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Abstract: Hughes-Stovin syndrome is a rare disease characterized by thrombophlebitis and multiple
pulmonary and/or bronchial aneurysms. The etiology and pathogenesis of HSS are incompletely
known. The current consensus is that vasculitis underlies the pathogenic process, and pulmonary
thrombosis follows arterial wall inflammation. As such, Hughes-Stovin syndrome may belong to
the vascular cluster with lung involvement of Behçet syndrome, although oral aphtae, arthritis,
and uveitis are rarely found. Behçet syndrome is a multifactorial polygenic disease with genetic,
epigenetic, environmental, and mostly immunological contributors. The different Behçet syndrome
phenotypes are presumably based upon different genetic determinants involving more than one
pathogenic pathway. Hughes-Stovin syndrome may have common pathways with fibromuscular
dysplasias and other diseases evolving with vascular aneurysms. We describe a Hughes-Stovin
syndrome case fulfilling the Behçet syndrome criteria. A MYLK variant of unknown significance was
detected, along with other heterozygous mutations in genes that may impact angiogenesis pathways.
We discuss the possible involvement of these genetic findings, as well as other potential common
determinants of Behçet/Hughes-Stovin syndrome and aneurysms in vascular Behçet syndrome.
Recent advances in diagnostic techniques, including genetic testing, could help diagnose a specific
Behçet syndrome subtype and other associated conditions to personalize the disease management.

Keywords: Hughes-Stovin syndrome; Behçet syndrome; vascular cluster; pulmonary artery aneurysm;
MYLK; myosin light chain kinase; thoracic aortic aneurysms and dissections; personalized medicine

1. Introduction

Hughes-Stovin syndrome (HSS) is a rare disease characterized by widespread throm-
bosis and multiple pulmonary and/or bronchial aneurysms [1,2]. HSS is often considered
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to be a variant of Behçet syndrome (BS), the “silk road disease” [1,2]. There are only about
90 HSS cases reported in the literature [3]. Generally, pulmonary artery aneurysms (PAA)
are uncommon and may be asymptomatic, but may result in rupture or dissection and may
have genetic basis [4]. There is a lack of HSS diagnostic criteria, and generally, a vascular
occlusive disease (venous and/or arterial) with a normal coagulation profile and PAA
with thrombosis are found [3,5]. The aneurysm–thrombosis combination with a negative
infectious screening suggests HSS or BS [6]. The diagnosis relies on computed tomography
(CT) pulmonary angiography showing PAA with adherent in situ thrombosis, according to
the criteria of the HSS International Study Group [5].

The etiology and pathogenesis of HSS are incompletely known. Vasculitis underlies
the pathogenic process, while infections and angiodysplasia may also contribute [1]. The
condition is classically described to evolve in 3 phases: thrombophlebitis, formation of
pulmonary and/or bronchial aneurysms, and aneurysm rupture leading to hemoptysis [1].
Nevertheless, vasculitis is an early finding, and PA thrombosis likely develops secondary
to vessel wall inflammation [3,5]. In BS, the PAA are due to the obliterative endarteritis
of the vasa vasorum, or they are rather pseudoaneurysms due to vessel wall edema,
usually formed after perforation [2,7–9]. Hemoptysis, the dreaded complication in HSS, is
likely due to the rupture of angiodysplastic bronchial arteries, but also lobal/segmental
PA vasculitis [6,10]. Besides lung involvement, vasculitis complicated by aneurysms
may involve any vessel [5,8,11]. In HSS, the histology reveals diffuse dilatation, partial
occlusion, inflammatory cell infiltration, and destruction of elastic and muscular fibers in
the vessel wall [1,12–15]. BS also has similar histologic characteristics, and vasa vasorum
vasculitis leads to elastic fibers destruction and aneurysm formation as well [16–18]. The
combination of vasculitis involving the arteries and veins, thrombosis, and aneurysms
suggests BS [6,17,19]. The term angio-BS or vascular BS defines the disease subset with
large vessel involvement predominant in the clinical picture [17,19]. HSS is likely related to
the vascular phenotype of BS, and vascular involvement in BS may precede other disease
features [7,17]. Isolated pulmonary artery thrombosis also belongs to the vascular cluster
of BS with lung involvement [20]. Interestingly, BS features such as oral aphtae, uveitis,
and arthritis are rarely seen in HSS, and the patients are most often males [5].

