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Abstract: Vegetable and ornamental plants represent a very wide group of heterogeneous plants, both
herbaceous and woody, generally without relevant salinity-tolerant mechanisms. The cultivation
conditions—almost all are irrigated crops—and characteristics of the products, which must not
present visual damage linked to salt stress, determine the necessity for a deep investigation of the
response of these crops to salinity stress. Tolerance mechanisms are linked to the capacity of a plant to
compartmentalize ions, produce compatible solutes, synthesize specific proteins and metabolites, and
induce transcriptional factors. The present review critically evaluates advantages and disadvantages
to study the molecular control of salt tolerance mechanisms in vegetable and ornamental plants, with
the aim of distinguishing tools for the rapid and effective screening of salt tolerance levels in different
plants. This information can not only help in suitable germplasm selection, which is very useful in
consideration of the high biodiversity expressed by vegetable and ornamental plants, but also drive
the further breeding activities.

Keywords: adaptive mechanisms; antioxidative metabolism; signal transduction; salinity-induced
protein

1. Introduction

Salinity is a major abiotic stresses that reduces crop productivity by hampering phys-
iological processes in plants [1–3]. It affects approximately 19.5% of agricultural lands
covering more than 830 million hectares [4]. Problems associated with salinity stress in the
near future will expand due to global climate changes, in particular with the increase in
temperature and reduction in water availability [5]. High salinity levels are a problem for
vegetable and flower crops—which are irrigated crops—because soil salinity is often the
result of incorrect irrigation practices that cause an increase in the concentration of salt in
topsoil layers [6]. Vegetable and flower crops are often glycophytes and cannot grow in
the presence of high levels of salt; a NaCl concentration over 100–200 mM often results in
plant death [7]. The aesthetical appearance—and hence the cash value—of these crops [8,9]
is strictly linked to the absence of salinity-induced damage, which is one of the principal
morphological indicators of salt stress in plants [10]. Nonetheless, for many vegetable
plants, more than twenty years after the review on the subject by Shannon and Grive [8],
information on the effect of salinity stress is not sufficient. This lack of information is even
more apparent for flower and ornamental crops.

The negative effects of salinization on plants include a reduction in growth trends due
to the alteration of numerous biochemical and physiological processes [11]. Plant species
perceive saline conditions and respond through a complex signaling network generated
by ions, osmotic potential changes, and the biosynthesis of plant hormones or reactive
oxygen species (ROS) [12]. These signals reach their respective receptors and determine the
activation of physiological mechanisms that allow the plant to adapt to stress conditions.

Int. J. Mol. Sci. 2023, 24, 3190. https://doi.org/10.3390/ijms24043190 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24043190
https://doi.org/10.3390/ijms24043190
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-4345-4232
https://orcid.org/0000-0002-4810-2124
https://orcid.org/0000-0001-7781-9784
https://doi.org/10.3390/ijms24043190
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24043190?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 3190 2 of 15

In the case of abiotic stresses, such as saline stress, three types of signal transduction have
been identified, namely the ion signaling pathway, the osmolyte regulatory pathway, and
the gene regulatory pathway [13]. Understanding each tolerance mechanism that occurs at
the cellular level is essential for understanding how the entire plant organism reacts, which
will contribute to improving the quality and productivity of different crops (Table 1) [3].

Therefore, this review aims to analyze the most recent results reported with respect
to the molecular control of salt tolerance in vegetable and flower crops, in particular the
osmotic regulation mechanism, salinity-induced proteins, reactive oxygen metabolism, the
mechanism of signal transduction, and the development of salinity stress. This will provide
useful indications to improve our knowledge of the mechanisms of salt tolerance in these
species and assist in the development of future programs for the evaluation and selection
of germplasm and genetic improvement.

Table 1. Main molecular effects of salt stress in different vegetable and ornamental crops.

Plant Species and Cultivar Salt Stress Level Effect of Salt Stress on Plants References

Aquilegia oxysepala Trautv. & C.A.Mey.,
A. parviflora Ledeb., and A. viridiflora Pall.

5.0 ± 0.2 dS m−1 and
10.0 ± 0.2 dS m−1

Increase in MDA and proline; increased
activity of SOD (5.0 dS m−1); A. parviflora POD
increase; and A. viridiflora POD increase
(10.0 dS m−1)

[14]

Brassica oleracea L. 80 mM POX increase [15]

Brassica oleracea L. 50, 100, 150, and 200 mM NaCl Increase in CAT and POX activity, increase
in proline [16]

Brassica rapa L. subsp. rapa ‘Qiamagu’ 50, 100, 150, and 200 mM NaCl

Increased activity of SOD (50, 100, 150, and 200
mM), POD (100, 150, and 200 mM), CAT (150
mM), and APX (200 mM); increase in MDA
(100, 150, 200 mM)

