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Abstract: Phosphorus-containing metabolites cover a large molecular diversity and represent an
important domain of small molecules which are highly relevant for life and represent essential
interfaces between biology and chemistry, between the biological and abiotic world. The large but not
unlimited amount of phosphate minerals on our planet is a key resource for living organisms on our
planet, while the accumulation of phosphorus-containing waste is associated with negative effects
on ecosystems. Therefore, resource-efficient and circular processes receive increasing attention from
different perspectives, from local and regional levels to national and global levels. The molecular
and sustainability aspects of a global phosphorus cycle have become of much interest for addressing
the phosphorus biochemical flow as a high-risk planetary boundary. Knowledge of balancing the
natural phosphorus cycle and the further elucidation of metabolic pathways involving phosphorus
is crucial. This requires not only the development of effective new methods for practical discovery,
identification, and high-information content analysis, but also for practical synthesis of phosphorus-
containing metabolites, for example as standards, as substrates or products of enzymatic reactions,
or for discovering novel biological functions. The purpose of this article is to review the advances
which have been achieved in the synthesis and analysis of phosphorus-containing metabolites which
are biologically active.

Keywords: phosphorus cycle; biologically active metabolites; phosphometabolites; analytical ad-
vances; phosphometabolome

1. Introduction

Small molecular weight compounds containing phosphorus, which does not occur
as a free element in nature, represent essential components of biological cells acting as
substrates of enzymes or the products of enzymatic reactions, regulatory or signalling
molecules, or building blocks for the biosynthesis of biopolymers, natural products, and
cofactors [1]. The importance of phosphorus-containing metabolites (phosphometabolites)
which are biologically active is related to the versatile phosphorus chemistry and derives
from the key requirements for the element phosphorus as part of cellular components of
living organisms, from microorganisms, plants, and animals to humans.

A detailed molecular understanding of the phosphometabolites and their biological
activities, transformations, and storage is of much fundamental interest. This is also rele-
vant in the broader context of the biochemical flow of phosphorus on our planet, which
has been listed as one of the planetary boundaries to be concerned about, as the flow of
phosphorus into the oceans is already approaching the proposed planetary boundary of
11 million tons per year [2]. After phosphorus was- discovered as an element in the 17th
century, the evolution of human use of phosphorus has involved both positive and negative
consequences, due to phosphorus being essential for sustaining all life and food produc-
tion [3]. The privileged role of the element phosphorus in the living world is very clearly
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evident from the wide occurrence of phosphoric acid derivatives everywhere in biological
organisms [4], for example in many important biological cell components, such as sugar
phosphates, phosphate esters, and thioesters, phosphoric acid anhydrides, phospholipids,
teichoic acids, cofactors, phosphoramidates, and nucleic acids. The flexibility and great
functional variety of phosphates are essential for life and have been described by Lord Todd
in his essay “Where There’s Life There’s Phosphorus” [4]. The question has been raised
of how phosphate could have assumed these key roles and whether ancient metabolic
networks without phosphate could have played a role in the origin of life on the primordial
earth, taking into account the poor geochemical accessibility of phosphate [5]. The multiple
functions of negatively charged phosphate esters and anhydrides, which are stable but still
reactive under enzymatic catalysis, and retained by biological membranes, have been of
great fundamental interest [6–8] and also provide inspiration for its utilization in organic
chemistry [9].

The growing anthropogenic activities are affecting the global phosphorus cycle by
increased mining of mineral phosphorus resources, inefficient utilization of phosphorus
resources, and the influx of phosphorus waste into aqueous systems. Therefore, improve-
ments in the biochemical flows and the resource efficiency of phosphorus are necessary for
a sustainable phosphorus cycle. Among the complex challenges for which solutions need to
be developed and implemented in moving from linear to circular processes are phosphorus
recovery, recycling, and transformations which utilize renewable phosphate resources for
sustainable manufacturing [10]. The rich phosphorus chemistry and the methods used
by nature can provide inspiration for novel reaction discovery and the transition towards
sustainable phosphorus chemistry, with the opportunity to avoid toxic intermediates and
reduce energy input and waste [9,11]. This requires not only a macroscopic analysis of the
flow of the element phosphorus, but also a molecular path analysis of organic and inorganic
compounds, as well as the development of novel synthetic tools and methodologies.

A balanced biochemical flow of phosphorus is not only relevant at the planetary level,
but also at the regional, national, and local levels. On the level of biological organisms, their
health and risk of disease are also affected by phosphorus metabolism, and a major part of
metabolites which are highly important for cellular metabolism, are stable kinetically and
can be activated thermodynamically, are phosphorus-containing metabolites [12]. Avoiding
that the phosphorus uptake by food and beverages with high phosphorus content exceeds
very much the metabolic needs and secretion of phosphorus and maintaining phosphate
metabolism in balance is also important for human health and the prevention of organic
dysfunction and accelerated aging [13].

Phosphometabolites represent a significant fraction of the total number of metabo-
lites, the metabolome, of microorganisms, plants, animals, and humans. The Human
Metabolome Database HMDB 5.0 lists more than 30,000 phosphometabolites among its
more than 220,000 endogenous metabolites [14]. While the discovery of many biologically
active phosphometabolites as well as their analysis and synthesis represent important bio-
chemistry milestones and there is still more work ahead, it is worthwhile to have a look at
the current status of the analysis and synthesis of biologically active phosphorus-containing
metabolites, for which a range of new tools and methodologies have been developed in
various classes.