As such, vascular BS and HSS may share pathways with (acquired) vascular dysplasia,
in predisposed hosts, in the same manner in which the articular BS clusters may share
susceptibility genes and inflammatory pathways to spondylarthritis. However, no such
genetic risk factors have been identified in BS to date [21,22]. Therefore the objective of this
case report was to find out more about possible inborn connective tissue defects underlying
the propensity for PAA in HSS/BS. Here we report the finding of variants of genes involved
in angiogenesis in this HSS/BS case.

2. Case Presentation

A 35-year male with a history of smoking (10 cigarettes/day for 14 years, or 7 pack-
years) was admitted to the local hospital for recurrent hemoptysis. He denied any similar
problems among his relatives. His father had suffered from bone cancer and died four
years prior. His mother and younger brother were living abroad; they were healthy, apart
from his mother’s hypertension.

Two years previously, our patient had been diagnosed by a computed tomography
(CT) angiography scan with a low-risk bilateral pulmonary embolism (PE) affecting the
segmental and subsegmental arteries. Other five segmental and subsegmental PA in
both lungs with adherent thrombi, an inferior vena cava thrombosis from its origin that
extended to the left renal vein, and ectasia of the left common iliac vein were seen as well.
Thrombophilia testing performed at that time was negative for antiphospholipid syndrome
but revealed a heterozygous PAI-1 variant and a MTHFR gene C677T polymorphism,
indicating a mildly increased thrombotic risk. The inflammatory markers (erythrocyte
sedimentation rate, C reactive protein, and leukocytosis) were also elevated in the absence



Int. J. Mol. Sci. 2023, 24, 3160 3 of 17

of any infection. He had been discharged on treatment with rivaroxaban (a factor Xa
inhibitor) and low-dose aspirin anti-aggregation.

During the hospitalization for hemoptysis, another CT scan showed no signs of acute
PE but described a mass in the apical lower left lobe. A bronchoscopy with biopsy found
a vegetant, hemorrhagic mass obstructing the 8th segment’s bronchi. The hemorrhage
was stopped with difficulty. The pathology exam revealed a bronchi epithelium intensely
infiltrated with polymorphonuclear cells. A week after the bronchoscopy, he repeated
the hemoptysis while infected with SARS-CoV-2, for which dexamethasone treatment
was initiated. Aspirin was stopped, and he was switched onto a prophylactic dose of
enoxaparin (a low-molecular-weight heparin). The CT scan actually raised suspicion of
HSS. A positron emission tomography scan done afterward established that the lung mass
was not a lung tumor but an aneurysmal dilatation of the inferior left lobar pulmonary
artery, with no increased enhancement, based on the normal fluorodeoxyglucose (FDG)
uptake. A cardiologic evaluation did not find any intracardiac masses on echocardiography,
nor pulmonary hypertension or signs of heart failure. A CT scan was repeated two months
after the first hemoptysis episode. The inferior left lobar PAA was stable and decreased in
size; there were no signs of alveolar hemorrhage. The rheumatologic evaluation confirmed
the diagnosis of HSS; he admitted having a history of oral ulcers since childhood and
genital ulcers since the PE episode and tested positive for HLA-B51.

The patient was started on immunosuppression with pulsed cyclophosphamide and
methylprednisolone, and, after six months, was switched to azathioprine and oral methyl-
prednisolone with tapering. He had a single episode of mild hemoptysis, rather a haemop-
toic sputum, two months after therapy initiation, which was not repeated afterward; the CT
scan performed 6 months after showed complete disappearance of the PAA and thrombus,
as well as remission of the PA wall thickening. However, the inferior vena cava thrombosis
persisted despite immunosuppressant therapy and anticoagulant treatment with low-dose
dabigatran (2 × 110 mg/day).

