
Citation: Madsen, A.T.; Good, D.J. In

Silico Examination of Single

Nucleotide Missense Mutations in

NHLH2, a Gene Linked to Infertility

and Obesity. Int. J. Mol. Sci. 2023, 24,

3193.

https://doi.org/10.3390/ijms24043193

Academic Editor: Emil Alexov

Received: 29 December 2022

Revised: 25 January 2023

Accepted: 30 January 2023

Published: 6 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

In Silico Examination of Single Nucleotide Missense Mutations
in NHLH2, a Gene Linked to Infertility and Obesity
Allison T. Madsen and Deborah J. Good *

Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA 24060, USA
* Correspondence: goodd@vt.edu; Tel.: +1-540-231-0430

Abstract: Continual advances in our understanding of the human genome have led to exponential
increases in known single nucleotide variants. The characterization of each of the variants lags behind.
For researchers needing to study a single gene, or multiple genes in a pathway, there must be ways to
narrow down pathogenic variants from those that are silent or pose less pathogenicity. In this study,
we use the NHLH2 gene which encodes the nescient helix-loop-helix 2 (Nhlh2) transcription factor
in a systematic analysis of all missense mutations to date in the gene. The NHLH2 gene was first
described in 1992. Knockout mice created in 1997 indicated a role for this protein in body weight
control, puberty, and fertility, as well as the motivation for sex and exercise. Only recently have
human carriers of NHLH2 missense variants been characterized. Over 300 missense variants for the
NHLH2 gene are listed in the NCBI single nucleotide polymorphism database (dbSNP). Using in
silico tools, predicted pathogenicity of the variants narrowed the missense variants to 37 which were
predicted to affect NHLH2 function. These 37 variants cluster around the basic-helix-loop-helix and
DNA binding domains of the transcription factor, and further analysis using in silico tools provided
21 SNV resulting in 22 amino acid changes for future wet lab analysis. The tools used, findings, and
predictions for the variants are discussed considering the known function of the NHLH2 transcription
factor. Overall use of these in silico tools and analysis of these data contribute to our knowledge
of a protein which is both involved in the human genetic syndrome, Prader–Willi syndrome, and
in controlling genes involved in body weight control, fertility, puberty, and behavior in the general
population, and may provide a systematic methodology for others to characterize variants for their
gene of interest.

Keywords: nescient helix-loop-helix 2; NSCL-2; basic helix-loop-helix; transcription factor; tertiary
structural analysis; Prader–Willi syndrome

1. Introduction

Multiple in silico tools exist for the analysis of single nucleotide variants, whose
numbers have exponentially increased from ~52 million in 2017, to over 715 million in
the latest release of Ensembl 2022 [1]. However, even with these tools, there are few
pipelines to systematically analyze variants in a gene of interest. Different protein types
(i.e., transcription factors versus cellular signaling proteins versus extracellular matrix
proteins) may need to be analyzed through different pipelines for in silico characterization
of their individual functions, yet current pipelines of tools are not yet sophisticated enough
for these endeavors. In this analysis, we use freely-available online in silico tools to analyze
missense variants in the neuronal basic helix-loop-helix transcription factor, with the goal
of providing a template for developing a pipeline for pathogenicity analysis of other
transcription factor proteins.

It has been 30 years since the original cloning and identification of the nescient helix-
loop-helix 2 transcription factor, NHLH2 [2]. Much has been learned about the role of the
gene and protein, especially with regards to its role in maintaining fertility and normal body
mass, using mouse models, humans, and phylogeny. In a review published nearly 10 years
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ago, the authors pose five outstanding questions on NHLH2, including “Do human SNPs
in NHLH2 contribute to any human obesity, physical activity, or fertility phenotypes?” [3].
We now have that answer for several NHLH2 SNPs. For example, a nonsynonymous single
nucleotide polymorphism/variant (SNV) in NHLH2 changing an alanine to a proline at
position 83 (A83P, NC_000001.10:g.115838126 C>G, CRCh38.p12, chr 1) structurally changes
NHLH2 protein as predicted by in silico analyses, and as shown using Western blotting [4].
This SNV was originally discovered in two individuals with obesity who had no other
detectable variants [5,6]. The SNV has never been added to the NCBI SNP database, likely
due to low frequency but is within the same codon as rs1368574494, which results in the
same alanine changed to a threonine.