2. Structures of Biologically Active Phosphometabolites

The element phosphorus is very versatile in undergoing chemical bonds with many
elements, from hydrogen, boron, carbon, nitrogen, oxygen, and fluorine to sulfur, chlorine,
bromine, iodine, or phosphorus itself, and can have oxidations states between +5 and −3
as well as coordination numbers between 1 and 9 [15]. At the earth’s surface, in minerals,
and in the current metabolic pathways existing in the biosphere, phosphorus with the
oxidation state +5 is largely predominant [16–18], but lower oxidations states and trivalent
phosphorus are also of much interest in modern main group chemistry and as biologically
active metabolites in organisms, for example in the exploration of the phosphonate bio-
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chemistry [19]. Nature’s focus on pentavalent phosphorus with an essentially constant
oxidation state +5 and covalent phosphorus-oxygen bonds enables a wide structural diver-
sity of phosphorus-containing metabolites (see Figure 1), from inorganic phosphates, pyro-,
meta- and polyphosphates to phosphoanhydrides, phosphomonoesters, phosphodiesters,
and phosphotriesters [1].
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From an energetic perspective, the diversity of phosphometabolites can also be divided
into three energy classes (see Figure 2): reactive phosphorus compounds, condensed
phosphates, and stable phosphorus compounds [20].
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Figure 2. Selected phosphometabolite structures from the three energy classes of reactive phosphorus
compounds, condensed phosphates, and stable phosphorus compounds.

The majority of biologically active phosphometabolites identified so far are phosphate
derivatives containing phosphorus-oxygen bonds, as discussed previously. Important
phosphometabolites can, however, also be found among phosphate derivatives contain-
ing a P-N-bond, a P-S-bond, or a P-C-bonds instead of a P-O-bond, or a combination
thereof. The replacement of one of the four phosphate oxygens by nitrogen, sulfur, or
carbon (see Figure 3) can be found in the phosphometabolite classes of phosphoramidates,
phosphorothioates, and phosphonates [21].
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Phosphometabolite structures can also be put into the context of their biological
activities in living cells. Intrinsic phosphometabolites of the corresponding cells play
key roles as endogenous phosphometabolites in the proper functioning and regulation of
central carbon, energy, and phosphorus metabolism. Phosphometabolites derived from the
transport of extrinsic compounds to the corresponding cells and subsequent intracellular
modification are different from cellular phosphometabolites and can act as important
exogenous phosphometabolites in the treatment of diseases by pharmaceuticals.

2.1. Endogenous Phosphometabolites

The natural inorganic phosphometabolites, originating from the condensation of
phosphates and consisting only of phosphorus and oxygen, show a fascinating richness
of structures (see Figure 4) ranging from simple inorganic phosphate to various linear,
branched (ultraphosphates) and cyclic (metaphosphates) structures of polyphosphates [22].
In addition to linear polyphosphates, substantial amounts of small cyclic polyphosphate
structures have been discovered in phosphate granules of Xanthobacter autotrophicus by
using non-destructive solid-state 31P NMR methods [23]. Based on the new synthetic access
to defined branched short-chain ultraphosphates, which has enabled investigations of
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their properties and reactivity, surprising stabilities with half-lives up to days have been
discovered [24].
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Figure 4. Natural inorganic cyclic tetra-and hexaphosphate structures.

The majority of organic phosphometabolites contain covalent bonds of phosphorus
to oxygen or nitrogen. Phosphorylated derivatives of monosaccharides and polyols show
great structural diversity and are key metabolic intermediates and regulators of carbohy-
drate metabolism. As the monophosphorylation of neutral sugars and polyols is already
sufficient for keeping phosphometabolites inside cells, it is not surprising that the number
of phosphate monoesters of monosaccharides and polyols carrying one phosphoryl group is
much larger than the ones carrying two or more phosphoryl groups. Although the number
of bis-phosphorylated monosaccharides is smaller, some important biological activities
are connected with them, such as the bis-phosphorylated forms of D-glucose, D-fructose,
D-tagatose, and D-sedoheptulose (see Figure 5).
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The tris- and tetra-phosphorylated myo-inositols, which can occur with different
substitution patterns according to their specific phosphorylation sites at three or four
of the hydroxy groups, are important signalling compounds. It is also special that bio-
logically active myo-inositol phosphometabolites cover the whole range from mono- to
hexaphosphorylated myo-inositols (see Figure 6).
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Figure 6. Structures of biologically active mono-, bis- tris-, tetra-, penta- and hexa-phosphorylated
myo-inositols. Different myo-inositol phosphometabolites and their stereoisomers can be recognized
by the carbon atom numbering of their phosphorylation sites.