A genetic testing (Illumina NGS, sequence analysis and deletion/duplication testing
of connective tissue disorders panel, 92 genes, and inborn errors of immunity and cytopenia
panel, 562 genes, respectively, Invitae Corp., San Francisco, CA, USA) identified a heterozy-
gous variant of unknown significance (VUS) in MYLK, exon 11, c.1472A>G (p.Asn491Ser),
not previously reported in individuals with MYLK-related conditions, not expected to
disrupt the MYLK protein function, but able to create or strengthen a splice site according
to predictive algorithms developed (ref. UNIPROT, CLINVAR) (Figure 1).
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Figure 1. A graphic illustration of the full-length human MYLK gene, structural model consisting of
1915 amino acids with domains; this gene, a muscle member of the immunoglobulin gene superfamily,
encodes myosin light chain kinase (a calcium-calmodulin dependent enzyme). Also regulates actin-
myosin interaction through a non-kinase activity. Depicted are the actin-binding domain, catalytic
core, the regulatory segment containing the inhibitory and calmodulin-binding domains, and the
kinase-related protein (KRP) domain. The region where the patient’s variant c.1472A>G (p.Asn491Ser)
is located is indicated by the blue triangle. In our case, the MYLK mutation interests the codon
491, localized in the exon 11, in the Ig-like domain 3, involved in the EC cytoskeletal functions
based on [23].
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Additionally, heterozygous pathogenic variants were identified in CR2 and CFTR
(low penetrance), as well as other heterozygous VUS in GGCX, DNAAF4, FANCE, and
NHP2 genes.

3. Discussion

The vascular phenotype of BS, including HSS, has different clinical presentations,
presumably based on different genetic determinants [17]. In BS, arterial involvement
occurs in 3–5% of patients, and aneurysms interesting pulmonary, visceral, or peripheral
arteries represent 60% of the arterial lesions [19,24]. Our HSS case fulfilled the criteria for
BS, in whom pulmonary vasculitis underlies the PAA. The initial presentation mimicked
a vascularized bronchial tumor. The lack of increased FDG signal enhancement in the
PAA walls was likely due to the glucocorticoid therapy given for COVID-19 before the
PET-CT scan.

PAA due to underlying vasculitis are the deadliest lesions in BS and are generally
associated with peripheral vascular disease [20,25]. Aortic involvement [mainly abdominal]
is the most common site of BS arterial involvement, followed by PAA, but other arterial
peripheral involvements and intracerebral aneurysms (ICA) are also reported [24].

Generally, the genes rendering patients susceptible to thoracic aortic aneurysms or
dissections (TAAD) may increase the risk for other vascular diseases, such as abdominal
aortic aneurysms, cerebral, coronary artery aneurysms, and others [26]. TAAD genetic
susceptibility is often transmitted autosomal dominant (AD) with decreased penetrance
and variable expressivity [23,27,28]. PAA may share TAAD predisposing genes mutations
interesting the transforming growth factor beta (TGFβ) signal, extracellular matrix (FBN1,
TGFBR1, TGFBR2, SMAD3, TGFB2, COL3A1), and altered components of the contractile
apparatus of the smooth muscle cells (SMC): ACTA2, MYH11, MYLK, and PRKG1 [4,29].

PA dilatation was described in the setting of syndromic TAAD-associated muta-
tions [4,30–38]. Our patient had no dysmorphic signs or features to suggest inherited
connective tissue disorders but had a MYLK VUS.

3.1. Could a MYLK Variant Be Involved in the Occurrence of PAA in BD/HSS?

MYLK involved in TAAD [39] was not described to date, to our knowledge, in relation
to PAA.

The MYLK gene (OMIM 600922), located on 3q21, encodes at least 3 proteins (Figure 2)
via different unique promoters: non-muscle MLCK 210 (nmMLCK), smooth muscle MLCK
108, and telokin/KRP [28,40,41]. MLCK plays an important role in maintaining SMC
contractility and cell survival, but also in cell division, cell migration, and cell–matrix adhe-
sion [42–44]. Moreover, MYLK regulates tight junctions and microvascular permeability
and is involved in fibroblast apoptosis and epithelial wound healing [45]. MYLK also
regulates actin-myosin interactions through a non-kinase activity [45]. Telokin modulates
SMC contraction by inhibiting the myosin RLC (regulatory light chain) phosphatase [46].
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Aneurysm formation involves a succession of hemodynamic stress, thrombosis, ex-
tracellular matrix (ECM) degradation, inflammation, and structural changes, including
endothelial cell (EC) dysfunction and SMC apoptotic and phenotypic modulation [42,47].
Besides the structural role, SMC are involved in vasomotricity due to the contractile pro-
teins, using cross-bridge cycling between actin and myosin, intracellular Ca2+ concentration
increase, and Ca2+ binding to calmodulin to initiate the SMC contraction [27,48,49]. The
Ca2+-calmodulin complex binds to myosin light chain kinase (MLCK) to activate it, and
MLCK phosphorylates the RLC of myosin in turn, which increases the actin-activated
myosin II ATPase activity for contraction [27]. The myosin light chain phosphatase dephos-
phorylates the myosin RLC to induce relaxation [43].