We have recently added four more clinical variants in NHLH2 to the ClinVar database [7].
These variants are linked to hypogonadotropic hypogonadism in humans [8]. In particular,
a R79C variant (Variation ID 1326288) found in a consanguineous family completely inacti-
vates the ability of NHLH2 transcription factor to bind to the MC4R promoter (as shown
previously [9]), and transactivates the KISS1 promoter (also as shown previously [10]).
The 19-year-old Turkish man who was homozygous for this variant displayed not only
hypogonadotropic hypogonadism, but early adolescent obesity (OMIM 162361, [8]). His
parents and sister, who were heterozygous for the variant, did not demonstrate these
phenotypes; indicating recessive inheritance.

In this article, we use variants in the NHLH2 gene to provide a pathway for discovery
of variants that have a high pathogenicity prediction, and which should be further analyzed
in wet labs. To carry this out, more than 300 missense variants currently listed in the NCBI
database for NHLH2 were characterized using several different SNP prediction programs.
Those with the strongest predicted pathogenicity were further analyzed with respect to
whether the individual variant might affect tertiary structure, post-translational modifica-
tion, nuclear/nucleolar localization, and phylogenetic conservation. The use of these in
silico techniques on missense variants allows for sorting based on the predicted ability to
inactivate NHLH2 function in DNA binding, and regulation through post-translational
modifications. The 21 identified missense variants can then be further analyzed using
lab-based techniques, so that genotype–phenotype predictions can be made for individual
carriers of these variants.

2. Results
2.1. Chromosomal Location, mRNA Transcripts, Protein Structure, and Identification of Variants

The human NHLH2 gene is located on chromosome 1p13.1 with the longest transcript
(X1 variant) at 9782 bp long (Figure 1A). The gene is located in the complement orientation,
according to the latest assembly of the human genome (annotation release 110, 2022;
Assembly GRCh38.p14). Transcript variant 1 has three exons, and a 2512 bp linear RNA,
while transcript variant 2 has two exons and is 2492 bp in length. All three transcripts
contain the protein coding region of 408 nucleotides, which is contained within one exon
(exon 3 for transcript variant 1 and exon 2 for transcript variant 2) (Figure 1B). The NHLH2
protein is 135 amino acids long, and shares C-terminus homology with basic helix-loop-
helix transcription factors. Multiple gene regulatory targets of mouse Nhlh2 have been
characterized, and many are key players in the body weight, and hypothalamic–pituitary–
gonadal axis (for a review, see [3]).