An important feature of structural diversity comes from the chirality of non-symmetrical
phosphometabolites, whether this originates from an already chiral non-phosphorylated
precursor or is created by the desymmetrization of a symmetric non-phosphorylated pre-
cursor by phosphorylation. The molecular complexity and stereochemical diversity of
phosphometabolites are increasing with the number of chiral centers and are of much
interest for interactions with inherently chiral biomacromolecules in chemical biology [25].
Important examples of biologically active enantiocomplementary phosphate mono-esters
carrying one phosphoryl group are the enantiomers of terminally phosphorylated glyc-
erol, glyceraldehyde, and xylulose (see Figure 7). Stereocontrolled biosynthesis of chiral
phosphometabolites in enantiocomplementary pathways is of much interest [26] and
can be achieved by different enzymes from their corresponding non-phosphorylated chi-
ral precursors, or by different enzymes from a common achiral precursor. Examples
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for the latter case are enzymatic reductions of dihydroxyacetone phosphate to the two
enantiomeric forms of terminally phosphorylated glycerol (see Figure 7) catalyzed by
enantiocomplementary dehydrogenases. The L-enantiomer of glycerol 3-phosphate, also
named sn-glycerol-3-phosphate, or D-glycerol 1-phosphate, is formed by sn-glycerol 3-
phosphate dehydrogenase-catalyzed reduction of dihydroxyacetone phosphate, while the
D-enantiomer of glycerol 3-phosphate, also named as sn-glycerol-1-phosphate, or L-glycerol
1-phosphate, is formed by sn-glycerol 1-phosphate dehydrogenase-catalyzed reduction of
dihydroxyacetone phosphate [27].
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As monosaccharides and polyols are important carbon and energy sources for bi-
ological cells, their respective phosphometabolites are highly important in the central
metabolism and regulation of healthy biological cells. These phosphate monoester struc-
tural features occur also in a variety of other well-known endogenous phosphometabolites,
such as aminosugar phosphates, deoxysugar phosphates, phosphorylated sugar acids,
phospholipids, and ribo- and deoxyribonucleoside monophosphates.

Phosphate monoesters are also involved in the RubisCO-catalyzed formation of 3-
phospho-D-glycerate, a key reaction in the dominant biological carbon dioxide fixation
on our planet converting >90% of inorganic carbon into biomass [28]. Constructing and
optimizing novel synthetic biocatalytic systems is an exciting new area to overcome bottle-
necks in biological carbon dioxide fixation, where phosphometabolites are involved either
directly with phosphenolpyruvate in the synthetic rGPS cycle and the MCG pathway [29],
or indirectly with the phosphorus-containing metabolites ATP, coenzyme A and NADP in
the synthetic CETCH cycle [30].

Thermodynamic stability of phosphodiester structures is essential for many important
biologically active phosphometabolites. The diacyl-sn-glycerol-3-phosphates esterified
with polar head groups such as choline, ethanolamine, glycerol or L-serine in phospho-
lipids are key for the integrity of cell membranes. Other phosphodiesters contain polar
head groups such as choline and ethanolamine just esterified with sn-glycerol-3-phosphate.
Phosphodiesters of polyols have been identified in extremophiles as osmolytes, also desig-
nated as extremolytes, such as di-myo inositol 1,1′-phosphate, diglycerol-phosphate, and
glycerophospho-myo-inositol. The key functions as second messengers of the nucleotide
3′,5′-cyclic monophosphate signalling molecules are well established in archaea, bacteria,
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and eukarya, with the adenosine 3′,5′-cyclic monophosphate (cAMP) and the guanosine
3′,5′-cyclic monophosphate (cGMP), shown in Figure 8, acting as the most common sec-
ond messengers [31]. The biological functions of the cytidine 3′,5′-cyclic monophosphate
(cCMP) and the uridine 3′,5′-cyclic monophosphate (cUMP) as second messengers involved
in bacterial immunity signalling against viruses have only recently been assigned [32]. The
positional isomers adenosine 2′,3′-cyclic monophosphate (2′,3′-cAMP) and guanosine 2′,3′-
cyclic monophosphate (2′,3′-cGMP) of the common cAMP and cGMP (see Figure 5) have
recently been demonstrated to play key roles as signalling molecules in the immune re-
sponse and cell death of plants mediated by the bifunctional plant TIR proteins which
catalyze its formation [33,34]. Another important family of second messengers are the cyclic
dinucleotides such as cyclo-diAMP, cyclo-diGMP, 3′,3′-cyclo-GAMP, or 2′,3′-cyclo-GAMP,
which contain two phosphodiester moieties and have many signalling functions towards a
variety of biological processes [35,36]. A common defense system against a wide range of
phages has been demonstrated to involve cycloGAMP [37]. Cyclic dinucleotide analogues
have attracted much therapeutic interest due to their biological activities, such as signalling
molecules in immune response, especially analogues of the endogenous immune stimulant
2′,3′-cycloGAMP [38].
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and 2′,3′-cGMP.

Energy-rich phosphoanhydride bonds are key to a range of central phosphometabo-
lites, from simple pyro- or diphosphate to nucleoside diphosphates, nucleoside diphosphate
sugars, prenyl diphosphates, 5-phospho-D-ribose-1-diphosphate, thiamine diphosphate,
each containing one phosphoanhydride bond, to 2′-deoxynucleoside triphosphates and
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nucleoside triphosphates, among which ATP is the most prominent one [39], containing
two phosphoanhydride bonds. Phosphoanhydride bonds are also present in the osmolyte
cyclic 2,3-diphosphoglycerate, and in a number of signalling molecules, such as cyclic
ADP-ribosides, or alarmone nucleotides such as ppGpp.