[17]

Brassica rapa L. subsp. rapa
‘Wenzhoupancai’ 50, 100, 150, and 200 mM NaCl

Increased activity in SOD and APX (200 mM),
POD and CAT (100, 150, and 200 mM);
increase in MDA (100, 150 mM)

[17]

Calendula officinalis L. 50–100 mM NaCl, 36 d Increase in proline [18]

Calendula officinalis L. 1, 5, and 9 dSm−1
Increase in MDA in leaves and roots, increase
in proline in leaves (9 dS m−1), and increase in
CAT activity; decrease in POD activity

[6]

Capsicum annuum L. 2000 and 4000 ppm NaCl Increased activity of CAT and POX; increase in
proline [19]

Capsicum annuum L. 75 mM NaCl Increase in SOD, POX, and CAT activity;
increase in MDA [20]

Capsicum annuum L. ‘Candy Apple’ 35, 70, and 105 mM Increase in APX and PPO activity [21]

Carthamus tinctorius L. 50, 100, and 150 mM NaCl Increased activity of CAT (50 mM), SOD
(100 mM), and POD (50, 100, and 150 mM) [22]

Catharanthus roseus (L.) G. Don 150 mM NaCl
MDA increase in vegetative and flowering
stage; increase in CAT, GPX, and GR activity in
vegetative and flowering stage

[23]

Chrysanthemum L. cvs. (‘Garden Beauty’,
‘Shanti’, ‘Red Stone’, ‘Basanti’, ‘Yellow
Reflex’, ‘Ravi Kiran’, ‘Anmol’, ‘Mother
Teresa’, ‘Sweta Singar’, and ‘Jaya’)

150 mM NaCl Increase in proline [24]

Cornus florida L. and C. hongkongensis
subsp. elegans (Fang & Hsieh) Q.Y.Xiang

0.2%, 0.3%, 0.4%,
and 0.45% salt solution

Increase in MDA, SOD activity (0.2%, 0.3%,
0.4%, and 0.45% salt solution) and proline
(0.3%, 0.4%, and 0.45% salt solution)

[25]

Cucumis melo L. 30, 60, and 90 mM NaCl Increase in proline, MDA, APX, CAT, SOD,
and POD [26]
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Table 1. Cont.

Plant Species and Cultivar Salt Stress Level Effect of Salt Stress on Plants References

Cucumis sativus L. (‘Green long’,
‘Marketmore’, ‘Summer green’,
and ‘20252’)

NaCl 50 mM L−1 Increase in proline [27]

Dracaena braunii Engl. 2.0 and 7.5 dS m−1 Increase in proline [28]

Fragaria ×ananassa (Duchesne ex Weston)
Duchesne ex Rozier ‘Gaviota’ 50 mM Increase in MDA [29]

Helianthus annuus L. (ornamental
sunflower) 150 mM NaCl Increased activity of CAT and POD; increase

of proline [30]

Lavandula multifida L. 10–200 mM NaCl, 60 d Increase in soluble sugars concentration [31]

Luffa acutangula Roxb. 75 and 150 mM Increase in proline [32]

Ocimum gratissimum L. (African basil) 30, 60, 90, 120 mM Increase in proline in leaves (120 mM) and root
(90 and 120 mM) [33]

Oenanthe javanica DC. ‘V11E0022’
and ‘V11E0135’ 50 and 100 mM NaCl Increase in leaves and roots of MDA and

proline [34]

Pisum sativum L. ‘L-888’ and ‘Round’ 150 mM
‘L-888’ increase in CAT activity; ‘Round’
increase in proline and decrease in SOD
activity

[35]

Polianthes tuberosa L. 50 and 100 mM NaCl Increase in SOD, POD (100 mM), GR, and APX;
increase in proline (100 mM) [36]

Portulaca oleracea subsp. oleracea L.,
P. grandiflora Hook., P. halimoides L., and
P. oleracea ‘Toucan Scarlet Shades’

100, 200, and 400 mM Increase in proline in leaves and roots [37]

Rosa damascena Mill. ‘Kashan’ 4, 8, and 12 dS m−1 Increase in MDA (8 mM); increase in proline
(8, 12 mM); and increase of CAT activity [38]

Solanum lycopersicum L. 50 µM S-nitroso-N-acetyl
penicillamine (SNAP) 200

Increased activity of APX, glutathione
reductase (GR), peroxidase and rise in
proline content

[39]

Solanum lycopersicum L. 100 mM Mn-SOD, MDHAR, and GR decrease [40]

Solanum lycopersicum L. 300 mM NaCl Increase in proline [41]

Solanum lycopersicum L. 150 mM NaCl Increase in MDA content; increase in SOD and
CAT activity [42]