The non-muscle myosin light chain kinase (nmMLCK) is a 210 kDa cytoskeletal
protein (Figure 3), central for the regulation of vascular integrity and permeability by
regulating actin cytoskeleton rearrangements and contraction, vascular endothelial barrier,
angiogenesis, EC apoptosis, and neutrophil transmigration and diapedesis [40,50,51].
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Figure 3. MLCK210 is a signal integrator molecule containing several interaction sites for cytoskeletal
and regulatory proteins (based on [44,45]). Adapted with permission from Ref. [44], Shirinsky, V.P.
(2012). MYLK (Myosin Light Chain Kinase). In: Choi, S. (eds) Encyclopedia of Signaling Molecules.
Springer, New York. https://link.springer.com/referenceworkentry/-10.1007/978-1-4419-0461-4_2
48#citeas, license number 5481371185567/2023, Legend: CaM—calmodulin, KRP—kinase-related
protein domain, MT—microtubules, PK+ARD1—Protein kinases and ARD1 acetylase that modify
MLCK210 residues, SV—supervillin (a membrane-associated scaffolding protein interacting with
MLCK210 N-terminus and with myosin II).

The smooth muscle MLCK and nmMLCK share identical c domains, whereas the N ter-
minal domain is unique to nmMLCK and undergoes posttranslational phosphorylation [52].
The Rho kinase may phosphorylate non-muscle myosin in other cell types [43,53]. There
are significant differences in MYLK activity in smooth, skeletal, and cardiac muscles [43].

Certain VUS in genes associated with heritable vascular diseases may be low-penetrant
“risk variants”, which may result in disease in the presence of other genetic or environmental
factors or due to stochastic events [54,55]. MYLK haploinsufficiency specifically involves the
ascending aorta and not other tissues, with much lower MLCK requirements [43]. MYLK
mutations associated with TAAD are located in the short form of MLCK (aa 923–1914), the
only form expressed in the human aorta [28,29,46,52]. As such, rare variants disrupting
amino acids 1 to 922 (like in our case) should not cause aortic aneurysms but may have
other vascular consequences [28,29,46,52] (Figure 1).

The clinical phenotype of MYLK mutations is not well characterized besides TAAD,
as they are not associated with morphological changes, including aortic ectasia [43,56].
Nevertheless, the MYLK-related phenotype is expanding. MYLK homozygous mutations
were described in the megacystic microcolon intestinal hypoperistalsis syndrome [57].
Certain MYLK polymorphisms may be associated with severe respiratory inflammatory
disorders, such as asthma, acute respiratory distress syndrome, etc. [50]. Also, MYLK
-associated vascular involvement may result in multiple arterial dissections in phenotypes
distinct for the homozigosity or heterozigosity of the MYLK variant [27,58]. MYLK may
also be involved in the occurrence of intracerebral aneurysms (ICA) [59].

https://link.springer.com/referenceworkentry/-10.1007/978-1-4419-0461-4_248#citeas
https://link.springer.com/referenceworkentry/-10.1007/978-1-4419-0461-4_248#citeas
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In our case, the MYLK mutation was located in the Ig-like domain3, involved in the
EC cytoskeletal functions [23].

3.2. MYLK in Endothelial Inflammation, BS, and Aneurysms

The EC cytoskeleton is involved in vascular barrier integrity and repair [60]. The
nmMLCK regulates endothelial and vascular permeability, promoting EC cytoskeleton
rearrangements [52,61]. Regulatory mRNAs controlling nmMLCK expression are triggered
in response to inflammatory stimuli [50,61]. TNFα increases MYLK transcription in lung
EC [61], while the transcription factor NRF2 represses it [50]. Epigenetic modification of
cytoskeletal dynamics is also important in BS [62]. A ruptured aneurysm involves a vessel
wall structure injury or EC apoptotic death, which can be initiated by tumor necrosis factor
alpha (TNFα) in BS [42,56].