The structures of phosphoramidates, which are characterized by a single covalent
bond between nitrogen and phosphorus with an oxidation state of +5 and coordination
number 4, can be classified according to the type of amine bound to phosphorus (see
Figure 9) into three different classes of N-phosphorylated compounds [21] where phos-
phorus is covalently bonded to the nitrogen (a) of a mono-substituted NH2-group, such as
phosphagens or N-phosphorylated amino acids [40], (b) of a di-substituted NH2-group,
and (c) of a free NH2-group, such as nucleoside 5′-phosphoramidates [41].
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An increasing number of phosphoramidates have been discovered as biologically
active phosphometabolites in microorganisms [21], such as cytidine diphosphoramidate
as a metabolic intermediate in the biosynthesis of Campylobacter jejuni capsular polysac-
charide [42]. Although the structure of the microbial metabolite phosphoramidon from
Streptomyces tanashiensis was reported 50 years ago [43], its biosynthesis and powerful
enzyme inhibitor properties towards various metalloendopeptidases, and endothelin-
converting enzymes continue to be of interest [44]. The P-N bond can also be found in
the structures of naturally occurring nucleotide antibiotics, for example in the phosmi-
dosin from Streptomyces durhameusis, which has antifungal activity and an O-methylated
phosphoramidate structure [40], and in the ribosomal peptide antibiotic microcin C7 from
Escherichia coli, having the peptide at its C-terminus linked by a phosphoramidate linkage
to adenosine monophosphate [45].
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Endogenous phosphorothioates have been rarely described [21], but S-phosphorylation
has been demonstrated in the endogenous ENITNLDApCITR peptide from E. coli [46].
The naturally occurring sequence- and stereospecific introduction of sulfur into phosphate
groups of the DNA backbone, which has been investigated by analyzing all 16 possible
phosphorothioate-linked dinucleotides, has demonstrated that d(APSA), d(CPSA), d(GPSA),
d(GPST), d(GPSG), and d(TPSA) (see schematic structures and stereochemistry in Figure 10)
are phosphorothioate modifications of DNA, which stabilize against nuclease degradation
and are widespread in bacteria [47,48]. So far, only the RP-stereoisomer, which results from
stereospecifically replacing in a phosphate group a non-bridging oxygen by sulfur [47].
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Naturally occurring phosphonates consist of a group of microbial metabolites [40]
containing one chemically and thermally stable phosphorus-carbon bond instead
of a phosphorus-oxygen bond, such as phosphonolactate, phosphonomethylmalate,
phos-phonoalanine, 2-aminoethylphosphonate, 2-hydroxy-ethylphosphonate, and 2-
keto-4-hydroxy-5-phosphonopentanoate (see Figure 11), which originate from the
key metabolites phosphonopyruvate and phosphonoacetaldehyde at early branch
points of phosphonate biosynthesis [19,49]. The old broad-spectrum antibiotic (1R,2S)-
epoxypropyl-phosphonate (see Figure 11), which is also named fosfomycin and still
the only phosphinate antibiotic on the market, has been in clinical use for decades [50].
Fosfomycin has also been demonstrated to show antibacterial activities against bacteria
which are resistant against multiple drugs and show extensive resistance [51]. The
interest to fight multidrug-resistant pathogens with new antibiotics make phosphonate
structures interesting candidates for selectively inhibiting pathways of pathogens by
mimicking essential microbial intermediates [51].

Among the endogenous phosphinates, which contain two phosphorus-carbon bonds,
the non-proteinogenic amino acid 2-amino-4-hydroxymethylphosphinylbutanoic acid, also
named phosphinothricin (see Figure 11), was found in Streptomyces strains and has attracted
much interest as an inhibitor of glutamine synthetase [40].
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2.2. Exogenous Phosphometabolites

The role of phosphorus in non-natural compounds has attracted also much interest
in drug discovery and design, medicinal, and a number of important pharmaceuticals in
clinical use, such as bisphosphonates for treating bone disorders, or nucleotide analogues
for treating viral diseases [52,53]. Cellular membranes are more permeable for non-charged
exogenous phosphometabolites than the corresponding charged phosphometabolites, while
the subsequent enzymatic formation of the biologically active charged phosphometabolites
by intracellular enzymes keeps the phosphometabolites inside the cells. This is not only
advantageous for the uptake of nutrients from the environment and their conversion into
phosphometabolites for feeding into the metabolism of healthy cells, but also for the design
of pharmaceuticals as prodrugs and their mechanism of action in the treatment of diseased
cells. The phosphate moiety has a long history of FDA-approved pharmaceuticals applied
in a prodrug form, from hydrocortisone phosphate approved as first prodrug in 1952 to the
17 phosphate prodrugs approved until 2022 [54]. The phosphoramidate prodrug approach,
which was named as ProTide approach, was developed by the McGuigan group and uses
the masking of the monophosphate or monophosphonates of nucleoside analogues for
efficiently delivering into cells where, after cleavage by intracellular enzymes, the bioactive
free nucleoside monophosphates and monophosphonates are released [55]. The application
of this approach continues to be of interest not only for antiviral and anti-cancer nucleoside
analogues [56], but also for further extensions to non-nucleoside analogues [57].

A milestone in multiple sclerosis treatment has been reached by the discovery of fin-
golimod [58], first designated as FTY720, and its mechanism of action as an immunomod-
ulatory drug acting on sphingosine-1-phosphate receptors [59–61]. Detailed analytical
investigations demonstrated that the exogenously administrated drug is converted to the
biologically active non-natural phosphometabolite (S)-fingolimod 1-phosphate, analogous
to the sphingosine kinase-catalyzed phosphorylation of its natural counterpart sphingo-
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sine to the endogenous sphingosine-1-phosphate (see Figure 12), while the (R)-fingolimod
1-phosphate was not found in vivo [59,62].
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Drug discovery and development based on the elucidation of the molecular effects of
fingolimod as a modulator of sphingosin-1-phosphate receptors and subsequent clinical
studies have led to its approval in 2010 as the first orally active pharmaceutical (brand
name Gilenya) for treating multiple sclerosis relapsing forms [63]. FDA approval of Gilenya
(fingolimod) in 2018 for treating relapsing multiple sclerosis in children and adolescents
ages 10 years and older has represented a milestone [64].