Solanum lycopersicum L. ‘Liaoyuanduoli’ 150 mM NaCl Increase in MDA and SOD, APX, GPX, GR,
MDHAR, and DHAR activity [43]

Solanum lycopersicum L. ‘Pusa Ruby’ 150 mM NaCl
Increase in proline and MDA; increase activity
of APX, MDHAR, DHAR, GR, SOD, CAT,
GPX, and GST

[44]

2. Osmotic Regulation Mechanism

Salinity negatively affects plant physiology through ionic toxicity as well as osmotic
and oxidative stress. Osmotic adaptation is essential to sustain cell turgor. Plants react to
the osmotic stress caused by high salt levels mainly with osmotic adjustments (Figure 1).

Osmotic regulation is essential to maintain cell turgor and plant metabolic activity
and, therefore, plant growth and productivity [45]. Plant under stress biosynthesizes a
large number of osmoprotectants, such as proline (Pro), glycine betaine (GB), sugars, and
sugar alcohols, facilitating the antioxidant mechanism and ionic homeostasis [46,47]. Pro
is an amino acid and osmoprotectant, which acts as an important signaling molecule that
accumulates in the cytosol of plants and functions in the stabilization and protection of
membrane, protein enzymes, and various proteins. Pro also plays an important role during
salinity stress by increasing the production of membrane proteins and ROS scavengers and
maintaining cellular solute homeostasis. Many researchers have reported that under salinity,
Pro improves water absorption and the antioxidant mechanism. Furthermore, it reduces
the accumulation of toxic ions [46,48,49]. The Pro content that a plant accumulates to relieve
osmotic stress can, therefore, be used as a physiological indicator of its ability to tolerate
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stress [50]. This substance exists in plant cells in the free state and has a low molecular
weight, high water solubility, and no net charge in the physiological pH range [51].
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Figure 1. Water balance of crops under normal conditions and under progressive stress conditions
(from left to right). The increase in salinity stress induces the accumulation of osmolytes that increase
the ability of root cells to uptake water (the cell osmotic potential becomes more negative). The
progression of salinity and its severity cannot be counteracted with only osmolytes; the plant does not
uptake water and loses its turgor. ΨW = water potential; Ψp = pressure potential; Ψπ = gravimetric
potential; and Ψm = matric adsorption force.

Soluble sugars include mainly glucose, sucrose, and trehalose. These sugars can
stabilize the cell membrane and protoplast [52]. They are osmolytes that stabilize the
integrity of the cell membrane, which protects proteins from aggregation and denaturation.
Soluble sugars can also be used as a physiological indicator of salt tolerance due to their
osmoregulation function [1]. Sugar alcohols, such as inositol, sorbitol, and mannitol, also
induce salinity tolerance by regulating cellular osmotic levels. These compounds increase
the water potential of cells, allowing plants to uptake more water from the soil (Figure 1).
In particular, they mitigate stress by promoting growth, scavenging ROS, maintaining cell
turgor, and aiding in the sequestration of Na+ from the cytosol into the vacuole.

Betaines, such as glycine betaine (GB), proline betaine, hydroxyproline betaine, and
pipecolate betaine, also act as osmoprotectants [48]. Of these, GB acts as a strong and
compatible osmoprotectant in mitigating salinity stress. Extensive research has shown that
GB maintains osmotic adaptation by regulating the Na+ to K+ ratio and accumulating in
the cell; in particular, this reduces the toxic effects of the ions [53].

Further investigations are necessary to better understand the role of different osmopro-
tectants and the changes in gene expression in plants that occur as a response to this stress.
Different genes are involved at the transcriptional level; it will be useful to discriminate if
this gene expression is a direct result of the stress conditions or injury responses.

3. Reactive Oxygen Species Metabolism

Under abiotic stress conditions, photosynthetic activity is reduced, and the excitation
energy of light becomes greater than that used or required by photosynthesis, resulting in
an accumulation of ROS in the chloroplasts [54]. Abiotic stresses that induce the production
of ROS hinder plant growth and lessen crop yield via reduction in chlorophyll contents and
photosynthetic efficiency; the degree of this damage depends on the severity, frequency,
and duration of the abiotic stress [55–57]. In optimal conditions, ROS are neutralized by
intracellular antioxidants, whereas under salt stress conditions, the extreme accumulation
of ROS produces oxidative stress and strongly disturbs the normal metabolism, causing
protein destruction and nucleic acid mutation [58], and the overproduction of ROS in the
plant induces lipid peroxidation in the cell membrane. The loss of membrane integrity
impairs the physiological and biochemical processes in the plants. Under saline stress
conditions, plants activate the production of malondialdehyde (MDA), which is the main
product of membrane lipid peroxidation; its content represents the degree of cell membrane
damage [1]. An increase in this compound is considered an oxidative stress indicator and
is used as a tool to evaluate the tolerance of plants to salt conditions [59]. In salt stress
conditions, plants increase the production of ROS, such as H2O2 (hydrogen peroxide), O2