There are common pathways and mechanisms, some including MYLK, in aneurysm
formation and BS pathogenesis (Table 1).

MYLK is involved in inflammatory responses such as EC apoptosis, vascular perme-
ability, and leukocyte diapedesis [45]. Neutrophils are central in many diseases evolving
with inflammation and tissue remodeling, including aneurysms, by releasing neutrophil
extracellular traps (NETs) [63]. Neutrophils are key players in BS [64,65]. Adherent neu-
trophils activate endothelial MLCK, increasing EC contractility and intercellular gaps
and thus facilitating neutrophil migration to the inflammatory sites [65–67]. Also, MYLK
triggers neutrophil transmigration by activating integrin β2 in acute lung injury [68].

MLCK is critical in the TNFα-induced EC apoptosis through caspase activation [69,70].
In BS, TNFα results in EC apoptosis and induces the expression of proinflammatory
mediators, including metalloproteinases MMP-2 and MMP-9, which are important in ECM
destruction and aneurysm formation [42,56,71–74]. Other factors involved in vascular
remodeling, such as mechanical stretching, are intermingled [75,76].

The vascular endothelial growth factor (VEGF), a proangiogenic glycoprotein involved
in many cellular processes such as cell migration, proliferation, and angiogenesis, also
increases EC permeability [40]. VEGF increases both nmMYLK gene product through the
Sp1 transcription factor and nmMLCK enzymatic activity [40]. In BS, the VEGF levels
are increased, correlated with the disease activity mostly in vascular BS [77,78]. Nev-
ertheless, VEGF inhibition may result in aneurysms or dissections [79]. The ubiquitin-
proteasome system (UPS), involved in SMC inflammation and phenotypic switch, is impor-
tant in the common pathogenesis of aneurysms [50] and BS [80]. MLCK also intervenes in
UPS regulation [81].

From the mitogen-activated protein kinases (MAPK), a family of kinases regulating
cell growth, differentiation, and inflammation, ERK (extracellular signal-regulated kinase)
1/2 is increased in BS in EC [81]. ERK activates MMPs during AAA formation [82]. ERK
signaling inhibits MLCP in the MLCK/MLCP balance [83].

Table 1. MYLK effects and possible pathogenetic involvement in BS/HSS.

MYLK/MLCK Function In BS/HSS

MYLK is involved in aneurysm formation [27] Not previously described in BS

MLCK is critical in the TNFα -induced EC
apoptosis (through caspase activation) [69,70] TNFα results in EC apoptosis [72]

MYLK transcription in lung EC
is increased by TNFα [61]

TNFα induces MMP-2, MMP-9 important in
aneurysmal formation [42,73,84]

MMP-2 and MMP9 are involved in BS (MMP-9
mainly in vascular BS) [74]
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Table 1. Cont.

MYLK/MLCK Function In BS/HSS

VEGF is involved in cell migration,
proliferation, and angiogenesis and increases

EC permeability [40].
VEGF increases the MYLK gene product and

nmMLCK enzymatic activity involving the Sp1
transcription factor [40]

VEGF levels are increased in BS, mostly in
vascular BS, correlated with disease activity
and possibly predicting thrombosis [77,78]

ERK signaling is involved in the
MLCK/MLCP balance by inhibiting MLCP [83]

ERK 1/2 in EC is increased in BS, stimulated
by anti-endothelial antibodies [85]

ERK activates MMPs [82]

MYLK is involved in inflammatory responses
(apoptosis, vascular permeability, leukocyte

diapedesis) [45]
Activated neutrophils induce

MLCK phosphorylation, and thus EC
contractility

and neutrophil migration [66,67]
MYLK triggers neutrophil transmigration

during acute lung injury by activating
integrin-β2 [68]

Adherent neutrophils activate
endothelial MLCK, and neutrophils

are activated in BS [66]

MLCK pathway is involved
in mediating proinflammatory

cytokines (IL1β, IL-6, IL-8) expression [55]

Proinflammatory cytokines
including IL-1β, IL-6, IL-8

are involved in BS pathogenesis [72]
Legend: AAA—abdominal aortic aneurysm, BS—Behçet syndrome, EC—endothelial cell, MMP—
metalloproteinase, ERK1/2—extracellular signal-regulated kinase 1/2, HSS—Hughes-Stovin syndrome, PYK2—
neutrophil tyrosine kinase, TNF-α: tumor necrosis factor-alpha, VEGF—vascular endothelial growth factor,
sVEGFR—1 soluble VEGF—receptor 1.