3. Analysis of Biologically Active Phosphometabolites

The development of suitable analytical methods for the detection of phosphometabo-
lites has been a key prerequisite for elucidating major biochemical pathways. The investiga-
tion of photosynthetic carbon dioxide fixation required fast, general and sensitive methods
for the detection of phosphate esters, which at that time were chromatography, labelling
with radioactive 14C and 32P, and total phosphorus analysis [65]. The use of metabolomic
technologies, systems biology, and bioactivity tools and methodologies for the identifi-
cation of biologically active metabolites, for which the term activity metabolomics has
been introduced [66], is also of much interest for the great diversity of biologically active
metabolites which are present in cells. This great structural diversity of metabolites means
that there is not just one analytical methodology for measuring all metabolites, neither in
general, nor specifically for phosphometabolites, but several powerful methodologies (see
Figure 13), namely high-performance separation techniques such as LC, GC, and capillary
electrophoresis, and high information content detection using NMR and MS [67]. The
coupling of high performance separation with high information content detection has
enabled numerous advances in accurate and effective analyses of phosphometabolites,
such as in the capillary electrophoresis analysis coupled to MS detection of the isomers of
phosphates and pyrophosphates of myo-inositol [68].
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3.1. NMR Methodologies for the Analysis of Phosphometabolites

The long and successful history of powerful NMR methodologies for analyzing and
identifying molecular structures in solution is also related to the continued growth of its
applications to metabolites [69]. While 1H NMR of common phosphorylated metabolites is
straightforward, several challenges need to be overcome, such as spectra complexity and
the need for standard reference databases, which have been indicated as larger chemical
shift variations depending on the pH observed [70].

For nearly fifty years, 31P NMR has been applied for measuring phosphometabolites
in cells [71] and is an obvious choice, as the properties of 31P and its natural abundance of
100% enable simple 31P reaction monitoring without stable isotope labelling procedures.
The complexity of NMR spectra is significantly reduced for phosphometabolites when
using 31P NMR in comparison to 1H or 13C NMR [72]. Dual detection of 1H and 31P
NMR signals is, however, also of interest for monitoring both phosphometabolite spectra
and solution pH [73]. The direct detection, validation, and determination of total con-
centrations from two-dimensional 1H−31P HSQC-TOCSY spectra, which is facilitated by
reference data on 38 common phosphorylated-metabolites, has led to the development of
an improved NMR workflow for analyzing phosphometabolites in a complex mixture [74].
Pure phosphometabolites as standard reference compounds have also been valuable in the
application of 31P NMR for quantitatively analyzing the phosphorylated metabolites in
mouse liver [75].

3.2. MS Methodologies for the Analysis of Phosphometabolites

The combination of powerful separation technologies with subsequent sensitive detec-
tion methodologies yielding high information content has been key for great progress in
analyzing phosphometabolites. Twenty-two phosphometabolites have been analyzed reli-
ably and selectively, with excellent linearity and sensitivity, using ion-pair reagents, such as
tetrabutylammonium acetate, for HPLC separation, which was then coupled with tandem
quadrupole mass spectrometry [76]. Ion-pair reagents are avoided by using ion chromatog-
raphy coupled with tandem mass spectrometry, as shown by the robust quantitation of 79
phosphometabolites with a capillary ion chromatography-MS/MS method [77]. Advances
in chromatographic separations, such as miniaturizing column diameters and reducing
flow rates below 1 µL/min made possible the coupling to nano-electrospray ionization
with improved ionization, reduced effects of ion suppression, and higher tolerance to salt
concentration in the sample [78]. Tetrabutylammonium acetate has also been used as an



Int. J. Mol. Sci. 2023, 24, 3150 15 of 29

ion-pair reagent in an LC-MS method for the fast and robust analysis of negatively charged
metabolites, which has been successfully applied to more than 60 common endogenous
phosphometabolites and to eight different biological extracts [79]. In order to overcome
challenges in sample preparation and instrumental analysis, such as low concentrations,
stability issues, ionization efficiency, recovery, and carry-over effects, chemical derivatiza-
tion was introduced for analysing specific phosphorylated metabolites from the glycolysis
pathway [80], twelve ribonucleotides in a single cell [81] as well as 42 phosphomonoesters
of S. cerevisiae [82]. Improvements in phosphometabolites signal intensities, as well as the
ratios of the signal to the noise, have also been achieved by column hardware optimization,
such as the change from stainless steel to glass and polyethylene materials, or hybrid
surface technology [83,84]. High-performance chromatography columns are essential for
the separation of isomeric phosphometabolites with identical mass and charge, for example,
regioisomers such as phosphatidylinositols, which are phosphorylated in the 3-, 4- or 5-
position of its inositol ring [85], or enantiomers such as D- and L-glycerol-3-phosphate [86].
As matrix effects from biological samples can lead to under- or overestimation of phospho-
metabolites, corrections by the use of internal standards and stable isotopes have improved
the reproducibility and reliability of phosphometabolite analysis in tissue extracts [87,88].
Capillary electrophoresis coupled with mass spectrometry provides a number of advan-
tages for the analysis of the polar and charge phosphometabolites, such as high resolution,
good quantitation, and low running cost [89].

3.3. Discovery and Structural Identification of Novel Phosphometabolites

Beyond the milestone discoveries and structural analysis of the phosphometabolites in
the past of now classical metabolic pathways of biochemistry textbooks, such as glycolysis,
photosynthesis, pentose phosphate, and mevalonate pathways, the further elucidation
of the molecular diversity of metabolic pathways involving phosphorus used by various
biological organisms in nature is a fascinating frontier for finding novel pathways and
novel phosphometabolites. While preliminary analytical data may look promising for
discovering novel phosphometabolites, the unambiguous structural determination of a
novel phosphometabolite can be challenging.