−

(superoxide), 1O2 (singlet oxygen), and ·OH (hydroxyl radical). The overproduction of ROS
then results in lipid peroxidation, protein degradation, and DNA mutation or damage [60].
To limit the oxidative damage caused by the excessive production of ROS, plants have
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implemented a complex antioxidant defense system which includes low-molecular-weight
antioxidants (ascorbate, reduced glutathione, tocopherol, carotenoids, and flavonoids) and
antioxidant enzymes, such as superoxide dismutase (SOD EC 1.15.1.1), peroxidase (POD
EC 1.11.1.6), ascorbate peroxidase (APX EC 1.11.1.6), and catalase (CAT EC 1.11.1.6) [61].

The principal ROS-scavenging enzymes in plants include CAT, SOD, and POD. Cata-
lase decomposes hydrogen peroxide into water and oxygen. In the same way, SOD converts
superoxide radicals into oxygen and H2O2. POD and some other enzymes are involved
in the degradation of H2O2 into innocuous products [62]. Ascorbate breakdown by APX
involves the reduction of H2O2 to water [63].

SOD and catalase have been identified as the most effective enzymes in scavenging
active oxygen species that cause oxidative stress. An alternative mode of H2O2 destruction
is via peroxidases, which are found throughout the cell and have a much higher affinity for
H2O2 than catalases [64]. Different studies have shown that salt stress treatment increases
SOD activity [65]. Similarly, higher POD activity in the leaves of different plant species
under salt stress conditions has also been found [66,67].

The principal site of ROS production under salinity stress conditions is the electron
transport chain (ETC) in the chloroplast and mitochondria [68].

Controlling the production and action of ROS allows for a better understanding of the
effects of various abiotic stresses on plants (Figure 2).
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Figure 2. At the cellular level, salinity induces osmotic stress, ion imbalance, ROS accumulation,
DNA damage, and lipid peroxidation. Crops activate redox signaling that leads to the induction
of antioxidant defenses, such as the biosynthesis of antioxidants or the activation of antioxidant
enzymatic systems.

In various cultivated plants (rice, tomato, citrus, pea, and mustard), several studies
have shown that the production of ROS is increased under salt stress conditions, and
ROS-mediated membrane damage has been demonstrated as a major cause of cellular
toxicity [69,70]. A significant increase in enzyme activities (SOD, POD, and CAT) was
observed in the leaves of Asteraceae families of salt tolerant cv Wuxi [71]. Similarly,
in sunflower leaves subjected to 200 mM NaCl, increases in enzyme activity and soluble
protein content were observed [72]. In maize plants, Kaya et al. [73] observed that prolonged
salinity reduced some physiological parameters (leaf relative water content and leaf water
potential) and enhanced MDA and H2O2 concentration [73].

The overproduction of GSH and APX has been shown to improve oxidative stress
tolerance, resulting in enhanced water stress in wheat [74]. One of the main causes of
decreases in crop productivity is the production of ROS during abiotic stresses (salinity,
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water stress, and high and low temperatures). Hence, the regulation of ROS is a crucial
process to avoid unwanted cellular cytotoxicity (DNA damage) and oxidative damage
(Figure 2).

The metabolism of ROS under salt stress is complicated and includes mechanisms
and interactions with other molecules and components that are yet to be identified. Thus,
further studies are necessary to understand the process more clearly. Knowledge of ROS
metabolism under salt stress will be helpful in mitigating salt-induced oxidative stress.

4. Mechanism of Signal Transduction and the Development of Salinity Stress

A high concentration of salts in soil or water induces several changes at the molecular
level that allow crops to face the stress condition. Salinity is defined as the total amount of
dissolved salts. The simplest method for salinity level determination is through electrical
conductivity (EC). This index indirectly measures the salt concentration in soil or water. The
most dangerous elements are sodium, chlorides, and sulphates. Plants have a very limited
need for these elements; thus, they often accumulate in the soil near the roots and increase
its salinity. However, high salinity can also be a result of excessive fertilizer application
in cropping systems. The continuous application of mineral fertilizers to crops increases
the salinity of the soil with time. Sodium (Na+) stress can be increased by irrigation water
or infiltration of seawater along the coastal area. Seawater infiltration can reduce the
number of crop species that can be grown as well as their productivity [75]. With climate
change, the increase in global temperature in most Mediterranean areas will result in higher
evapotranspiration rates in crops; this reduction in water availability can increase the
salinity levels in soils and irrigation water. Crops can be exposed to salinity early in their
life if they are planted in salty soil. In this condition, their germination can be inhibited by
the salinity, and their signaling and activation systems can be slowed down [76]. On the
contrary, crops can be exposed to a progressive salinity increase during development due to
an increase in salts in the irrigation or underground water. In these cases, ion concentrations
in the root zone gradually increase; plants can sense this salinity and activate signaling
networks related to defense against excessive ion uptake and cellular accumulation.