There are currently 318 missense SNVs listed for the NHLH2 protein coding region
in the NCBI dbSNP database [11]. Variants that only affected NHLH2 transcript variant
X1 were removed from the list, as this transcript makes both the recognized protein,
and another transcript that may code for protein, but is currently without biological
confirmation. The resulting 109 missense mutations are found only in the coding region
that is consistent between the three splice variants shown in Figure 1B. These variants
were analyzed using the PROVEAN pathogenic variant analysis prediction program prior
to decommission of the online site [12]. Seventy-three variants had PROVEAN scores
higher than −2.5 and were eliminated on that criterion for the purpose of this study. The
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PROVEAN scores for these 73 variants ranged from 0.0003 to −2.113 and were predicted to
be either tolerated, or with lower potential for pathogenicity. The remaining 37 variants
(one with a single number, but two associated changes) had PROVEAN scores ranging from
−2.648 to −8.367 and were considered pathogenic by this criterion. As the online version
of PROVEAN was recently retired, the 37 variants were further analyzed using three
additional tools: Mutation Assessor, release 3 [13], SNAP [14], and CRAVAT [15]. Using
Mutation Assessor, the Functional Impact (FI) scores show that only 9 out of the 37 predicted
pathogenic variants were considered “high” impact, and 16 out of 27 had medium impact
(Supplemental Table S1). Using the two other tools, eight of the nine variants identified
by Mutation Assessor were again considered deleterious. In addition, five of the variants
identified by Mutation Assessor as low–medium impact were identified as higher impact
by both SNAP and CRAVAT. Two variants that were given low impact scores by Mutation
Assessor were high for only SNAP, and not CRAVAT, while three additional variants
had medium scores for Mutation Assessor, and high scores for SNAP only. None of the
SNVs were predicted to be neutral by SNAP2 (Supplemental Figure S1). According to one
comparative analysis of prediction tools, Mutation Assessor had one of highest accuracies
(81%), combined with high specificity (86%) [16]. Both SNAP and CRAVAT (CHASM) tools
were analyzed in this article as well, but PROVEAN was not included in the comparison.
SNAP had relatively lower accuracy (68%), but similar specificity at (81%), while CRAVAT
was highest at 89% accuracy and 99% specificity. A combined approach as carried out
here provides additional insight into variants with the most deleterious effects on NHLH2
protein function.
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Figure 1. The NHLH2 gene and transcripts. These pictures were captured using the NCBI gene 
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1p13.1. Arrows in grey or red (NHLH2 only) denote direction of gene transcription. Neighboring 
genes for NHLH2 are shown using their abbreviated NCBI name. The base pair number range for 
this chromosome 1 segment is shown above the figure (B) NHLH2 gene and related alternatively 
spliced transcripts. The protein coding region is shown in dark green in the main transcript, and as 
red for the cDNA sequence. All three transcripts appear to produce the same protein, with 
alternative 5’ and 3’ untranslated regions. Arrowheads indicate the direction of transcription. 
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Figure 1. The NHLH2 gene and transcripts. These pictures were captured using the NCBI gene
database and genome view. (A) Chromosomal position and neighboring genes on chromosome
1p13.1. Arrows in grey or red (NHLH2 only) denote direction of gene transcription. Neighboring
genes for NHLH2 are shown using their abbreviated NCBI name. The base pair number range for this
chromosome 1 segment is shown above the figure (B) NHLH2 gene and related alternatively spliced
transcripts. The protein coding region is shown in dark green in the main transcript, and as red for
the cDNA sequence. All three transcripts appear to produce the same protein, with alternative 5’ and
3’ untranslated regions. Arrowheads indicate the direction of transcription.

As shown, and consistent with many missense variants, the frequency for each of
these variants is generally low, ranging from 0 identified individuals in a dataset, to a high
of 3/238512 (0.001%). The new release of the All of Us Research Program data through their
genome variants database represents sequences from ~98,500 whole genome sequencing
results, and ~165,000 genotyping arrays in the aggregated data from 168,080 participants
(Accessed on 12 December 2022) [17]. These are likely to increase as more genome data from
the 831,000 individuals registered for the program become available. Of the 37 variants
in Supplemental Table S1, only 5 were found in the All of Us genome variants database,
and these are also listed in the frequency columns. Currently, one is not able to obtain
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additional information on the carriers of these alleles, but it is expected that genotype and
clinical, lifestyle, and other data being collected by the program may eventually be linked
and available for mining by researchers.