The discoveries of novel phosphometabolites in the lower mevalonate pathway have
shown an unexpected molecular variety (see Figure 14) in the paths to isopentenylpyrophos-
phate and the importance of combining different approaches. The search for metabolites
and enzymes of the classical mevalonate pathway has led to the discovery of isopen-
tenylphosphate as an intermediate of the Haloarchaea-type mevalonate pathway [90,91].
The characterization of recombinant enzymes from Thermoplasma acidophilum enabled the
discovery of mevalonate 3-kinase and (R)-mevalonate 3-phosphate instead of the classical
intermediate (R)-mevalonate 5-phosphate and this modified mevalonate pathway is now
designated as Thermoplasma-type mevalonate pathway [92].

In the recently discovered archaeal pathway of the hyperthermophilic Aeropyrum
pernix [93,94], both the analysis and the synthesis have been essential for the structural deter-
mination of the unprecedented phosphometabolite trans-anhydromevalonate 5-phosphate
as pathway intermediate and for the confirmation of its structural identity [95].
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4. Synthesis of Biologically Active Phosphometabolites

After the discovery, structural identification, and analysis of biologically active phos-
phometabolites, their preparation as pure products of defined structure has been of key
importance, as demonstrated by the prominent central phosphometabolite ATP, with the
history of its discovery in 1929 and the establishment of its structure in 1935 [96], the
achievement of its first chemical synthesis in 1948 [97], and various manufacturing ap-
proaches. Both non-enzymatic chemical methods, as well as biological methods using
enzymes, are of continuing fundamental and practical interest, although they have been
already utilized very early for the synthesis of phosphometabolites, for example, acetyl
phosphate [98] and carbamoyl phosphate [99]. Whether phosphometabolites are prepared
by isolation from biological resources, or chemical or biological methods of synthesis,
advances in resource-efficient, selective, and straightforward methodologies continue to be
of much interest [100,101]. The preparation of phosphometabolites is needed not only for
confirming phosphometabolite structures but also for providing standards, analogues, or
stable-isotope-labelled phosphometabolites, and for further investigations of their biologi-
cal activities.

4.1. Chemical Methods of Synthesis

A robust phosphorylation strategy in aqueous solution has been demonstrated with
diamidophosphate, which has not only been useful for efficient regioselective α-phospho-
rylation of glycolaldehyde and D-glyceraldehyde, but also for the synthesis of aldose 1,2-cyclic
phosphates, such as D-erythrose 1,2-cyclophosphate from D-erythrose in 87% yield, and D-
threose 1,2-cyclic phosphate from D-threose in 80% yield [102]. The synthesis of myo-inositol
cyclophosphate has been achieved in 80% yield (see Figure 15) from myo-inositol by regiose-
lective one-pot cyclophosphorylation using bis-(dimethylamino)phosphorodiamidate [103].
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Process analytical technology has been shown to provide advantages for synthesizing acetyl
phosphate lithium salt in high purity [104].
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Starting from methyl tetrolate, the first chemical synthesis of trans-anhydromevalonate
5-phosphate (see Figure 15) has been achieved in six reaction steps [95]. In the first three
reaction steps, methyl tetrolate was first converted to methyl (E)-5-hydroxy-3-methyl-pent-
2-enoate, which was then reacted with di-tert-butyl N,N-diisopropyl-phosphoramidite,
THF, and 1H-tetrazole to form the phosphite intermediate, which was subsequently ox-
idized with peracetic acid [95]. The removal of the methyl group of the ester was done
with trimethyltin hydroxide in 1,2-dichloroethane, followed by chromatographic purifi-
cation of the protected product, and then trans-anhydromevalonate 5-phosphate was ob-
tained in the acid form (see Figure 15) after the tert-butyl protecting groups were removed
with trifluoroacetic at 0 ◦C in methylenchloride as solvent [95]. Alkenes and phospho-
ric acid diesters as the phosphate source have been the starting materials for the direct
synthesis of allylic phosphate esters in good yields, using a newly developed aerobic
phosphatation-using dichloroethane as a solvent and catalyzed by a dual catalyst system
consisting of 10 mol % diphenyldiselenide as selenium π-acid catalyst and 10 mol % 2,4,6-
Tris(4-methoxyphenyl)pyryliumtetrafluoroborate as a photocatalyst, with irradiation at 465
nm [105]. Histidine-based peptide catalysts have been successfully utilized for the synthesis
of various phosphometabolites (see Figure 16), such as D-myo-inositol 1-phosphate and
D-myo-inositol 3-phosphate with >98% ee [106], the chiral L,L-form, and the meso L,D-form
of di-myo-inositol 1,1′-phosphate [107].
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The synthesis of three teicoplanin A2-2 analogs has been achieved by selective catalytic
phosphorylation of the 6-hydroxy group of the N-decanoylglucosamine, the mannose,
or the N-acetylglucosamine moiety of its parent glycopeptide, using three specifically
developed peptide-based catalysts, excess diphenylphosphorylchloride as phosphorylating
agent, 1,2,2,6,6-pentamethylpiperidine as a base and tetrahydrofuran/methylenchloride
as a solvent [108]. Diastereomeric and cyclic dinucleotides have been prepared by stereo-
controlled synthesis in organic solvents using 20 mol % of chiral phosphoric acid catalysts
which are either derived from peptides and phosphothreonine, or from a 1,1′-binaphthyl-
2,2′-diol enantiomer [109].

