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Abstract: Cannabidiol (CBD) is the main non-psychotropic cannabinoid derived from cannabis 

(Cannabis sativa L., fam. Cannabaceae). CBD has received approval by the Food and Drug Admin-

istration (FDA) and European Medicines Agency (EMA) for the treatment of seizures associated 

with Lennox–Gastaut syndrome or Dravet syndrome. However, CBD also has prominent anti-in-

flammatory and immunomodulatory effects; evidence exists that it could be beneficial in chronic 

inflammation, and even in acute inflammatory conditions, such as those due to SARS-CoV-2 infec-

tion. In this work, we review available evidence concerning CBD’s effects on the modulation of 

innate immunity. Despite the lack so far of clinical studies, extensive preclinical evidence in different 

models, including mice, rats, guinea pigs, and even ex vivo experiments on cells from human 

healthy subjects, shows that CBD exerts a wide range of inhibitory effects by decreasing cytokine 

production and tissue infiltration, and acting on a variety of other inflammation-related functions 

in several innate immune cells. Clinical studies are now warranted to establish the therapeutic role 

of CBD in diseases with a strong inflammatory component, such as multiple sclerosis and other 

autoimmune diseases, cancer, asthma, and cardiovascular diseases. 
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1. Introduction 

In the last two decades, the clinical use of cannabinoids has been increasing [1–3]. 

Cannabinoids include Cannabis sativa L. derivatives, more than 100 terpenophenolic sec-

ondary metabolites named phytocannabinoids (to distinguish them from synthetic and 

endocannabinoids), such as the psychoactive Δ9-tetrahydrocannabinol (Δ9-THC), the 

non-psychotropic cannabidiol (CBD), cannabinol (CBN), cannabigerol (CBG), canna-

bichromene (CBC), and cannabidivarin (CBDV) [4]. Δ9-THC and CBD are the best known 

and more used in clinical practice. Both are derived from their acidic precursors Δ9-tetra-

hydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA), which are then decar-

boxylated to Δ9-THC or CBD [5]. Different cannabinoid-based drugs have been studied, 

some of which have been approved in various countries for the treatment of different 

disorders [6]. A summary of such drugs is listed in Table 1. 

It is worth noting that CBD, unlike other cannabinoids, shows no signals of drug 

abuse liability [7,8] and no significant side-effects at therapeutic doses [9]. 

Clinical studies suggest a potential effect of CBD in several conditions including anx-

iety [4], psychiatric disorders [10], and epilepsy [11]. CBD is also used in the treatment of 

cancer-related nausea and vomiting, of spasms and pain in multiple sclerosis 

[1,12,13,14,15], and of peripheral neuropathic pain due to diabetic condition [16]. CBD use 

has also been suggested to treat seizures in Dravet and Lennox–Gastaut patients [17] and 

for the treatment of psychotic symptoms in Parkinson’s disease [18]. 

Table 1. Cannabinoid-based drugs. 
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Cannabinoid Components Brand Name Origin Indication(s) Authorisation 

Nabiximols 

(Δ9-THC and CBD 1:1) 
Sativex Natural 

Multiple sclerosis-related spasticity and neuropathic pain, and 

cancer-related pain 
FDA/EMA 

Nabilone 

(Δ9-THC analogue) 

Cesamet/Caneme

s 
Synthetic Chemotherapy-induced nausea and vomiting FDA only 

Dronabinol 

((-)-trans-Δ9-THC) 
Marinol/Syndros Synthetic 

Anorexia related to AIDS, and nausea and vomiting induced by 

chemotherapy 
FDA only 

CBD Epidyolex Natural Epilepsy FDA/EMA 

CBDV GWP42006 Natural Rett syndrome, fragile X syndrome *, and autism ** / 

(Whole plant) 

Cannabis FM2, 

Cannabis Flos, 

Pedanios 

Natural 

Neuropathic and spasticity-associated pain, nausea and vomit-

ing due to chemo/radiotherapy and HIV therapy, anorexia and 

cachexia, glaucoma, and Tourette syndrome 

AIFA 

Δ9-THC = Δ9-tetrahydrocannabinol; CBD = cannabidiol; CBDV = cannabidivarin. * Received 

FDA/EMA orphan designation; ** ongoing trial. 

Interestingly, some of the abovementioned clinical effects could also be related to its 

anti-inflammatory properties [19–21]. In this regard, in vitro and ex vivo studies show that 

CBD exerts its anti-inflammatory action by modulating the release of proinflammatory 

cytokines such as tumour necrosis factor (TNF)-α, nuclear factor kappa-light-chain-en-

hancer of activated B cells (NF-κB), or peroxisome proliferator-activated receptor (PPAR), 

as well as their interaction with transcription factors [19,22,23]. Moreover, CBD has been 

shown to potentially affect the cyclooxygenase (COX) pathway [24–26].  

Despite all abovementioned data, to the best of our knowledge, no published studies 

have investigated the possible clinical implications of CBD use in humans and its thera-

peutic relevance as a possible anti-inflammatory compound. In the present review, we 

revise the available literature concerning preclinical studies which evaluate CBD’s effects 

on immuno-inflammatory processes involving cells of the innate immune system. A better 

understanding of the possible role of CBD in the modulation of inflammatory mechanisms 

in innate immunity could help in outlining the clinical use of CBD-based compounds in 

inflammatory pathologies and open the way to new strategies for their clinical use, also 

in view of the safety and effectiveness which CBD has shown, so far, in the treatment of 

some pathological conditions. 

1.1. CBD Pharmacodynamics 

CBD’s effects are mainly exerted through action on cannabinoid receptors type 1 

(CB1R) and type 2 (CB2R) [27]. CB1 receptors are mainly expressed in the central nervous 

system (CNS) [28], whereas CB2 ones are mainly present on immune cells such as poly-

morphonuclear leukocytes (PMNs) and lymphocytes [29–31]. 

Although the functions of these receptors are very complex, stimulated CB1 receptors 

perform their actions through G  i/o activation, with consequent inhibition of the ade-

nylate cyclase enzyme synthesis, resulting in a decrease in cyclic adenosine monophos-

phate (cAMP) levels, and an elevated level of mitogen-activated protein kinases (MAPKs) 

[32].  