The location of the 37 variants on the NHLH2 protein is shown in Figure 2. For this
analysis, none of the variants with PROVEAN scores below −2.5 were found in the N-
terminal domain of the protein. This is in contrast with our previous work which identified
human carriers of A9L and V31M variants, which were shown to be defective in gene
transactivation in HEK293 cells [8]. Variants in the current analysis were clustered in the
basic region (9 variants affecting 6 amino acids), helix 1 (8 variants affecting 8 amino acids),
loop (7 variants affecting 6 amino acids), and helix 2 (12 variants affecting 9 amino acids).
In comparison with the data from Supplemental Table S1, many of the variants with high
predicted pathogenic scores are found within the loop and second helix of the protein.
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The NHLH2 protein shows strong homology within the basic helix loop helix 
domain, as assessed by phylogenetic animals of a distinct set of vertebrates (Figure 3A). 
Orthologs of the NHLH2 protein are found in both vertebrate and invertebrate species. 
To date, 270 orthologs have been sequenced from jawed vertebrates (Gnathostomata), 

Figure 2. The NHLH2 protein and variant positions. A cartoon model of NHLH2 protein structure
and the location of the variants studied in this article (yellow) and those previously reported (red).
The position of the helix-loop-helix motif is based on previous studies. The position of the putative
DNA binding domain residues and dimer interface residues is based on NCBI Conserved domain
predictions. Single letter amino acids are used to indicate the amino acid in the reference protein, and
the variant amino acid, separated by the position of the variant in the protein.

The NHLH2 protein shows strong homology within the basic helix loop helix domain,
as assessed by phylogenetic animals of a distinct set of vertebrates (Figure 3A). Orthologs
of the NHLH2 protein are found in both vertebrate and invertebrate species. To date,
270 orthologs have been sequenced from jawed vertebrates (Gnathostomata), with 179 of
these from mammals, 55 from birds, and 58 from turtles, alligators, and lizards/snakes
combined. These are 6 amphibian orthologs of NHLH2, and 1 each in the lungfishes
(P. annectens), and cartilaginous fishes (A. radiata), as listed in the NCBI orthologs database.
Boney fishes are not included in the NCBI orthologs page, but a search reveals that both
the common carp (C. carpio) and zebrafish (D. rerio) sequences are available through the
HomoloGene database on NCBI. The zebrafish sequence for Nhlh2 is smaller at 122 amino
acids, sharing only 79.2% homology with humans, mainly in the basic helix-loop-helix
domain (position 66–122 in the zebrafish sequence), with only one conserved amino acid
change at position 82 in the zebrafish sequence which occurs within the first helix of the
protein. The N-terminal end of the zebrafish Nhlh2 protein has deletions and alternative
amino acids in 50 of 65 amino acids [18]. Several invertebrate versions of the NHLH2
gene exist as well, including D. melanogaster (fruit fly), L. salmonis (salmon louse), and
R. varioornatus (waterbear tardigrade), which are actually all more homologous to the
paralogous gene NHLH1, and exist as a single gene, rather than paralogues in the organisms.
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Figure 3. Phylogenetic analysis and nuclear/nucleolar prediction. (A) Phylogenetic analysis of
NHLH2 protein sequences from M. musculus (mouse), H. sapiens (human), R. novegicus (rat), G. gallus
(chicken), B. taurus (cattle), C. lupus familiaris (domestic dog), M. mulatta (rhesus macaque), and
P. troglodytes (chimpanzee). The NCBI protein sequence ID numbers are given for each to the left.
Amino acids are coded by color. (B) Nuclear localization signal as predicted by NLStradamus (C).
Nucleolar localization signal as predicted by NoD. For B,C, single letter amino acid abbreviations are
used.

Nuclear and nucleolar localization sequences are present in all protein sequences
analyzed for NHLH2, spanning from amino acid 66–80 (nuclear localization sequences)
and 61–82 (nucleolar localization sequence) (Figure 3B,C). These data predict that the
NHLH2 protein would normally be present in the nucleus or nucleolus. While nuclear
localization is consistent with NHLH2’s function in transcriptional regulation, NHLH2 has
not been localized in the nucleolus. While initially the nucleolus was thought to be only
a site for ribosome biogenesis, recent data have demonstrated a role for the nucleolus in
sequestering proteins during certain stress responses, including nutrient deprivation, and
cold/warm stress conditions [19]. Previous lab-based studies from our laboratory have
shown that hypothalamic NHLH2 mRNA levels are reduced with food deprivation and
cold exposure and increased with food return or rewarming [20–22], and the identification
of a nucleolar localization signal in the NHLH2 protein suggests that we should examine
protein localization during these and other stress responses.