4.2. Biological Methods of Synthesis

The molecular logic of the biotransformations by which biological cells prepare, just in
time and where needed, key phosphometabolites acting as cofactors and cosubstrates is of
great interest for cell metabolism [13] and for designing novel methods for their synthesis.

ATP synthase-catalyzed ATP formation is the biocatalytic molecular machine pro-
viding significant amounts of ATP which are synthesized and needed daily by biological
organisms [110,111]. Although the exploration of various artificial stimuli-responsive bio-
catalytic ATP synthesis systems is attractive [112] (for example, proteoliposome systems
containing oriented bacteriorhodopsin and using light for proton gradient generation
to drive the formation of ATP [113]), further improvements of rate and stability of ATP
production achieved by these approaches are needed. Therefore, industrial large- scale
production utilizes Corynebacterium ammoniagenes whole cells for the biotransformation of
adenine and inorganic phosphate to ATP [114]. Continuous ATP production also has many
interconnections with biocatalytic synthesis of phosphometabolites and various biocatalytic
systems using high-energy phosphoryl donors and suitable phosphotransferases have been
developed, starting from ADP, AMP, or adenosine [115].
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As key phosphometabolites of central biochemical pathways serve essential needs
as enzyme substrates, cosubstrates, cofactors, or standards, their synthesis, and purifi-
cation are highly important. Selective methods for synthesizing not only racemates but
also the pure enantiomers of chiral phosphometabolites are essential for investigating
their properties, functional roles, and the influence of chirality. In addition, the biocat-
alytic methods of synthesis and their natural scope are of much interest for exploring and
widening the capabilities of metabolic enzymes. (2S)-glyceraldehyde 3-phosphate has
been synthesized by biocatalytic phosphorylation of (2S)-glyceraldehyde (see Figure 17)
using glycerol kinase [116,117], while preparing (2R)-glyceraldehyde 3-phosphate required
the enantiocomplementary dihydroxyacetone kinase for catalyzing the phosphorylation
of (2R)-glyceraldehyde [118]. The synthesis of an unnatural analogue substituted with
a triple bond at the C2-position, 2-ethynyl-(2R)-glyceraldehyde 3-phosphate, a key isla-
travir intermediate, was achieved by phosphorylating 2-ethynyl-(2R)-glyceraldehyde (see
Figure 17), with complete conversion at 0.2 M concentration, using a kinase which after the
initial discovery of a low activity pantothenate kinase from E. coli, directed evolution and
further engineering of the enzyme was obtained as a kinase variant with 100-fold better
activity [119].
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Figure 17. Enzymatic synthesis of phosphorylated chiral glyceraldehydes.

Chiral phosphohydroxycarboxylic acids are important phosphometabolites in gly-
colytic, mevalonate, and shikimate pathways. The glycolysis intermediate D-glycerate
2-phosphate was prepared with high purity and good yield by glycerate 2-kinase-catalyzed
phosphorylation of D-glycerate [120]. The classical mevalonate pathway intermediate
(R)-mevalonate 5-phosphate (see Figure 14) has been also been synthesized with high
purity and good yield by mevalonate 5-kinase-catalyzed phosphorylation (see Figure 18)
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of either the (R)-enantiomer or the racemic form of mevalonolactone [121]. The novel
phosphometabolites (R)-mevalonate 3-phosphate and (R)-mevalonate 3,5-bisphosphate
from the recently discovered Thermoplasma-type mevalonate pathway (see Figure 14) were
prepared at a very small scale by the use of novel kinases (see Figure 18) and have been
found to be stable.
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(R)-mevalonate 3-phosphate was synthesized from (R)-mevalonate by phosphoryla-
tion catalyzed by mevalonate 3-kinase Ta1305 [94,122]. (R)-mevalonate 3,5-bisphosphate
has been prepared from (R)-mevalonate by a first phosphorylation catalyzed by meval-
onate 3-kinase Ta1305, followed by a second phosphorylation catalyzed by mevalonate
3-phosphate 5-kinase Ta0762 [123,124], or by the E140 mutants which convert the meval-
onate 3-kinase into a mevalonate 3-phosphate 5-kinase by replacing a glutamate residue
interacting with the substrate by smaller amino acids [124]. Shikimate-3-phosphate lithium
salt was prepared with >97% purity and 53% yield by highly efficient and selective phospho-
rylation of shikimate in one reaction step catalyzed by recombinant shikimate kinase AroL
from E. coli [125,126]. Phosphorylated monosaccharide sugar acids represent an important
family of biologically active phosphometabolites which play key roles in carbohydrate
metabolism and illustrate also the higher molecular diversity of chiral phosphohydrox-
ycarboxylic acids as the number of carbon atoms increases. Various approaches have
been taken for the synthesis of phosphorylated monosaccharide sugar acids, such as the
use of microbial whole cells, selective enzymatic phosphorylation of the corresponding
monosaccharide sugar acid, or selective water elimination from phosphorylated monosac-
charide sugar acids. This is exemplified with 2-keto-3-deoxy-6-phospho-D-gluconate,
abbreviated KDPG, which was prepared from Alcaligenes eutrophus strain H16 F34 lack-
ing KDPG-aldolase activity [127], from 2-keto-3-deoxy-D-gluconate by kinase-catalyzed
phosphorylation [128,129], and through 6-phosphogluconate dehydratase-catalyzed water
elimination from 6-phospho-D-gluconate [130].
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Enantiomerically pure D-xylulose 5-phosphate and L-xylulose 5-phosphate, which
have been synthesized by 5-phosphorylation of the corresponding xylulose catalyzed
by recombinant D- and L-xylulokinases [131,132], are occurring in different metabolic
pathways, as well as both together in the same pathway of pentose and glucuronate inter-
conversions, where they are separated by the two reactions of the epimerization in the 3-
and the 4-position. Eight phosphorylated ketopentoses have been synthesized in 84–96%
yield at gram scale using a multi-enzyme cascade reaction involving isomerization or
epimerization coupled with phosphorylation catalyzed by specific monosaccharide kinases,
whereby ATP was not recycled and silver nitrate precipitation was used for the removal
of the byproducts [133]. D-tagatose 1,6-diphosphate, an important phosphometabolite
at the intersection of different metabolic pathways of monosaccharides and in tagatose
pathways in pathogenic bacteria, has been prepared as lithium salt at gram scale by efficient
and scalable LacC-catalyzed phosphorylation of D-tagatose 6-phosphate [134,135]. Multi-
enzymatic reaction cascades were utilized for synthesizing terminally phosphorylated
D-monosaccharides [136] and four terminally phosphorylated L-monosaccharides [137].
A promising method for preparing many phosphate-containing cofactors and their inter-
mediates is the utilization of suitable metabolic enzymes, for example, the transaminase-
catalyzed synthesis pyridoxamine-5′-phosphate from pyridoxal-5′-phosphate [138], or
the nicotinamide riboside kinase-catalyzed phosphorylation of nicotinamide riboside to
nicotinamide mononucleotide [139].