The excessive uptake of ions can activate diverse protection mechanisms, and different
plant species have varying defense strategies. Plants sense salinity through the cells of the
roots that are in direct contact with salt ions [77].

Excessive salinity can induce osmotic stress in plants via the activation of salt-associated
genes that function to mitigate the negative effects of Na+ accumulation. In this state, plants
do not uptake water and reduce the leaf growth and cell elongation [78].

Na+ uptake can occur through ion transporters that have an affinity for monovalent
cations, such as high-affinity potassium transporters (Figure 3). The accumulation of Na+

in the cytoplasm can inhibit the activities of enzymes, resulting in negative effects on
cell metabolism. Decreasing the Na+ concentration in the cytoplasm can be achieved by
storing this ion in the vacuole, a process carried out by Na+/H+ exchangers. If the Na+

concentration is also high in the vacuole, Na+/H+ exchangers can exclude the ion outside
the cell (Figure 3). Several Na+/H+ transporter (NHX) genes have been identified in plants.
These NHX genes are responsible for Na+/H+ uptake and they belong to the cation–proton
antiporters 1 family. The translocation of the Na+ to the vacuole has the function of avoiding
the inhibition of enzymatic reactions in the cytosol [79]. The ion homeostasis between
Na+ and potassium (K+) in the cytoplasm is essential for maintaining vital physiological
and biochemical processes. A low Na+ concentration in the cytoplasm can be achieved by
the sequestration of the ion to the vacuole, while in the cytoplasm, K+ and calcium (Ca2+)
increase in response to salinity [77].

Crops with high ionic uptake can adapt to salinity and maintain cell turgor by ionic
compartmentalization in vacuoles and the accumulation of neutral solutes in the cytoplasm.
Crops can avoid high ionic concentrations by direct salt extraction and controlling ionic
uptake and translocation in growth zones. Crops can increase the volume of the areal part
(succulence) as a dilution strategy [80]. Plants with excessive ionic uptake can experience
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negative effects due to ion accumulation in the cell wall and water deficits in the cytoplasm.
The high accumulation of Na+ can impair metabolism and, in particular, photosynthesis.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 8 of 17 
 

 

can be preserved by increasing water permeability or leaf thickness to reduce transpira-
tion. The use of water under high-salinity conditions is improved and crops show higher 
water use efficiency (WUE). 

 
Figure 3. Possible Na+ uptake or extrusion in plant cells, including accumulation in the vacuole, for 
the protection of biochemical processes at the cytoplasm level. 

However, in crops that are sensitive to salinity stress, even low ion uptake can be 
damaged by high salinity as a consequence of a reduction in growth due to reduced tur-
gor. Moreover, a reduction in CO2 fixation due to high stomatal resistance can limit plant 
development. 

At the molecular level, specific genes have been shown to be associated with salinity 
and Na+ transport (Figure 4). Salt signaling is based on the plant’s sensitivity to salt. In 
Arabidopsis thaliana L., Salt Overly Sensitive (SOS) genes were isolated in mutants that were 
highly sensitive to salinity [81]. These mutants contributed to our understanding of how 
plants can defend themselves against excess salinity. SOS genes encode for specific pro-
teins associated with Na+ transport. The SOS1 gene is a Na+/H+ antiporter integrated in the 
plasmalemma that transports Na+ from the cytoplasm to the apoplast. The SOS2 and SOS3 
proteins are located in the cytoplasm and associated with SOS1 function. Under high salt 
concentration, Ca2+ regulates the SOS3–SOS2 protein complexes, which block Na+ trans-
porters to avoid its accumulation in the cell [82]. Functional studies have revealed that 
SOS1 is the key regulator of Na+ tolerance, while SOS2 and SOS3 play supporting roles. 
These Na+ transporters function in equilibrating the ion concentration in the cell [77]. Cy-
tosolic Ca2+ is involved in the regulation of SOSs and tolerance to salinity stress conditions 
[83]. Ca2+ acts on SOS2 and SOS3, which block the uptake of Na+ [84]. Ca2+ seems to be 
regulated by the reduced hyperosmolality-induced (Ca2+) increase1 (OSCA1) gene. A func-
tional analysis carried out by studying osca1 mutants revealed that osmotic Ca2+ adjust-
ment in the root and guard cells was disrupted, as was water flux regulation. Another 
type of channel for monovalent and bivalent cations is cyclic nucleotide-gated channels 
(CNGCs). In plants, 20 CNGCs have been found, and, in particular, CNGC18 is associated 
with Ca2+ activation [84]. 