2.2. Predicted Effects of Variants on Protein Post-Translational Modifications

The MuSiteDeep PTM prediction software predicts alterations in several different
types of PTM including phosphorylation, glycosylation, ubiquitination, palmitoylation, ad-
dition of hydroxyproline or hydroxylysine, SUMOlaytion, and methylation [23–25]. There
are predicted phosphorylation sites: each of the 37 variants, as well as the normal sequence
for NHLH2 listed in Table 1 underwent analysis using MuSiteDeep. MuSiteDeep checks
for glycosylation, ubiquitination, SUMOlaytion, acetylation, methylation, palmitoylation,
pyrrolidone carboxylic acid, and hydroxylation in a FASTA entered sequence. NHLH2 refer-
ence protein analysis yielded only phosphorylation, ubiquitination, pyrrolidone carboxylic
acid modification, and glycosylation. As shown in Figure 4A, the NHLH2 protein has
10 predicted serine and one threonine phosphorylation site within the N-terminus of the
protein, and none exist past the threonine site at amino acid 75. Variants marked with yel-
low triangles result in loss of phosphorylation at position 75. Two variants, rs75107396 and
ra1194455186, lead to additional phosphorylation, at positions 108 (threonine) and position
65 (serine), respectively, as indicated by the light-yellow triangles. Both variants change the
amino acids at those positions into amino acids with the potential for phosphorylation. A
putative glycosylation site is lost at position 106 with a proline to serine change at position
105. The remaining predicted changes due to missense mutations result in the addition of
post-translational modifications with an addition of hydroxylated residues at amino acids
124 and 125, due to the tyrosine to cysteine change from rs1433737875. Deacetylation of
NHLH2 protein by SIRT1 deacetylase at lysine 49 was previously described [26]. However,
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MuSiteDeep did not detect lysine acetylation of the WT protein. One variant, rs1650931348,
led to a change from a glutamine to a lysine residue which MuSiteDeep predicted would be
acetylated. In addition, we had previously used a different in silico tool, the GPS-PAILS pro-
gram http://bdmpail.biocuckoo.org/, accessed on 15 July 2022) [27] which had predicted
acetylation of seven lysine residues on the WT NHLH2 protein, including the position
49 acetylation.

Table 1. Predicted pathogenic variants for future study. Variant ID number from the SNP database is
provided, along with the amino acid change using the single letter amino acid code and amino acid
position number in the NHLH2 protein.