Scalable multi-step enzyme processes towards nucleotide sugars via de novo and
salvage pathways have attracted much interest, whereby the trend to utilize the salvage
pathway enzyme has increased [140]. Twelve nucleotide sugars have been synthesized at
gram scale from monosaccharides at a 0.2 M starting concentration by the two enzymatic
reaction steps of phosphorylation and pyrophosphorylation (see Figure 19) in a multi-
enzyme system with 52–97% yield [141].
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Nω-phospho-L-arginine, an important energy reserve metabolite providing fast energy
supply for critical needs of invertebrates and parasites, has been efficiently synthesized by
selective ArgK-catalyzed phosphorylation of L-arginine using phosphoenolpyruvate and
pyruvate kinase for regenerating ATP [142,143].

As cyclic dinucleotides are phosphometabolites with important biological activities,
simple, safe, and scalable biotechnological methods for their synthesis have attracted much
interest [144,145], because the chemical methods of synthesis are non-sustainable and
time-consuming. The attractiveness of analogues of cyclic dinucleotides with improved
therapeutic properties can add even further aspects for embarking on biocatalytic methods
of synthesis, as very nicely demonstrated by a joint Merck-Codexis team for analogues
of cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) [146–148]. As
cyclic dinucleotide analogues as phosphorothioates showed improved stability and in-
creased cellular uptake, it was essential to investigate the phosphorus stereochemistry in
early discovery efforts, and among the four diastereomers of dithio-cGAMP the Rp/Rp-
diastereomer MK-1454 has been found to have the highest bioactivity [147]. The process
for synthesizing MK-1454 using a cascade reaction in one pot (see Figure 20) started with
the enzymatic P-desymmetrization of 2′-fluoro-thioAMP and 3′-fluoro-thioGMP, using
adenylate kinase and acetate kinase for generating 2′-fluoro-(Sp)-thioATP, and guanylate
kinase and acetate kinase for realizing 2′-fluoro-(Sp)-thioGTP, with acetyl phosphate lithium
salt as phosphoryl donor, until the kinase reaction at pH 7.4 and 10 ◦C was completed
after 17 h [147]. The conditions in the reactor were then changed to optimal conditions for
the subsequent cyclization reaction, which was catalyzed by cyclic guanosine-adenosine
synthase (cGAS) at pH 7.8 and 35 ◦C for 24 h, and the single diastereomer MK-1454 was
isolated with 62% yield [147]. The excellent selectivities of the final engineered enzymes, the
tools and methodologies for directed evolution and engineering of enzymes, and reaction
engineering have enabled a resource-efficient process without the isolation of intermediates.
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5. Outlook

The analysis of biologically active metabolites has come a long way in extending
the frontiers of knowledge on stable and reactive phosphorus compounds, condensed
phosphates, endogenous, and exogenous phosphometabolites. Inorganic and organic
phosphorus-containing small molecular weight compounds continue also to be of much
interest as bridging interfaces between the living and the non-living, the biotic and the
prebiotic world. In addition to the discovery of phosphometabolites and the identification
of their correct structures, the analysis of their transformations can be very valuable for
elucidating more molecular details of the biogeochemical flows of phosphorus, one of the
planetary boundaries identified to be concerned about at global and regional levels [2]. The
identification of chemical and biological reactions involving phosphometabolites can also
provide inspiration for designing and developing novel in vitro synthetic methodologies.
The correct assignment of gene sequences coding for natural enzymes which catalyze
reactions involving phosphometabolites, as well as the development of novel engineered
and evolved enzymes catalyzing reactions of phosphometabolites, can also be key enablers
of novel synthetic approaches. The synthesis of phosphometabolites has progressed very
well and numerous phosphometabolites have become accessible in pure form for the first
time. Nevertheless, there is much more work ahead for developing scalable syntheses of
known and novel phosphometabolites, reducing the complexity of synthetic routes [149],
improving the molecular economy, and enabling sustainable phosphorus chemistry [150].
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