CBD also binds several other targets such as transient receptor potential (TRP) chan-

nels, including TRPA (A for ankyrin), TRP M (M for melastatin), and TRPV (V for vanil-

loid) [33], acting in particular as an agonist of TRPV member 1, which is expressed in 

neurons and immune cells, such as PMNs, dendritic cells, macrophages, and T lympho-

cytes [34]. Lastly, CBD may act as an agonist of serotonin receptor member 1a (5-HT1A) 

[35] and adenosine A2A receptors [36], and possibly as an allosteric modulator of μ and δ 

opioid receptors [37]. The very complex pharmacodynamic profile of CBD was elegantly 

described and resumed in a recent review [13]. An updated list of identified CBD targets, 

with reported effects and binding affinities, is summarised in Table 2. 
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Table 2. CBD pharmacodynamics. 

Target Action Affinity (pKi) Reference(s) 

CB1 
Weak agonist, negative allo-

steric modulator 
3.64 [38,39] 

CB2 Weak agonist, inverse agonist 3.46 [38,39] 

TRPV1, TRPV2, TRPV3, TRPA1 Agonist N/A [33] 

TRPM8 Antagonist N/A [33] 

PPARγ Agonist N/A [40] 

GPR55 Antagonist N/A [41] 

GPR3, GPR6, GPR12 Inverse agonist N/A [41] 

5-HT1A, 5-HT2A, 5-HT2C Agonist 1.1 (5-HT2C) [35,39,42] 

A2A Agonist N/A [36] 

μ, κ, and δ opioid receptors Allosteric modulator 1.3 (μ), 2.3 (κ), 6.4 (δ) [37,39] 

GLRA1, GLRB Allosteric modulator N/A [42] 

GLRA3 Potentiator N/A [42] 

GPR18 Unknown N/A [42] 

ADRA2B, ADRA2C Unknown 3.2 (B), 3.7 (C) [39] 

PDE9 Inhibitor N/A [43] 

CB1 and CB2 = cannabinoid receptors type 1 and 2; TRPV1, TRPV2, and TRPV3 = transient receptor 

potential cation channel subfamily V (vanilloid) members 1, 2, and 3; TRPA1 = transient receptor 

potential cation channel A1; TRPM8 = transient receptor potential cation channel subfamily M (me-

lastatin) member 8; PPARγ = peroxisome proliferator-activated receptor γ; GPR55, GPR3, GPR6, 

and GPR12 = G protein-coupled receptors 55, 3, 6, and 12; 5-HT1A, 5-HT2A, and 5-HT2C = serotonin 

receptors 1A, 2A, and 2C; A2A = human adenosine A2A receptor; GLRA1, GLRB, and GLRA3 = 

glycine receptor subunits alpha-1, beta, and alpha-3; GPR18 = G protein-coupled receptor 18; 

ADRA2B and ADRA2C = α2B and α2C adrenergic receptors; PDE9 = phosphodiesterase 9. 

1.2. CBD Pharmacokinetics 

Relevant pharmacokinetic data for CBD are summarised in Table 3. 

Table 3. CBD pharmacokinetics. 

Characteristic Value Note Reference(s) 

Oral bioavailability (fasting) ~6% 

Greatly increases with food intake 

(about 4-fold increase for both CMAX 

and AUC) 

[44] 

TMAX  2.5–5 h / [45] 

T1/2 10–17 h / [45] 

Binding to plasma proteins (%) ≥88% / [45] 

Vd 20,963–42,849 L  / [45] 

CL 1111–1909 L/h Mainly hepatic clearance [45] 

The pharmacokinetic profile of CBD shows that absorption and distribution are in-

fluenced by the P-glycoprotein (P-gp) and, possibly, ATP-binding cassette subfamily C 

member 5 (ABCC5), both of which are efflux pumps [46,47]. CBD is metabolised by the 

cytochrome P450 (CYP450) superfamily of enzymes, particularly CYP3A4 and CYP2C9 

[48,49]. The UDP-glucuronosyltransferase (UGT) enzyme family is also involved in CBD 

biotransformation (Stout et al., 2014), particularly UGT1A9. 

The major circulating metabolite is 7-carboxy-CBD (7-COOH-CBD), followed by par-

ent CBD, 7-hydroxy-CBD (7-OH-CBD; an active metabolite), and 6-hydroxy-CBD (6-OH-

CBD; a relatively minor metabolite) [45]. Little is known about the pharmacological activ-

ity of CBD metabolites in humans [50]. 

1.3. CBD Pharmacogenetics 

To the best of our knowledge, only few studies have investigated the association be-

tween the patient’s genetic profile and CBD effects. For example, Davis and colleagues 

showed, in epilepsy patients, a correlation between single-nucleotide polymorphisms 

(SNPs, DNA sequence variations occurring when a single nucleotide in the genome differs 
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between paired chromosomes) and response to CBD treatments [47]. The authors found 

that rs6729738 SNP in the aldehyde oxidase gene and rs12539 SNP in the diamine oxidase 

gene were more frequent in subjects with low seizure control. The same authors also 

found that rs1339067 SNP in the SLC15A1 gene and rs3749442 SNP in the ABCC5 gene, 

both associated with a reduction in transporter expression in the CNS, induced lower CBD 

response and higher side-effects. 

However, several other SNPs with biological effects have been identified in genes 

coding for CBD targets (CB1R, CB2R, and TRPV1) and in key enzymes for CBD metabo-

lism (P-gp, ABCC5, SLC15A1; AOX1, AOC1 CYP2C9, CYP3A4, and UGT1A9); hence, it is 

not possible to exclude that these SNPs could influence response to CBD treatment in dif-

ferent disease conditions. SNPs with potential effects on CBD actions are reported in Table 4. 

Table 4. SNPs with potential effects on CBD pharmacology. 