Variant ID Amino Acid
Change Predicted Pathogenicity

Rs372688621 R65H
R65L

Loss of DNA binding
Loss of phosphorylation; Altered DNA binding

Rs1194455186 R65S Additional phosphorylation; Altered DNA binding

Rs765797948 R69L Loss of phosphorylation

Rs1262624693 R70G Loss of DNA binding

Rs1417094020 R71H Loss of phosphorylation

Rs1650933387 R71G Loss of phosphorylation

RS772525034 A74P Altered DNA binding

Rs1199787521 Y78H Loss of phosphorylation; Altered DNA binding

Rs1650932250 Y78C Loss of phosphorylation; Altered DNA binding

Rs1650931347 E91K Additional acetylation; Altered DNA binding

Rs199738358 A92T Altered DNA binding

Rs1352643678 N94T Not predicted to binding DNA, but model could not
be predicted

Rs781142041 K102T Altered DNA binding

Rs757420009 L104R Loss of DNA binding

Rs1650929924 P105S Loss of glycosylation

Rs751807396 P108T Additional phosphorylation

Rs1354640857 K115N Loss of DNA binding

Rs1557829654 R120P Altered DNA binding

Rs1650928263 R120S Additional SUMOlaytion

Rs1433737875 Y125C Additional hydroxylation

Rs1230535357 V132F Altered DNA binding

2.3. Predicted Effect of Variants on Protein Tertiary Structure and Function

The basic region along with the first part of helix 1 of the helix-loop-helix family
of transcription factors is known to contribute to DNA binding to an E-box motif (for a
review, see [28]). Each transcription factor dimerizes with a partner, and contacts half of
the E-box motif, which in the case of NHLH2 is most commonly “CAG”, using the 5th,
6th, 8th, 9th, and 13th amino acids as primary contacts with the DNA [29]. However,
the NCBI Conserved Domain Search [30] predicts amino acids shown in yellow circles
(Figure 5A) as those for the putative DNA binding sites. The variants in NHLH2 for this
region are shown in Figure 5A (red hexagons). The remainder of helix 1 along with helix 2
(Figure 5B,C) interact with the dimerization partner along the predicted dimer interface.
NHLH2 has a very short non-helical region immediately following helix 2 with unknown
function. Tertiary structural analysis using the IntFOLD server was used to study any gross

http://bdmpail.biocuckoo.org/
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deformations of structure called by each of the 37 variants analyzed, as well as to analyze if
the DNA binding domain was intact in the variant sequences.
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As shown in Figure 5D, four variants resulted in loss of predicted DNA binding
domain in its entirety, although these variants were with amino acids outside of the direct
DNA binding domain (Figure 5A). Previous published work in our lab showed that the
R79C variant found in a human with hypogonadotropic hypogonadism led to an alteration
in the DNA binding amino acids from R79, H82, R85 to Y78, H82, E86 [8]. While we did not
carry out a DNA-amino acid binding analysis with these 37 variants, Supplemental Table
S2 shows that modeling the NHLH2 protein with DNA for an additional 11 variants results
in what appears to be an altered DNA binding structure for the protein (Supplemental
Table S2). For example, Y78C and Y78H variants both appear to alter the tertiary model of
NHLH2 bound to DNA, although the protein is still clearly interacting with DNA. More
analysis, including wet lab experiments would be needed to confirm these predictions.

2.4. List of Most Pathogenic Variants, Predicted by In Silico Analysis

Using SNV pathogenicity tools, followed by specific analysis of possible alterations in
protein post-translational modifications and since NHLH2 is a transcription factor, analysis
of any changes in predicted DNA binding, a list of 21 variants (with 22 amino acid changes)
for further lab-based studies were generated (Table 1). The in silico experiments initially
examined 318 missense/nonsynonymous variants in the NHLH2 protein sequence. The
21 remaining variants for further investigation represent a 93% enrichment (just 6.6% of the
variants are deemed significantly pathogenic for further analysis). In addition, laboratory
experiments can be tailored to the predicted pathogenic consequence, such as DNA binding
or changes in secondary modifications. The position of the variants along the 3D protein
structure are shown in Figure 6.
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3. Discussion

Polymorphisms in NHLH2 have been implicated in human hypogonadotropic hypog-
onadism with the associated phenotypes of low exercise and increased body weight [8].
These variants were identified by deep sequencing, but 318 other missense variants in the
NCBI SNP database have not been further characterized in humans or in vitro. PROVEAN
analysis of variants was used to initially identify 37 missense variants that were predicted to
have functional consequences. These 37 variants were further analyzed using in silico tools,
yielding 4 variants that are predicted to result in no DNA binding activity, and 12 with
changes in predicted post-translational modifications. Interestingly, none of the variants
overlapped with respect to prediction of DNA binding or post-translational modification
changes. In addition, the variant analysis programs often differed in severity predictions.
Only two variants, Y125C (rs1433737875) and K115N (rs1354640857), were predicted to
be deleterious by all four single nucleotide polymorphism analyses and have an addi-
tional deleterious prediction (Y125C for additional of hydroxylation post-translational
modification; and K115N for loss of predicted DNA binding ability).

