrafish larvae hatch). Figure 2 summarizes the
different zebrafish models available to study mechanisms of ectopic mineralization.
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Thanks to the Zebrafish Mutation Project “zmp.buschlab.org (accessed on 7 December
2022)”, there are currently dozens of available mutants with genes associated with calcium
mineralization disorders that remain to be analyzed and studied (Table 1) and eggs can be
ordered from international repositories such as the Zebrafish International Resource Center
(ZIRC), the European Zebrafish Resource Center (EZRC) or the China Zebrafish Resource
Center (CZRC). Thanks to advances in gene-editing techniques, methods to induce and de-
tect ectopic mineralization, and currently available mutant and transgenic lines, combined
with some fish inherent advantages, the zebrafish has become the new go-to model organ-
ism to study the mechanisms of ectopic calcification and calcium-associated pathologies.
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