As the MYLK mutation in our case interests the codon 491 involved in the EC cy-
toskeletal functions, it may take part in the processes discussed [23].

3.3. Other Possible Common Pathogenic Mechanisms in BS and Aneurysms

Many inflammatory cells in the aneurysmal tissue produce cytokines and enzymes pro-
moting ECM degradation, depletion of SMCs, and vessel wall injury and remodeling [86].
A genome-wide association study in BS identified genes involved in focal adhesion, MAPK
signaling, transforming growth factor beta (TGF-β) signaling, ECM-receptor interaction,
and complement and coagulation cascades [80,87], suggests their involvement in pathogen-
esis (Table 2). For instance, shared genes between BS and aneurysms involving the ECM
include the TGFβ/SMAD signaling pathway, active in BS [80,88,89], but also in TAAD and
ICA [29,90]. Also, ACTA 2, involved in TAAD [55], is overrepresented in BS monocytes in
the epithelial adherence junctions signaling [89].

The Notch pathway regulates developmental cell-fate decisions, modulates innate
and adaptive immune responses, and is critical for vascular integrity maintenance and
repair [91,92]. Notch1 haploinsufficiency causes TAAD in mice [93]. Notch1 is activated in
active BS, likely related to decreased miR-23b expression [94]. Of interest, the decreased
miR-23b also promotes aortic aneurysm formation by increasing the transcription of FOXO4
(transcription factor forkhead box 4) involved in SMC phenotyping switching [95].

HLA-B51+, also present in our patient, confers an odds ratio of 5.9 to develop BS but
accounts for only 20% of the genetic risk in BS [72,96]. Although the altered HLA-B51
peptide presentation is important in BS pathogenesis, the vasculitis seems not to be HLA-
B51-related [22,96,97]. To our knowledge, HLA-B51 has not been often tested in HSS, as
only one patient was tested in an earlier series, who was positive [1,98]. Nevertheless, HLA
B51 may be present in HSS with or without other BS signs [99,100]. HLA-B51 includes a
Bw4 epitope that interacts with the Killer cell immunoglobulin-like receptors KIR3DL1/DS1
on the NK cell surface [101]. KIR3DL1/DS1 functional polymorphisms are found in BS [102].
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KIR3DL1/DS1 and their HLA-class I ligands are associated with aneurysm formation in
abdominal aortic aneurysms (AAA) [86].

Endoplasmic reticulum aminopeptidase 1 (ERAP1) may reflect common mechanisms
with spondylarthritis by trimming the antigenic peptides to be loaded onto MHC class I
molecules [21]. Although ERAP1 interacts with HLA-B51, it is not associated with vasculitis
in BS [103,104].

Cytokines contribute to inflammation in BS and aneurysms genesis, respectively
(Table 2) [72,80,90,105–111]. Also, the T helper cells Th1, Th2, and Th17 and their secreted
cytokines are dysregulated in thoracic aortic aneurysms and dissections (Table 2) [59].

Table 2. Other possible common mechanisms involved in Behçet syndrome and aneurysms.

Mechanism/Pathway Behçet Syndrome Aneurysms

TGFβ

The TGF/SMAD3 pathway is
overactive in BS [80,88]

TGF-β1 increases in pulmonary
vessels after mechanical stretching [75]

SMAD3 is involved in TAAD and
Loeys-Dietz syndrome type III [29]

TGF-β1 increases in ICA [90]

ECM-receptor
interactions

COL1A2, COL5A1 are
involved in BS [80]

COL1A2 and COL5A1 are involved in
syndromic TAAD [29]

Proteasome PSMA6 is found in GWAS in BS [80] PSMA6 is involved in AAA [87]

Notch signaling
Notch 1 is involved in immune cells

differentiation and activation [92]
Notch1 is activated in BS [94]