Na+

K+
H+

Na+

Na+

H+

H+

H+ ATP

PPi

H+ ATP

Tonoplast

Vacuole

Cell membrane

V-ATPase

P-ATPase

V-PPase

Na+/H+ antiport

K+/Na+ ratio

K+/Na+ selettiveVICs

K+

High-affinity K+

transporters

Na+

Na+

Figure 3. Possible Na+ uptake or extrusion in plant cells, including accumulation in the vacuole, for
the protection of biochemical processes at the cytoplasm level.

Crops can adapt to high salinity, tolerate high ionic concentrations, and maintain
turgor by compartmentalizing ions in the vacuoles and accumulating neutral solutes in the
cytoplasm. Another strategy to avoid excessive ionic concentrations is the removal of salt
from shoots by salt glands or phloem export or by the control of uptake and transport in
growing areas.

Crops with reduced ionic uptake can adapt to salinity by avoiding drought stress. This
strategy can be achieved by increasing the biosynthesis of organic solutes that maintain
tissue turgor. In these crops, the cell wall acquires higher extensibility. Plant turgor can be
preserved by increasing water permeability or leaf thickness to reduce transpiration. The
use of water under high-salinity conditions is improved and crops show higher water use
efficiency (WUE).

However, in crops that are sensitive to salinity stress, even low ion uptake can be
damaged by high salinity as a consequence of a reduction in growth due to reduced
turgor. Moreover, a reduction in CO2 fixation due to high stomatal resistance can limit
plant development.

At the molecular level, specific genes have been shown to be associated with salinity
and Na+ transport (Figure 4). Salt signaling is based on the plant’s sensitivity to salt. In
Arabidopsis thaliana L., Salt Overly Sensitive (SOS) genes were isolated in mutants that were
highly sensitive to salinity [81]. These mutants contributed to our understanding of how
plants can defend themselves against excess salinity. SOS genes encode for specific proteins
associated with Na+ transport. The SOS1 gene is a Na+/H+ antiporter integrated in the
plasmalemma that transports Na+ from the cytoplasm to the apoplast. The SOS2 and SOS3
proteins are located in the cytoplasm and associated with SOS1 function. Under high salt
concentration, Ca2+ regulates the SOS3–SOS2 protein complexes, which block Na+ trans-
porters to avoid its accumulation in the cell [82]. Functional studies have revealed that SOS1
is the key regulator of Na+ tolerance, while SOS2 and SOS3 play supporting roles. These
Na+ transporters function in equilibrating the ion concentration in the cell [77]. Cytosolic
Ca2+ is involved in the regulation of SOSs and tolerance to salinity stress conditions [83].
Ca2+ acts on SOS2 and SOS3, which block the uptake of Na+ [84]. Ca2+ seems to be reg-
ulated by the reduced hyperosmolality-induced (Ca2+) increase1 (OSCA1) gene. A functional
analysis carried out by studying osca1 mutants revealed that osmotic Ca2+ adjustment in
the root and guard cells was disrupted, as was water flux regulation. Another type of
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channel for monovalent and bivalent cations is cyclic nucleotide-gated channels (CNGCs).
In plants, 20 CNGCs have been found, and, in particular, CNGC18 is associated with Ca2+

activation [84].
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Transcriptional studies performed under salinity conditions have reported that many
transcription factors are activated by salinity, including MYB2, MYC2, NAC, AREB/ABF,
NAC (HD-ZIP), and DREB2 (Figure 4). These transcriptional changes regulate the expres-
sion of diverse genes, which leads to adaptation to salinity conditions. These genes are
responsible for the activation of secondary genes that are associated with plant adaptation.
From transcription to translation, the response can be very fast—from a few minutes or
hours to days.

Transcriptional studies have elucidated the cluster of genes that is activated by salinity
stress. In wheat, it was shown that the transcription factors induced by salinity included
MYB, NAC, bHLH, WRKY, bZIPs, and AP2/ER (Figure 4). These genes regulate the ex-
pression of water channels (aquaporins (AQ)), late-embryogenesis-abundant (LEA) proteins,
dehydrins, proline synthesis enzyme (P5CS), and proline oxidase (proline degradation en-
zyme). The activation of these genes increases the tolerance of wheat to salinity stress [85].
In addition, SOS1, K+ transporters, glycerol-3-phosphate dehydrogenase (GPDH), Calcium AT-
Pase, and ABC transporters were also found to be activated under salt stress. An analog
transcriptomic study performed on Solanum lycopersicum L. and S. chilense (Dunal) Reiche at
the vegetative stage showed differentially expressed salt stress genes. The most important
cluster of genes was associated with antioxidant defense enzymatic mechanisms, including
SOD, CAT, and APX [86]. In a transcriptional study performed to investigate the effect of
borage extract under salinity, the transcription factors DtRD29A and DtHB7 were highly
expressed after 9 h under salinity conditions [87]. From a practical point of view, tolerance
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to salinity could be transiently activated by the application of calcium nitrate fertilizers. A
similar effect can be obtained with potassium nitrate [88]. However, these two cations can
act in different ways; Ca2+ plays a role in signaling and inhibiting Na+ accumulation, while
K+ can reduce the Na+ concentration by competing for the same transport channels. There
are also genes activated by salinity that are involved in membrane biosynthesis or repair,
such as phosphatidylinositol-specific phospholipase C (PI-PLC). This gene activation is shared
with different biosynthetic pathways.