Protein Gene Variant Nucleotide Change AF (%) Biological Effect 

Cannabinoid receptor 1 (CB1R) 

CNR1 rs806368 T>A 21 
Associated with alcohol dependence 

[51] 

 rs806380 A>G 34 
Associated with alcohol dependence 

[51] 

 rs1049353 C>A 27 
Associated with alcohol dependence 

[51] 

 rs2023239 T>C 17 
Increased cannabinoids-induced side-ef-

fects [51] 

Cannabinoid receptor 2 (CB2R) CNR2 rs2229579 G>A 10 Increased mRNA expression [52] 

Transient receptor potential cation 

channel subfamily V member 1 

(TRPV1) 

TRPV1 rs8065080 T>C 38 Associated with hypoalgesia [53,54] 

 rs222747 C>A 75 Associated with hypoalgesia [53,54] 

 rs4790521 T>C 32 Association with the COPD risk [55] 

ATP-binding cassette subfamily C 

member 5 (ABCC5) 
ABCC5 rs3749442 G>A 17 Increase in CBD response [47] 

P-glycoprotein (P-gp) 

ABCB1 rs2032582 A>C 55 
Reduced P-gp expression and activity 

[56] 

 rs1045642 A>C 48 
Reduced P-gp expression and activity 

[56] 

 rs1128503 A>G 57 
Reduced P-gp expression and activity 

[56] 

Solute carrier family 15 member 1 

(SLC15A1) 
SLC15A1 rs1339067 A>C 66 

Decreased transporter expression in 

CNS and lower response to CBD [47] 

Cytochrome P450 2C9 (CYP2C9) 
CYP2C9 rs1799853 (*2) C>T 12 Decreased enzyme activity [57] 

 rs1057910 (*3) A>C 7 Decreased enzyme activity [57] 

Cytochrome P450 3A4 (CYP3A4) CYP3A4 rs35599367 G>A 5 Decreased enzyme activity [58] 

Aldehyde oxidase 1 (AOX1) AOX1 rs6729738 C>A 53 
CBD low seizure control in epilepsy 

[47] 

Amine oxidase copper 1 (AOC1) AOC1 rs12539 C>T 22 
Increased diarrhoea and low seizure 

control in epileptic patients [47] 

UGT1A9 (UDP-glucuronosyltrans-

ferase 1A9) 

UGT1A9 rs72551330 (*3) T>A 2-3 Decreased enzymatic activity [59] 

 rs3832043 (*22) (DT) 9>10 40 Increased enzymatic activity [60] 

CBD = cannabidiol; COPD = chronic obstructive pulmonary disease; LFT = liver function test; 

HTR3E = 5-hydroxytryptamine receptor 3E; NR3C1 = nuclear receptor subfamily 3 group C member 

1; AF = allelic frequencies in Caucasian population. 

2. Effects of CBD on Immune Systems 

The immune system (IS) is an interactive network of immune cells, humoral factors, 

lymphoid organs, and other products such as cytokines and interleukins. The IS is con-

ventionally divided into two parts, differing in both swiftness and specificity of their ac-

tion on host defence: innate immunity and adaptive immunity. Although a tight crosstalk 

is present, with many interactions between the two branches of the IS, cellular compo-

nents and function regulation remain different and are well characterised [61]. 

The study of the effects of cannabinoids on IS modulation is mainly focused on innate 

rather than adaptive immunity; for this reason, the vast majority of reviews in this field 
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took into account the effects of cannabinoids on specific disease models, as well as specific 

cell types. More in detail, some papers focused on studying the mechanism of action of 

cannabinoids, using the whole cannabis plant or single active cannabinoids, on the mod-

ulation of specific cell subpopulations involved in innate functions, such as macrophages 

[62] and NK cells [63]. However, to the best of our knowledge, no review has reported 

CBD’s effects on specific cell subpopulations involved in innate immunity. 

On the other hand, some reviews evaluated the effects of CBD, alone or in combina-

tion with other active cannabinoids, on specific inflammatory diseases such as inflamma-

tory bowel diseases [64], multiple sclerosis [65], and fibromyalgia [66], as well as pain 

management in palliative care [67], whereas other works focused on the effects of canna-

binoids on infective diseases, such as acquired immune deficiency syndrome (AIDS) [68] 

and COVID-19 [69,70]. Lastly, the role of CBD has been reported in several reviews, which 

described it in well-defined pathologies such as epilepsy [71], fibromyalgia [72] or derma-

tological disorders [73].  

The approach of this review is quite different compared with previous published re-

views. Indeed, rather than focusing on a single disease or cellular subpopulation, we 

adopt a more holistic approach, in which we report the effects of CBD alone, taking into 

account all cell populations in the innate immune system, also including the humoral com-

ponent, which is still almost completely unexplored but potentially valid for adding 

knowledge about the role of CBD in the immune response (see Figure 1 and Table S1). 

 

Figure 1. CBD’s molecular structure, along with a summary of its reviewed actions on different 

immune cells. 

Lastly, we discuss the possible implications of CBD use in many pathologies with an 

inflammatory component. 
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2.1. CBD’s Action on the Complement System and Antibacterial Peptides 

The complement system is a proteolytic cascade, which recognises foreign pathogens 

and damaged self-cells [74]. To date, just one paper has reported an evaluation of CBD’s 

effects on the complement system. In a rat model in which schizophrenia symptoms were 

induced by ketamine (KET) treatment, the transcriptional profile of some complement 

system genes was studied after rats were treated with CBD. The authors found that C1qa, 

C1qc, C2, and C3 mRNA expression levels in the prefrontal cortex were reduced in schiz-

ophrenic rats, whereas CBD treatment increased their expression. Moreover, the authors 

found that CBD treatment improved KET-induced schizophrenia symptoms in the model. 

Since all these genes code for important proteins of the complement system, CBD’s ability 

to restore their levels (at least for mRNA expression) could suggest that the improvement 

in cognitive symptoms could be due to a CBD-mediated modulation of the complement 

system in the CNS [75]. 

Antibacterial peptides are cationic peptides with antibiotic and immunomodulating 

properties, e.g., α- and ꞵ-defensins, the cathelicidin family, and the saposin family [76]. To 

the best of our knowledge, no studies have reported the effect of CBD on the modulation 

of this component of innate immunity. 

2.2. Monocytes/Macrophages 

Monocytes originate from bone marrow progenitors and enter in the peripheral 

bloodstream. Inflammatory conditions induce monocyte migration into tissues, where 

their exposure to growth factors, proinflammatory cytokines, and microbes causes their 

conversion into macrophages [77–79]. After tissue infiltration, macrophages contribute to 

innate immune responses through antigen presentation, the production of several cyto-

kines, such as IL-1, IL-6, and TNF-α, and the phagocytosis process [77,80]. 