A total of 16 SNVs were identified for further wet lab analysis. Most of these SNVs
are very infrequent in the databases, with only zero to one individual identified. These
SNVs are similar in frequency to the three SNVs that we added to dbSNP recently which
had never previously been characterized [8]. Interestingly, K115N which is considered
deleterious by multiple criteria has the highest frequency with the alternate allele at 0.04%
globally and in the European subgroup. This could suggest that carriers could number in
the millions worldwide.

Use of these in silico tools can help researchers to focus their wet lab research on
variants with the highest predicted consequences. In addition, these tools can help identify
amino acids that are key to protein function, and to then design experiments to directly
test these effects. Variants in NHLH2 have been previously shown to affect DNA binding
(R79C) [8], and gene transactivation (A9L, V31M, R79C, A83P) [4,8] in wet lab experiments.
These types of experiments would be the next to be carried out for variants such as K115N
and Y125C-containing proteins created by in vitro mutagenesis experiments.

This set of studies did not use in silico protein interaction prediction tools as no bHLH
proteins have been shown to experimentally interact directly with NHLH2. We and others
have shown SP1 [26] and STAT3 [31] to form protein:protein interactions with NHLH2
in cell line-based studies, but these interactions were not replicated by the in silico tool
used (PEPPI [32]). As new tools become available, and predictions are tested with wet
laboratory analysis, the tools will become better at predicting dimer partners that may be
in macromolecular complexes. In addition, variants in non-coding regions of the gene that
could result in alternative splicing, mRNA stability, or translation were not analyzed in
this study, although two of our previous studies have included non-coding variants from
humans [4,33].

In summary, in silico-based analyses are tools that can inform future wet experiments,
and also aid genetic therapists in determining if new variants have the potential to be
disease causing. NHLH2 variants in humans are rare, but this does not diminish their
importance for the individual carrier, and for the researcher who is dissecting the biological
mechanisms of the protein. Future predictions in non-coding regulatory regions and in the
NHLH2 promoter region are also necessary to fully characterize upstream and downstream
consequences of SNVs in NHLH2.

4. Materials and Methods

All of the work in this manuscript was performed using online databases and in silico
web-based prediction programs.

4.1. Identification of NHLH2 Missense SNVs for Further Study

Missense variants in the NHLH2 coding region were identified using the search func-
tion in the dbSNP database (National Center for Biotechnology Information, Bethedsa, MD,
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USA) [11], and the gene name, NHLH2, along with the search filter “missense”. Population
frequency data for each SNV were recorded and used to narrow down the dataset to
109 missense mutations. Each variant was further analyzed using the pathogenic prediction
program PROVEAN (J. Craig Venter Institute, La Jolla, CA, USA) [12], prior to its retirement
this year. Variants with scores less than −2.5 were selected for further analysis, resulting in
37 missense mutations in this category.

Because PROVEAN has become outdated, the potential impact of each SNV was
reassessed using three different scoring techniques. SNVs were first run through the Mu-
tation Assessor server (Memorial Sloan Kettering Cancer Center, New York, NY, USA),
which yields an FI score for each mutation. FI scores are ranked neutral (<0.85, green), low
(0.85–1.9, blue), medium (1.9–3.5, yellow), or high (>3.5, red). In total, 5 of the 37 original
deleterious SNVs were marked as low impact (green highlight) by Mutation Assessor,
and 7 more SNVs were considered neutral (blue highlight) by FI scoring. The remain-
ing 25 deleterious SNVs were confirmed by Mutation Assessor to likely have significant
physiological impact.