Notch pathway is critical for
integrity [91]

Notch1 haploinsufficiency causes TAA
in mice [93]

Mitogen-activated protein kinases
(MAPK)

ERK 1/2 in EC is increased in BS,
stimulated by anti-endothelial

antibodies [81]

ERKs activate MMPs during AAA
formation [82]

Interleukins

In BS TNFα, IL6,
IL12/IL23 and IL10 are increased

[80,106]
IL-32 is involved in endothelial

inflammation and coagulation in BS
[109,110]

TNFα increases in ICA [90]
IL6 increases in AAA [107]

IL12/IL23 increases in AAA [108]
IL10 increases in ICA [90]

IL32 increases in AAA [111]

Regulation of IFNγ production and
JAK/STAT signaling

IRF8 and IFNGR1 are involved in BS
[106]

IFNγ is involved in ICA [90], and in
experimental AAA [112], and

JAK/STAT pathway in AAA [107]

VEGF VEGF is increased in BS [78] VEGF is increased in AAA [107]

MMP MMP2 and MMP9 are involved
in BS [74,75]

MMP2, MMP9 are increased
in AAA [107]

Killer cell immunoglobulin-like
receptors

KIR3DL1/DS1 polymorphisms are
found in BS and interact with NK cells

[100,101]

KIR3DL1/DS1 is associated with
AAA formation [86]

Heat shock
proteins

HSP60, HSP70 on Chlamydia,
Mycoplasma involved in BS [72]

HSP60 and HSP70 bind to EC and
macrophages in AAA [113]

Extracellular
vesicles

EV are increased in BS
predisposing to thrombosis [114]

EV mediates intercellular
communication in aneurysm genesis

[115]

Legend: AAA—abdominal aortic aneurysm, EV—extracellular vesicles, ICA—intracerebral aneurysm HSP—
heat shock proteins, IFNGR1—Interferon Gamma Receptor 1, IFNγ-interferon gamma, KIR3DL1-Killer cell
immunoglobulin-like receptors, MMP—metalloproteinase, PSMA6—Proteasome 20S Subunit Alpha 6, TAAD—
thorarcic aortic aneurysm and dissection, VEGF—vascular endothelial growth factor. Note: Very few patients
studied had vascular BS; for other genes apart from HLA-B regions, the effect sizes are small, and the functional
consequences of most genetic variations in BS pathogenesis are unknown.

Molecular mimicry for antigens such as Chlamydia pn., Mycoplasma spp. S. sanguis,
H. pylori, Staph aureus, bearing autoantigens such as the heat shock proteins HSP60, HSP70,
was found in BS [72]. Chlamydia and Mycoplasma initially colonize the adventitia through
vasa vasorum [116], whereas HSP60 and HSP 70 bind to EC and macrophages and induce
the secretion of proinflammatory cytokines and MMPsin AAA [113]. Extracellular vesicles
(EV), membrane-surrounded particles, modulate inflammation, vascular dysfunction, and
thrombosis [117]. EV are involved in aneurysm pathogenesis, mediating intercellular
communication [115]. Moreover, EV are increased in BS, predisposing to thrombosis [114].

From the actors participating in the complex shared mechanisms of BS and aneurysms,
our patient was HLA-B51-positive.
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3.4. Other Potential Contributors to Aneurysm Formation in Our Case

Several other genetic factors raised questions regarding the potential contribution to
the occurrence of PAA.

The heterozygous low-penetrance CTFR pathogenic mutation may be associated with
cystic fibrosis, with congenital bilateral absence of the vas deferens, and in heterozygous
carriers with increased risk for pancreatitis. Cystic fibrosis, an autosomal recessive (AR)
disease beyond the status of the carrier, may result in haploinsufficiency, increasing the
risk for cystic fibrosis-related conditions [118]. Noteworthy, PAA and bronchial artery
aneurysms have been described in cystic fibrosis [119]. The CTFR carriage would also
increase the risk of pancreatitis and gastrointestinal cancers, which is important in long-term
management under azathioprine [118].