Several in vitro and in vivo studies have evaluated the effects of CBD modulation on 

macrophages functions, albeit with often contrasting results. 

For example, Huang and colleagues found an anti-inflammatory effect for CBD in 

RAW 264.7 macrophages, with a significant reduction in IL-1β, TNF-α, and IL-6 produc-

tion in both macrophage [81–83] and monocyte [84,85] cell lines, as well as in human mon-

ocytes [86]. The inhibitory effect of CBD on proinflammatory cytokine production/release 

was confirmed in an experimental autoimmune encephalomyelitis (EAE) model, in which 

Dopkins and colleagues found CBD treatment to reduce IL-1β production [87]. On the 

other hand, other authors found a proinflammatory effect for CBD. In this regard, Muthu-

malage and Rahman found a proinflammatory effect for CBD in a U937 macrophage line, 

with a significant increase in IL-1 receptor, IL-8, IL-16, and IL-32 production. The proin-

flammatory effect of CBD on macrophages was confirmed in RAW264.7, in which CBD 

induced, in a dose-dependent manner, an increase in proinflammatory cytokines such as 

IL-12 [88,89] and a decrease of anti-inflammatory cytokines such as IL-10 [88]. 

Moving to reactive oxygen species production, CBD treatment was found to inhibit 

ROS production in monocyte [90] and macrophage [89] cell lines, as well as in monocytes 

from healthy subjects [91]. 

Chemotaxis and tissue infiltration are fundamental processes in the inflammatory 

cascade; for this reason, CBD’s effects on these processes were studied by several authors. 

The reported results showed that CBD not only inhibits macrophages chemotaxis, as 

shown by Sacerdote in an in vitro model [88], but also tissue infiltration, as shown in dif-

ferent animal models of inflammatory diseases, such as liver inflammation [81], multiple 

sclerosis [87], pulmonary hypertension [92], and colitis [83]. 

The apoptosis process is known to be involved in the regulation of inflammatory 

processes, with a prevalent anti-inflammatory outcome. Several authors have reported 

that CBD treatment increased apoptotic processes in a THP-1 monocyte cells line [90], as 

well as in freshly isolated monocytes from human healthy subjects [91,93]. 
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The effects of CBD on the autophagy process, a self-degradative process which is 

crucial for balancing energy sources at critical times in development and in response to 

nutrient stress [94], was studied by Tomer and colleagues, who found that CBD induced 

an upregulation of autophagy receptor p62 / SQSTM1 [95]. The positive effects of CBD on 

autophagic processes were confirmed by Yeisley and colleagues, who evaluated the ex-

pression of the mammalian target of rapamycin (mTOR), a complex implicated in au-

tophagic processes. The authors found that CBD treatment reduced phosphorylated m-

TOR Ser 2448 levels, inducing cell autophagy [85]. Altogether, these results seem to sug-

gest that the ability of CBD to increase autophagy in monocytes/macrophages could in-

crease the chance of these cells avoiding programmed cell death, with an overall proin-

flammatory effect. 

In light of these contrasting results, it is possible to hypothesise that proinflammatory 

effects, shown by CBD in several in vitro/ex vivo models, could be due to a direct and 

specific action on macrophages, whereas its anti-inflammatory effects, shown in in vivo 

models, could instead be due to its action on other cell types, such as astrocytes or PMNs. 

2.3. Glial Cells (Astrocytes, Microglia, and Oligodendrocytes) 

Among glial cells, astrocytes are the most abundant, being involved in several phys-

iological functions, including homeostasis maintenance and supporting neural and im-

mune system functions; however, despite their known protective functions, hyperactiva-

tion of astrocytes can lead to brain damage [96]. 

In an in vitro model of the blood–brain barrier (BBB), Hind and colleagues found that 

CBD decreased cell damage and reduced cell adhesion molecule 1 (VCAM1) and vascular 

endothelial growth factor (VEGF) expression through the modulation of astrocyte func-

tions [97]. Moreover, Di Giacomo and colleagues showed that CBD was able to decrease 

reactive oxygen species (ROS) production by astrocytes [98]. 

CBD’s effects on astrocyte activation were confirmed in in vivo models of transient 

[99] and global ischaemia [100]. In these models, CBD reduced glial fibrillary acidic pro-

tein (GFAP) expression [100] and myeloperoxidase (MPO) activity, which are both mark-

ers of astrocytes activation. In addition, Wu et al. observed, in both ex vivo and in vivo 

models, that CBD exerted an inhibitory effect on IL-6 production and astrocytic prolifera-

tion (Wu et al.2021). 

These results suggest a possible role for CBD in preventing astrocytes activation, sug-

gesting a potential role for CBD as a neuroprotective agent [99,100].  

Microglial cells represent 10–15% of glial cells and play a role in development, main-

taining homeostasis, and healing CNS disorders. Microglial cells actively interact with 

neurons, astrocytes, and blood vessels, promoting the activation of these cells and, thus, 

increasing their ability to respond to damage or infections with an overall proinflamma-

tory effect [101]. 

The involvement of CBD in the modulation of microglial cells has mainly been eval-

uated in in vitro and ex vivo models. CBD was found to be involved in the decrease in 

microglial activation [102–104] and inhibition of ROS release by these cells [105]. Moreo-

ver, some authors found that CBD inhibited inflammatory pathways in microglial cells 

[87,106,107], preventing their activation by decreasing intracellular Ca2+ levels [108] and 

proinflammatory cytokine production [106,109], as well as increasing apoptosis pathways 

[110]. 

CBD’s effect on phagocytosis was evaluated in both in vitro and in vivo models. In 

particular, CBD treatment was shown to result in an increase in phagocytosis [111] and 

expression of a receptor involved in the phagocytosis process, such as transient receptor 

potential cation channel subfamily V (TRPV) member 2 [112]. 