Further investigations are required to identify the key genes that can induce tolerance
to salinity stress in crops. Some salinity-associated genes have been found, and new
undiscovered genes could be the master regulators of salinity tolerance in crops. The
identification of these few genes could lead to the improved selection of new tolerant crops.

5. Salinity-Induced Proteins, Amino Acids, and Enzymes

Plants under abiotic stresses can accumulate a wide number of proteins that are shared
among diverse stresses. Under salinity stress, plants can increase the accumulation of
proteins as a storage form of nitrogen, which can be reused when the stress conditions are
over. In particular, osmotins (26 kDa protein) are accumulated under salinity in diverse
plant species [89]. Plants exposed to salinity also increase the accumulation of amino acids,
the most important of which are proline, glutamine, and asparagine. Some of these are also
associated with senescence, with the same function of translocating and storing nitrogen in
the seeds, trunk, or branches.

Proline is one indicator of crop tolerance to abiotic stresses, in particular drought and
salinity [90–92]. Proline plays a beneficial role in crops exposed to stress conditions. It is
an excellent osmolyte, and its function can be summarized by its three major roles during
abiotic stresses: it is a metal chelator, antioxidant compound, and a signaling molecule.
The biosynthesis of proline from glutamic acid is carried out through the activities of
the following enzymes: ∆’-pyrroline-5-carboxylate synthetase (P5CS, EC:2.7.2.11), which
leads to ∆’-pyrroline-5-carboxylate (P5C) formation and the conversion to proline by
∆’-pyrroline-5-carboxylate reductase (P5CR, EC 1.5.1.2). An increase in biosynthetic proline
enzymes in salinity conditions can help crops adapt to and tolerate stressful conditions.

In one study, overexpressing the ∆1-pyrroline-5-carboxylate synthetase gene in crops,
such as soybean, induced an increase in tolerance to salinity, demonstrating the potential
protection function of proline against salinity [93]. The endogenous proline concentration
increased in plants exposed to salinity. Catharanthus roseus (L.) G. Don. ornamental plants
under 80 mM NaCl stress also showed an increase in proline concentration [94]. Similar
results were found in Silvinia natans (L.) All., which accumulated proline under high salinity
stress [95]. On the basis of the observation of an increase in proline concentrations under
salt stress, several studies have been performed to verify whether salinity tolerance can
be achieved through exogenous applications for protecting crops. Exogenous treatments
of proline can lead to a reduction in lipid peroxidation and programmed cell death under
salinity stress [96]. In melon plants (Cucumis melo L.), the application of proline and
potassium nitrate improved their tolerance to salinity (150 mM NaCl), avoiding yield
reduction [97].

Salinity stress can activate several stress-related pathways, such as ethylene biosynthe-
sis. Ethylene is a gaseous plant hormone that is biosynthesized via three enzymatic reaction
steps. The first enzyme, S-adenosyl-methionine synthetase (S-AdoMet), converts the
amino acid methionine into S-AdoMet, which is transformed into 1-Aminocyclopropane-1-
carboxylate (ACC) by 1-aminocyclopropane-1-carboxylate synthase (ACC synthase, EC
4.4.1.14). ACC is directly converted into ethylene by an enzyme that oxidizes the ACC to form
carbon dioxide and ethylene. This step is catalyzed by 1-aminocyclopropane-1-carboxylate
oxidase (ACC oxidase, EC 1.14.17.4). Under salinity stress, the ethylene signaling network
is activated with the involvement of its receptors, such as ethylene receptor 1 (ETR1); ethylene
signaling messengers, such as constitutive triple response 1 (CTR1); and transcription factors,
such as ethylene insensitive (EINs), ethylene insensitive lines (EILs), or ethylene response factors
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(ERFs). Plants under salinity stress increase ethylene production, and the amount of ethy-
lene produced is associated with salinity stress intensity. Experiments with Arabidopsis
etr1-1 mutants exhibiting reduced ethylene production showed a higher sensitivity to
salinity. Therefore, treatments that alleviate salinity stress or increase salinity tolerance can
be measured through the ethylene production.