After FI scoring was completed, the SNVs were run though the SNAP2 variant pre-
diction software (Technische Universitat, Munich, Germany). And the CRAVAT analysis
tool (Johns Hopkins University, Baltimore, MD, USA) The SNAP2 tool runs all possible
single point mutations along a desired amino acid sequence and provides an impact score
and accuracy percentage for each possible mutation [14,34,35]. The thousands of possible
results from SNAP2 were filtered and the results for the 37 SNVs of interest were recorded.
SNAP2 scoring yielded 16 SNVs with medium impact (score between −50 and 50, yellow
highlight) and 21 SNVs with high impact scores (>50, red highlight).

CRAVAT scoring was also performed on each of the 37 SNVs of interest. The CRAVAT
server produces a VEST score with an associated p-value that is used to predict the physi-
ological impact of single point mutations [36,37]. SNVs that received a VEST score over
0.745 (on a 0 to 1 scale) were predicted to have possible significant pathogenic impact. Only
14 of the original 37 deleterious SNVs had high VEST scores when analyzed via CRAVAT
and were considered to have significant impact.

4.2. Illustrator for Biological Sequences

The online program “Illustrator for Biological Sequences” (IBS) was used to draw
NHLH2 protein and annotate variants on the protein (Figure 2) as well as the DNA binding
domain and variants (Figure 5A). It can be found at http://ibs.biocuckoo.org/ (Cuchoo
Group, Wuhan, China) [38].

4.3. Clustal Omega Phylogenetic Alignment Analysis

Phylogenetic alignment using the Clustal Omega Multiple Sequence Alignment pro-
gram (European Molecular Biology Laboratory, Cambridge, UK) [39,40], and inputting the
normal and variant human NHLH2 sequences, along with the Nhlh2 protein sequences
from Pan troglodytes (chimpanzee), Macaca mulatta (Rhesus monkey), Mus musculus (mouse),
Bos taurus (cattle), Gallus gallus (chicken), and Danio rerio (zebrafish), with the output as
ClustalW with character counts, and all other settings were defaults for the server.

4.4. Nucleolar and Nuclear Localization Signal Prediction

NP_005590.1 (human) and NP_848892.1 (mouse) amino acid sequences were used
as inputs for the online sequence prediction programs. NLStradamaus was used for the
nuclear localization signal sequence (University or Toronto, Toronto, Canada) [41], and
NoD for nucleolar localization (University of Dundee, Dundee, Australia) [42].

4.5. Post-Translational Modification Prediction

Potential effects on PTM pattern were analyzed using MuSiteDeep post-translational
modification software (University of Missouri, Columbia, MO, USA) [24]. Normal and
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variant NHLH2 sequences were compared in the output from the in silico analysis. Any
predicted alteration in PTM pattern from the normal protein was recorded.

4.6. Protein Structure (2D and 3D) and DNA Binding Prediction

The NCBI Conserved Domain Search tool (National Center for Biotecnology Informa-
tion, Bethesda, MD, USA) [30] was used to identify the predicted residues that were needed
for DNA binding and dimerization. The IntFOLD server (University of Reading, Reading,
UK) [43] was used to generate 3D structural models of the NHLH2 WT and missense
variant proteins. Within the IntFOLD6 server interface, the FunFold2 server was used to
predict the DNA binding domains for both the WT and variant proteins [44], and models
were visualized using JMol (developed at the Minnesota Supercomputer Center, University
of Minnesota, Minneapolis, MN, USA) [45].

4.7. PyMOL 3D Visualization of WT Structure

A PDB file containing data to create 3D rendering of the wild type NHLH2 protein
was obtained from AlphaFold Protein Structure Database (European Molecular Biology
Laboratory, Cambridge, UK) [46,47]. The data contained in the PDB file was uploaded into
pyMOL (Schrodinger, Inc, New Yori, NY, USA) [48], a molecular visualization platform,
to view the location of the 22 SNVs of interest listed in Table 1. Amino acid positions
highlighted in yellow denote positions of variants that allow for DNA interaction that
appears altered by FunFold2. The amino acids highlighted in red are predicted to have no
DNA binding activity by FunFold2. The remainder of the protein is colored cyan for helical
regions and rose for loops/disordered regions.
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