The mechanism of action via which CBD exerts its effect on microglial cells has been 

evaluated by Wu and colleagues using specific agonists and antagonists for CB1/2, 

TRPV1, and GPR55 receptors, without finding any correlation between action on these 

receptors and CBD-mediated apoptosis in microglial cells. In order to explain these 
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results, the authors postulated the involvement of other known CBD targets, such as 

TRPV2, 5-HT1A, and PPARγ [110]. This hypothesis was corroborated by results reported 

by Landucci and co-workers, who demonstrated a consistent inhibition of CBD effects on 

inflammatory microglia phenotype after coincubation with TRPV1, 5-HT1A, and PPARγ 

antagonists [104]. Two other papers confirmed the role of TRPV2 in the modulation of 

microglial cell functions. In particular, in microglial cells with TRPV2 knockdown, the 

CBD-induced increase in mRNA expression of phagocytosis-related receptors was found 

to be abolished [111,112]. 

Oligodendrocytes are cells generated from oligodendrocyte progenitor cells (OPCs). 

Throughout the CNS, OPCs represent proliferating and migrating progenitor cells, which 

can transform into oligodendrocytes. The main function of oligodendrocytes is to generate 

myelin, a lipid membrane which wraps tightly around axons to allow for rapid nerve con-

duction [113]. The effects of CBD on oligodendrocytes and OPC is still unclear. Indeed, on 

the one hand, CBD’s effects on resting oligodendrocytes include an increase in ROS gen-

eration, which suggests a proinflammatory effect for CBD; on the other hand, the activa-

tion of apoptotic processes in these cells supports an anti-inflammatory role for CBD 

[114,115]. 

Mecha and colleagues also evaluated the mechanism of action via which CBD acts on 

OPC functions through the coincubation of CBD and antagonists for CB1/2, TRPV1, and 

PPARγ receptors. Since the authors found that CBD antagonists do not reverse CBD’s 

effects on ROS production and endoplasmic reticulum stress in OPC, they suggest that 

CBD’s effects could be mediated by different CBD targets, such as TRPV2, 5-HT1A, 

PPARγ [115]. 

2.4. Mast Cells 

Mast cells are involved in allergy, particularly in the early and acute phases of allergic 

reactions. These cells exhibit distinct morphological characteristics, including prominent 

cytoplasmic granules, and produce a variety of mediators, including heparin, histamine, 

and neutral proteases [116]. 

Cannabinoids are known to be involved in the modulation of mast cell functions 

[117]; however, only few studies have reported CBD’s effects on the modulation of these 

cells. Among these, Giudice et al., using a model of rat basophilic leukaemia mast cell line 

(RBL-2H3), demonstrated that CBD enhanced the release of β-hexosaminidase, a marker 

of mast cell activation [118]. On the contrary, in a murine model of intestinal inflamma-

tion, CBD inhibited the release of enzymes involved in inflammation and remodelling of 

the extracellular matrix such as mast cell chymase and metalloproteinase (MMP) 9, both 

produced and released by mast cells, thus suggesting a possible inhibitory effect of CBD 

in some key functions of these cells [119]. 

2.5. NK Cells 

NK cells represent 5–10% of mononuclear cells in the bloodstream and act as natural 

cytotoxic cells against tumours, by inhibiting proliferation, migration, and colonisation of 

distant tissues by metastases [120]. These cells produce a large number of cytokines, in-

cluding IFN-γ, which modulate adaptive immune responses [121,122]. Recently, NK cells 

were recognised for their cytotoxicity against normal immune cells, playing an important 

physiological role in the control of immune responses and homeostasis maintenance [123]. 

NKs highly express CB2 receptors [124]; at least in these cells, CBR2 activation was 

found to be crucial for the release of inflammatory cytokines, suggesting that CBR2 and 

its ligands could play a key inhibitory role for these cell subpopulations [125]. 
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2.6. Dendritic Cells 

Dendritic cells (DCs), derived from bone marrow stem cells, are the strongest anti-

gen-presenting cells (APCs) of the immune system. They play a crucial role in the trigger-

ing of primary immune responses and in the enhancement of secondary immune re-

sponses. DCs express CB1 and CB2 receptors [126], and endogenous and exogenous can-

nabinoids (THC and anandamide) can suppress the immune response, e.g., through their 

ability to induce apoptosis in DCs [127]. Despite the potential effect that CBDs could exert 

on immune functions through the modulation of DCs, to the best of our knowledge, the 

effect of CBD on these cells is still to be investigated. 

2.7. Eosinophils and Basophils 

Eosinophilic cells are typical of all vertebrates, including reptiles, amphibians, mam-

mals, and fish, representing 1% to 3% of circulating leukocytes in mammals [128]. Eosin-

ophils are involved in asthma processes [129], exerting a protective role against parasites 

such as helminths [130]. Eosinophils are also involved in various allergic and immune-

mediated conditions, suggesting an important role in the propagation and potentiation of 

allergic-type processes within the host [131]. They are part of a complex regulatory net-

work, modulating local and systemic immune and inflammatory responses, together with 

other immune cell types, including PMNs, lymphocytes, and macrophages [132]. 

Despite being the smallest population of leukocytes (1%), basophils are crucial in 

protecting the host against infections through the production of important factors in-

volved in the crosstalk between innate and adaptive immunity. Moreover, basophils pro-

duce and release interleukin (IL)-4 and IL-13, which are important for Th2 activation and 

response [133]. Even though the endocannabinoid system appears to modulate eosinophil 

and basophil functions [134,135], to the best of our knowledge, no reported data are pre-

sent in the literature about the ability of CBD to modulate the functions of these cells. 

2.8. Polymorphonuclear Neutrophils (PMNs) 

PMNs, generated in the bone marrow from myeloid precursors, are the most abun-

dant granulocytes and the first immune cells recruited into inflammatory sites [136]. They 

undergo a process called “priming”, in which exposure to TNF-α, platelet-activating fac-

tor (PAF), IFN-γ, G-CSF, and several other interleukins induces a wide range of pheno-

typic changes, including reduced apoptosis, changes in the expression of receptor and 

adhesion molecules, phagocytosis, degranulation, and production of proinflammatory 

mediators [137–139].  

PMNs are the major agents in acute inflammation, but several lines of evidence sug-

gest that they contribute to chronic inflammation as well, e.g., in atherosclerosis [140,141]. 

Moreover, the involvement of PMNs in different inflammatory pathologies has been ex-

tensively studied in diseases with an inflammatory component, such as multiple sclerosis 

[142,143], neuromyelitis optica [144], inflammatory bowel diseases [145], myositides [146], 

and cardiovascular diseases [147–152]. 