Salinity tolerance or sensitivity in plants is also mediated by water balance, as pre-
viously described (Figure 5). At the biochemical level, it has been found that an increase
in abscisic acid (ABA) in plants can help to counteract salinity stress. In tomato crops, an
increase in ABA in rootstocks improved tomato tolerance. ABA is a plant hormone that
is produced by carotenoid degradation (also known as the C40 indirect pathway). The
key enzyme in this pathway is 9-cis-epoxycarotenoid dioxygenase (NCED, EC 1.13.11.51),
which catalyzes the rate-limiting step in ABA biosynthesis. Transgenic tomato plants
overexpressing the SlNCED gene exhibit a high ABA concentration, which helps the plants
overcome transient stressful salinity conditions [98,99]. Several studies and review papers
have suggested an important role of ABA in regulating crop tolerance to salinity [100].
Scientific evidence suggests that it can be used as a strategy in the selection of vegetable
species or cultivars with higher ABA content or inducible salt-related ABA accumulation
for growing vegetables under high-salinity conditions.
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Figure 5. Under salinity stress due to high sodium concentration, the cell activates several protec-
tive systems that lead to adaptation. The sodium sensor promotes an increase in calcium in the
cytoplasm that regulates the SOS1 and SOS3. These complexes are responsible for sodium accumu-
lation in the vacuole and extrusion of sodium in the apoplast out of the cell. Sodium and calcium
regulate the plant hormone network and interact with each other to allow for crop adaptation to
high-salinity conditions.

Another hormone involved in plant development is gibberellic acid (GA). This hor-
mone has various different functions, but the most important is cell elongation. This effect
can increase salinity tolerance in plants. One study performed on maize (Zea mays L.)
demonstrated that treatment with GA3 (100 mg L−1) increased root and shoot biomass
and PRO concentration and preserved membrane integrity in plants exposed to 100 mM
NaCl [101]. Treatment with GA did not increase the activities of detoxification enzymes,
indicating that the treated plants had lower stress. GA could act through the dilution
effect on biomass development. Most investigations should be performed on the role of



Int. J. Mol. Sci. 2023, 24, 3190 11 of 15

GA in protecting plants against salinity stress. Cytokinins are responsible for cell division
and are leaf-yellowing inhibitors. In salinity stressed plants, the exogenous application
of cytokinins can have direct or indirect effects. In marjoram (Majorana hortensis Moench)
and spearmint (Mentha spicata L.) plants, the foliar application of cytokinins—in particular
diphenylurea or kinetin—was able to counteract the negative effects of salinity on both
plant growth and essential oil accumulation [102]. In rice (Oryza sativa L.), mutants that
overaccumulated cytokinins showed a higher yield than wild-type stressed plants [103].
These results could be due to the effect of cytokinins on delaying senescence and increas-
ing the concentrations of chlorophyll and the precursor of Pro. Brassinosteroids (BR) are
involved in the plant hormones network (Figure 5) through their interaction with ethylene
biosynthesis and can stimulate crop tolerance [104].

Metabolic profiles change under salinity stress, and further investigations should be
performed to understand how biosynthesis or accumulation can be achieved using agro-
nomic tools, such as plant growth regulators or biostimulants. Moreover, combined studies
considering both transcriptomic and metabolomic data could help in the identification of
the genes and metabolites that can be enhanced in new crops through specific breeding
programs with the support of assisted selection of molecular markers.

6. Conclusions and Future Prospective

Salinity is strictly associated with irrigation and has a dramatic effect on crop pro-
ductivity; hence, it plays an important role in food crises. This problem is particularly
evident in vegetable and ornamental crops, which are irrigation crops that are required to
be absent of salt damage due to the relevance of visual aspects in the quality of products.
Moreover, many of them are glycophytic plants that are sensitive to salinity. The currently
published data and scientific evidence suggest that crops have a predominant strategy that
involves one or more pathways for salinity stress tolerance. Crops tolerant to salinity can
have higher concentrations of antioxidant compounds or highly active enzymatic systems
that regulate the biosynthesis of metabolites associated with osmotic adjustment.

A considerable number of questions and aspects need to be further investigated. Fur-
ther information about the mechanisms of action of ROS, the role of osmoprotectants,
and the mechanisms of signal transduction and salinity-induced substances are necessary.
Omic approaches to these questions will be useful for improving our understanding of
tolerance mechanisms and better orientating breeding activities by using new biotechno-
logical solutions. This information can be exploited for selecting tolerant wild species that
can be used as rootstock for grafting, as a source for tolerant traits, or for direct use in
agricultural systems.
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