The patient had a heterozygous pathogenic mutation in CR2, encoding the complement
C3d receptor 2, a membrane protein functioning as a receptor for the Epstein-Barr virus on
B and T lymphocytes, which also inhibits IL-6 production [120]. CR2 mutations may be as-
sociated with a type of AR common variable immunodeficiency and autoimmune diseases
due to the impairment of self-tolerance [120]. Both cystic fibrosis and common variable
immune deficiency may be associated with bronchiectasia, a cause of hemoptysis [121].

Mutations of GGCX encoding an enzyme involved in the metabolism of Gla proteins
may also cause an AR pseudoxanthoma elasticum-like disorder with multiple coagulation
factors deficiency, and at times with vascular abnormalities, including cerebral aneurysms
or pulmonary artery stenosis [122,123]. Haploinsufficiency has been described for GGCX
carriers as well [123].

Although a single copy of NPH2 is unlikely to create the AR dyskeratosis congenita,
and the patient has no clinical features to support the diagnosis of this telomere disorder,
dyskeratosis congenita may be associated with pulmonary arterio-venous malformations
and with bone marrow failure [124]. FANCE may be associated with AR Fanconi’s anemia,
also a cause of arteriovenous pulmonary fistulae [125].

BS is a multifactorial polygenic disease, with genetic, epigenetic, environmental, and
immunological contributors [126]. Inflammation plays a major role in BS pathogenesis [127].
The genetics of BS are complex, involving more than one pathogenic pathway [126,127].
Nevertheless, BS in the same family seems not to accumulate in similar clinical clusters [128].
Moreover, different vessels may be involved in BS relapses [20]. This would plead for
the outstanding role of multiple non-genetic factors in BS relapses [128]. However, in an
individual BS patient, the genetic background may contribute to the shaping of the clinical
disease appearance.

3.5. Therapy

In our patient, the left pulmonary artery aneurysm decreased in size, likely because of
the cortisone treatment for COVID infection.

Vascular BD or HSS respond generally to glucocorticoids and cyclophosphamide, or
anti-TNFα in refractory cases, or in cases with pulmonary vessel involvement [19,71,129]. In
BS, aneurysms may develop at the site of arterial puncture. Surgical PAA repair carries a high
risk of massive hemoptysis, and arterial embolization with catheter angiography may be an
emergency alternative [130]. In BS, except for in venous cerebral thrombosis therapy, antico-
agulation is less effective than immunosuppression in preventing recurrent thrombosis [71].
Anticoagulation may be necessary, often in the coexistence of cardiac thrombus, but is risky in
the context of PAA and should parallel immunosuppression [22,131].

Of interest, MLCK is a potential therapeutic target for inflammatory diseases [132]. The
VEGF-induced nmMLCK expression and EC permeability can be attenuated by silencing
the transcription factor Sp1 [88]. Nevertheless, inhibiting targets such as VEGF or Notch
should be weighed against the possible deleterious effects [92].
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4. Conclusions

The different BS phenotypes are likely based on different genetic determinants. As
such, HSS may be a vascular BS in the presence of sometimes minor gene variants resulting
in disruption of vascular organization, SMC loss, contractile dysfunction, and formation of
aneurysms [50]. Several other gene variants involved in angiogenesis, arterial dissections,
or thrombosis may contribute to shaping the vascular BS phenotype. Nevertheless, BS is a
polygenic disease with genetic, epigenetic, environmental, and immunological contributors,
and some findings from TAAD cannot be simply extrapolated [126]. However, decipher-
ing the specific pathogenic contributors in an individual BS patient may help improve
disease understanding [133].

Managing BS and its specific variants is complex and challenging [134]. In patients
with BS, a hemorrhage should inspire a suspicion of HSS [129]. Improvement of diag-
nostic techniques may aid in reaching a rapid diagnosis which may be life-saving in this
setting [135,136]. Noteworthy, the PA wall thickness is increased in BS with major or-
gan involvement, which could be important also for diagnosis in cases with incomplete
presentation [137]. Besides, new findings regarding aneurysm formation could advance
pharmacological interventions [133]. Recent advances in diagnostic techniques allow an
early diagnosis of a specific Behçet syndrome subtype and other associated conditions to
personalize the disease management. In the presented HSS case, actually a vascular BS,
several variants of genes involved in angiogenesis were found. Genetic testing in other
HSS cases could help identify the mechanisms underlying the PAA formation besides
pulmonary vasculitis.
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