In this context, CBD, thanks to its anti-inflammatory activity, appears to be a prom-

ising potential compound for the treatment of these and other diseases with an important 

dysregulation in inflammatory processes. In this section, we extensively review the main 

results reported in the scientific literature regarding the ability of CBD to modulate PMNs 

functions in both in vitro and in vivo models. 

As mentioned above, PMNs are the first cells recruited into inflamed sites, through a 

multiple-step process, also known as the extravasation cascade. 

CBD’s ability to modulate PMN extravasation has been examined in several in vitro 

models of migration. For example, McHugh and colleagues found that CBD inhibited 

fMLP-induced migration of human PMNs in a concentration-dependent manner [153], 

and the results of this study were also confirmed in a similar model by Gómez and col-

leagues [154], Mukhopadhyay et al. [155], and Mabou Tagne et al., who showed that CBD 
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inhibits PMN migration after activation with IL-8, but not in resting cells, in a concentra-

tion-dependent manner [156]. This finding is, in our opinion, of extreme interest, because 

it seems to suggest that CBD’s anti-inflammatory effects are greater in pathological con-

ditions, whereas this compound does not seem to exert an inhibitory effect on the immune 

system in physiological conditions, thus once again highlighting the safety and manage-

ability of CBD. 

After adhesion, PMNs infiltrate tissues, and this is a key step in the inflammatory 

process. CBD was found to cause a significant decrease in myeloperoxidase (MPO) activ-

ity, a marker for indirect assessment of PMN tissue infiltration [155,157].  

CBD’s effects on tissues infiltration by PMN has also been studied in different animal 

models of inflammatory diseases, such as ischaemic brain damage [94], corneal hyperal-

gesia [158], liver steatosis [159], segmental hepatic ischaemia [155], and periodontitis [157]. 

Although CBD showed inhibitory effects in all these models, conflicting results were 

found when tissue infiltration was evaluated in animal models of lipopolysaccharide 

(LPS)-induced lung injury. In some mouse and guinea pig models, CBD significantly re-

duced LPS-induced PMN infiltration, and its effect was maintained for several days even 

after CBD treatment discontinuation [36,160]. These results seem to confirm the anti-in-

flammatory role of CBD and suggest its usefulness in inflammatory diseases, which re-

quire chronic treatment. On the other hand, this result was not confirmed by Karmaus et 

al., who found an enhancement in LPS-induced PMN accumulation in the lungs of mice 

treated with CBD, thus suggesting an amplification of inflammatory processes by the 

compound [161]. Lastly, Makwana and colleagues reported that exposure of guinea pigs 

to CBD did not reduce PMN recruitment in the airways, which was induced by LPS or 

TNF-α [162]. 

ROS production by PMNs is a fundamental function for the proinflammatory action 

of these cells, including the production of neutrophil extracellular traps (NETs). 

CBD inhibited ROS generation in ex vivo models based on PMN from both mice [163] 

and healthy human subjects [156,159]. The observed effects of CBD on ROS production in 

ex vivo models were confirmed in animal models, in which ROS production was found 

to be significantly reduced in PMNs obtained from mice treated with CBD, compared with 

nontreated mice [159]. Moreover, Biernacki and colleagues evaluated the effects of CBD 

on ROS production in nude rats irradiated with ultraviolet light, showing CBD to reduce 

irradiation-induced ROS production [164]. 

The possibility of slowing stimulus-induced ROS production without affecting rest-

ing ROS generation (which is necessary for physiological cell homeostasis) is considered 

pivotal in stopping the inflammatory cascade; ROS are key mediators involved in several 

inflammatory diseases, such as cardiovascular diseases and many others [151]. 

As mentioned above, ROS generation is also involved in NET production. Wójcik et 

al. indirectly evaluated ROS production through the measurement of NET production in 

PMNs from psoriasis patients, in which CBD was able to reduce NETotic effects. The abil-

ity of CBD to reduce NETosis in PMNs from these subjects suggests a promising effect in 

decreasing ROS-related oxidative stress, limiting both tissue inflammation and damage in 

psoriasis and other chronic inflammatory diseases [139]. 

Lastly, Gómez found that CBD triggered a significant decrease in oxygen uptake and 

H2O2 generation but also increased ROS production. In order to explain this discrepancy, 

the authors postulated that CBD might activate different receptors present on PMNs, 

which in turn modulate different intracellular pathways, causing these apparently contra-

dictory effects [154].  

The effects of CBD on cytokine production by PMN have been evaluated in both ex 

vivo and in vivo models. In particular, in ex vivo models, PMN activation was shown to 

induce an increase in proinflammatory cytokine production [165], while treatment with 

CBD reduced TNF-α production only in activated cells [156]. These results seem to sug-

gest that CBD can act on activated cells without any effects on physiological cell homeo-

stasis. 
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In animal models, CBD’s effects on cytokine production by PMNs are more contra-

dictory; indeed, in a model in which rats were irradiated with ultraviolet light, Biernacki 

showed CBD to reduce TNF- levels in PMNs, confirming the effect already assessed in 

ex vivo studies [164]. On the other hand, in a mouse model in which pulmonary inflam-

mation was induced by LPS, CBD significantly enhanced the mRNA expression for sev-

eral cytokines, such as TNF-α, IL-6, IL-17A, IL-23, and G-CSF [161], suggesting a proin-

flammatory role for CBD. 

PMNs present different phenotypes, according to their stage of differentiation, age, 

and response to the surrounding microenvironment. Concerning the response to inflam-

matory conditions, PMNs can acquire different phenotypes, named N1 and N2, with pro- 

and anti-inflammatory functions, respectively [166]. Baban et al., using a mouse model of 

acute kidney injury, showed that CBD treatment induced an increase in N2 cells and a 

decrease in N1 cells, suggesting a prevalent anti-inflammatory effect for CBD in this 

model and opening the way to the consideration of novel uses of this safe compound in 

acute tissue injury [167]. Lastly, CBD inhibited the expression of COX-1 and COX-2 tran-

scripts, but not prostaglandin PG-E2 production, in activated PMNs (Cosentino et al., 

2022).  

Although with some exceptions, in general, CBD seems to exert a prevalent inhibi-

tory effect on the proinflammatory functions of PMNs. In particular, CBD decreases cell 

adhesion to the endothelium and subsequent migration, as well as tissue infiltration and 

cell accumulation in inflamed tissues. Moreover, CBD seems to exert inhibitory effects on 

ROS and proinflammatory cytokine production, particularly in models in which PMNs 

were previously activated. This observation is of particular interest, because it suggests 

that CBD’s effects are restricted to inflamed tissues, thus slowing the inflammatory cas-

cade without affecting physiological tissue homeostasis. 

Overall, these findings allow suggesting a possibility for CBD employment in the 

treatment of diseases, such as rheumatoid arthritis, psoriasis, ankylosing spondylitis, 

Crohn’s disease, and other inflammatory bowel diseases [168–171], in association with 

specific drugs which have already demonstrated a therapeutic efficacy in these diseases. 

The molecular targets of CBD for the modulation of PMN functions were studied by 

Thapa and colleagues, who found the CBD-induced reduction in PMN infiltration in the 

cornea was completely blocked by a 5-HT1A receptor antagonist but was still present after 

CB1 receptor antagonist treatment or in CB2R−/− mice. The authors postulated that canna-

binoid receptors are not involved in the infiltration mechanisms of PMNs, but the seroto-

nin receptor seems to play a role in the process [158]. These results are in disagreement 

with those by Biernacki and colleagues, who indeed found that CBD treatment reduced 

CB1R expression, and they suggested that this receptor could be involved in ROS and 

TNF-α production [164]. 

3. CDB Modulation of Innate Immunity: Possible Implications for Disease Treatment 

3.1. Atherosclerosis 

Atherosclerosis is a dominant cause of cardiovascular pathologies, in which inflam-

mation plays a crucial role. Typically, atherosclerosis occurs in the endothelium of large 

and medium arteries, where upregulation of adhesion molecules allows immune cells, 

such as mononuclear leukocytes (monocytes, B and T cells, dendritic cells, and mast cells) 

and PMNs to attach to the endothelium and cross into the intima [172]. Innate immune 

cells are abundant in atherosclerotic lesions [141,150,173,174] and produce proinflamma-

tory cytokines which in turn increase local tissue inflammation. 

It is well known that, during inflammation, CB2 receptors contribute to the recruit-

ment of leukocytes by modulating chemotaxis, such as during myocardial ischae-

mia/reperfusion, and the disease progression can be inhibited, e.g., by THC in a CB2-de-

pendent manner [175]. 
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Altogether, these observations allow hypothesising that atherosclerosis could be 

treated by modulating the endocannabinoid system; therefore, CBD would also be recom-

mended for this purpose, since it is a much safer drug than THC, and its potential preclin-

ical and clinical use in the treatment of this widespread pathology is worth investigating. 

3.2. Neurodegenerative Diseases 

A number of incurable and debilitating conditions are associated with neurodegen-

eration, which is due to the progressive degeneration of neurons or neuronal apoptosis 

[176]. Neurodegeneration itself can occur in two different conditions; acute neurodegen-

eration is characterised by synaptic and axon degeneration, which can be the result of 

direct injury and damage to the neuron (e.g., in stroke, head trauma, cerebral or subarach-

noid haemorrhage, and ischaemic brain injury resulting from foetal or perinatal hypoxia), 

whereas chronic neurodegeneration is instead characterised by aberrant signal transduc-

tion, excitotoxicity, synaptic dysfunction, oxidative stress, proteotoxicity and protein mis-

folding, excessive cell death, glia-supported neuroinflammation, and failure of neurogen-

esis (e.g., in Alzheimer’s disease). [177,178]. 

Furthermore, an autoimmune component has been hypothesised in neurodegenera-

tive diseases such as Parkinson’s, in which peptides derived from α-synuclein, a crucial 

aggregate protein in Parkinson’s aetiology, act as antigens triggering cytotoxic and helper 

T-cell responses [179,180] and multiple sclerosis, in which autoimmunity appears to be 

mediated by myelin-autoreactive leukocytes such as T cells, B cells, and macrophages, 

which in turn cause neurodegeneration [181,182]. 

3.2.1. Multiple Sclerosis 

Innate immunity plays an important role in the aetiology and progression of multiple 

sclerosis [183]. 

In multiple sclerosis, the role of neuroinflammation is supported by abundant evi-

dence, and approved disease-modifying therapies indeed rely on anti-inflammatory and 

immunomodulating effects [184].  

CBD was shown to reduce macrophagic infiltration in the CNS in a murine model of 

EAE [103]; moreover, its described anti-inflammatory effects on glial cells could also pro-

vide an interesting opportunity for neuroprotection in multiple sclerosis [94,95,185]. For 

these reasons, CBD’s potential as a disease-modifying treatment is worthy of further in-

vestigation. 

3.2.2. Parkinson’s Disease 

Parkinson’s disease is a progressive neurological pathology, characterised by a large 

number of motor and nonmotor symptoms, which impact physiologic functions [186]. In 

PD, neuroinflammation is a key point for disease progression; the main immune changes 

during PD occur in the brain and involve innate immunity, such as microglial cells [187]. 

However, alterations in the peripheral immune system have also been observed in PD 

patients [188,189,189–194], where the innate immune system is also found to be altered, 

as is the case for monocytes and the PMN-to-lymphocyte ratio [187,195]. 

CBD has already been proposed as a symptomatic treatment, which is usually pre-

scribed when classical dopaminergic drugs fail to achieve adequate symptom control 

[18,196]. Although different immune-modulating approaches have already been tested, 

with some success in animal models, results of similar trials in human patients have so far 

proven less promising, with no disease-modifying treatment yet available for these pa-

tients [180]. The interesting anti-inflammatory and potentially neuroprotective properties 

of CBD in the disease are, therefore, worthy of further and deeper investigation [197]. 
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3.2.3. Alzheimer’s Disease 

Alzheimer’s disease is the most common cause of progressive cognitive decline. Neu-

roinflammation has been hypothesised to be an important contributing factor to its path-

ogenesis and microglia, as resident immune effector cells of the CNS play a crucial role in 

regulating brain homeostasis and mediating innate immune responses in the disease 

[198,199]. Activated microglia commonly upregulates expression of pattern recognition 

receptors (PRRs), inducing an inflammatory response and secretion of proinflammatory 

cytokines, including IFNs [200,201].  

The particularly safe profile of CBD also makes it a promising treatment in Alz-

heimer’s disease. Its action as a CB2R agonist could reduce inflammatory responses, with 

a consequent reduction in β-amyloid production and deposition, thus increasing cell via-

bility and promoting glucose uptake in the brain. In AD models, this indeed resulted in 

cognitive improvement [202]. 

Furthermore, in a recent paper, Ribaudo and Landucci et al. also highlighted an in-

teresting inhibiting effect by CBD on PDE9 [203], which is a promising mechanism of ac-

tion against neurodegeneration [204,205]. 

3.3. Neuropsychiatric Diseases 

Recent findings point towards the role of inflammation in several psychiatric dis-

eases, such as schizophrenia [206–208] and bipolar disorder (BD) [209–212].  

Over a century ago, schizophrenia was hypothesised to be associated with the im-

mune system, and some studies indicated that both infections and inflammation might 

play a role in the disease. Moreover, neuroinflammation in schizophrenia seems to be 

characterised by the activation of microglial cells [213]. Furthermore, the implication of 

the immune system has also been documented in BD, where the levels of proinflammatory 

cytokines in affected patients were found to be increased in comparison with healthy con-

trols [214,215]. 

Some antipsychotic drugs were also reported to restore a normal inflammatory pro-

file in affected patients [212,216–218]. Recently, cannabinoids were also proposed as a pos-

sible treatment for psychoses, but only a few studies are available in this regard, and re-

ported results are controversial.  

CBD-induced inhibition of astrocyte activity has been suggested as a possible treat-

ment option in schizophrenia and other neuropsychiatric diseases [219,220], where neu-

roinflammation seems to be related to a downregulation of PPAR receptors and/or their 

endogenous ligands [221–223]. 

Whether the use of cannabinoids plays a protective or harmful role in the pathogen-

esis of these diseases remains unclear [224–226]. 

Promising results of anti-inflammatory treatments in decreasing BD symptoms, es-

pecially depressive ones, have been described [227,228]; thus, in this context, the emerging 

role of CBD in the modulation of inflammatory processes allows postulating that CBD 

could be useful, in association with standard therapies, for the treatment of neuropsychi-

atric diseases in which an inflammatory component is involved in disease progression 

[208] and/or therapeutic response [212,216–218]. 

3.4. Autoimmune/Inflammatory Diseases 

Crohn’s disease is a chronic inflammatory intestinal disease. The evolution of 

Crohn’s disease is based on tissue inflammation caused by a strong immune response 

against luminal bacterial antigens; immune cells such as T cells, monocytes, and NKs are 

involved in this process as they infiltrate the gut of patients [229]. 

Osteoarthritis (OA) is the most common joint disease in the world, with an age-asso-

ciated increase in both incidence and prevalence [230]. Evidence describes a pivotal role 

for both macrophages and the complement system in joint inflammation and disease 
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progression, pointing towards a strong correlation between OA and the innate immune 

system [231]. 

Furthermore, in several rheumatic diseases (rheumatoid arthritis, systemic lupus er-

ythematosus, and ANCA-associated vasculitis), complement activation is suggested to 

play a crucial role [232]. Moreover, the IL-1 family of cytokines is associated with innate 

immune responses, which characterise rheumatic diseases [233]. 

Despite CBD already being used in the treatment of different autoimmune and in-

flammatory conditions, such as Crohn’s disease [234], osteoarthritis [235], and rheumatic 

diseases [236,237], predominantly preclinical data support the hypothesis that anti-in-

flammatory effects of the compound are directly involved in its clinical effects [19–21]. 

3.5. Other Therapeutic Possibilities 

The effects of CBD on the modulation of immune responses are interestingly being 

investigated in various other diseases, where targeting immune mechanisms might pro-

vide viable treatment options. 

Recently, a clinical protocol was designed to evaluate whether CBD could act as a 

neuroinflammation inhibitor in patients with chronic lower-back pain, by affecting glial 

activation and reducing levels of translocator protein binding. The clinical trial is ongoing 

[238]. 

Viral diseases are another field in which treatment with CBD has shown promising 

preclinical results, which should be further investigated in appropriate clinical trials [239]. 

In cancer [240], asthma [241], and cardiovascular diseases, inflammation also plays 

an important pathophysiologic role. Thus, CBD should be tested in these contexts, where 

its particularly safe profile will allow for a seamless addition to standard therapies. 

4. Conclusions 

Altogether, these observations suggest future potential applications, particularly in 

chronic neuroinflammation. Despite wide heterogeneity in the approaches used for the 

evaluation of CBD actions on innate immune functions, the examined studies showed a 

predominant inhibitory effect of CBD on inflammatory processes. Interestingly, the effects 

of CBD are quite different in different cell subpopulations involved in innate immunity. 

For example, CBD exerts a prevalent inhibitory effect on astrocytes [92,93,105] and PMN 

[26,36,94,153,155–160,164], whereas, in microglia, oligodendrocytes, monocytes/macro-

phages, and mast cells, results are contradictory, with some authors reporting anti-inflam-

matory effects for CBD [90,90,99,101–106,110,111,116–122,124–127,129] and other authors 

reporting proinflammatory effects [89,107,108,110,111,120,122–125,129]. Lastly, to the best 

of our knowledge, no studies have reported CBD’s effects on dendritic cells, NK cells, 

eosinophils, and basophils. 

Due to the safe profile of CBD and its already widespread use in clinical settings, 

clinical trials are all the more important to test the clinical efficacy of this compound in 

several diseases, which are now lacking in both symptomatic and disease-modifying ther-

apies. 

However, despite the possible exceptional value of CBD’s anti-inflammatory effects 

in clinical practice, CBD-based drugs are so far prescribed only as comedication in subjects 

with poor clinical response, or in which standard therapies induce intolerable side-effects. 

Quite surprisingly, we could not find any published clinical study which was specifically 

designed to evaluate the anti-inflammatory role of CBD treatment. In this context, results 

reported in this review could support a more rational use of CBD in diseases with a strong 

inflammatory component. 
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