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Abstract: While genetic analyses have revealed ~100 risk loci associated with osteoarthritis (OA),
only eight have been linked to hand OA. Besides, these studies were performed in predominantly
European and Caucasian ancestries. Here, we conducted a genome-wide association study in the Han
Chinese population to identify genetic variations associated with the disease. We recruited a total
of 1136 individuals (n = 420 hand OA-affected; n = 716 unaffected control subjects) of Han Chinese
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ancestry. We carried out genotyping using Axiom Asia Precisi on Medicine Research Array, and we
employed the RegulomeDB database and RoadMap DNase I Hypersensitivity Sites annotations to
further narrow down our potential candidate variants. Genetic variants identified were tested in
the Geisinger’s hand OA cohort selected from the Geisinger MyCode community health initiative
(MyCode®). We also performed a luciferase reporter assay to confirm the potential impact of top
candidate single-nucleotide polymorphisms (SNPs) on hand OA. We identified six associated SNPs
(p-value = 6.76 × 10−7–7.31 × 10−6) clustered at 2p13.2 downstream of the CYP26B1 gene. The
strongest association signal identified was rs883313 (p-value = 6.76 × 10−7, odds ratio (OR) = 1.76),
followed by rs12713768 (p-value = 1.36 × 10−6, OR = 1.74), near or within the enhancer region closest
to the CYP26B1 gene. Our findings showed that the major risk-conferring CC haplotype of SNPs
rs12713768 and rs10208040 [strong linkage disequilibrium (LD); D’ = 1, r2 = 0.651] drives 18.9% of
enhancer expression activity. Our findings highlight that the SNP rs12713768 is associated with
susceptibility to and severity of hand OA in the Han Chinese population and that the suggested
retinoic acid signaling pathway may play an important role in its pathogenesis.

Keywords: hand osteoarthritis; CYP26B1; retinoic acid; Han Chinese; genome-wide association
study; polymorphisms

1. Introduction

Hand osteoarthritis (OA) is the most prevalent joint disease characterized by cartilage
degeneration, bone sclerosis, and osteophytes, which manifests with loss of hand mo-
tion [1,2]. The disease affects different hand joints in a bilateral manner, frequently affecting
the distal interphalangeal (DIP) and proximal interphalangeal (PIP) joints, the Heberden’s
and Bouchard’s nodes, respectively, and the first carpometacarpal (CMC-1) joint [2,3]. The
prevalence of hand OA differs by ethnicity [4–8]; however, most genetics studies of hand
OA were conducted in European cohorts. In radiographic hand OA studies of Japanese [9]
and Korean [10] populations, a higher prevalence of OA in the interphalangeal (IP) and
a lower prevalence in the CMC thumb joints were reported when compared to those in
Caucasian populations. Furthermore, previous studies have indicated that OA suscepti-
bility loci identified in the European population are often not in accordance with Asian
populations [11–13]. Hand OA is a multifactorial disease where age, sex, occupational
activities, and genetics strongly contribute to the development and progression of the
disease, which complicates efforts to identify pathogenic mechanisms [1,3].

Family-based and twin pair studies strongly suggest the genetic component of hand
OA, with heritability estimates of ~64% [14,15]. Early genome-wide linkage and associa-
tion studies have identified multiple hand OA susceptibility genes, such as AGC1 [16–18],
HFE [19,20], GDF5 [12], and A2BP1 [21]; however, neither of those studies show conclu-
sive results, nor do they reach the genome-wide significance p-value. The first genome-
wide association studies (GWASs) of hand OA to report genome-wide significant re-
sults identified a single-nucleotide polymorphism (SNP) rs3204689 at chromosome 15q22
(p-value = 3.99 × 10−10, odds ratio (OR) = 1.51) [22]. This SNP is mapped to the ALDH1A2
gene that encodes retinaldehyde dehydrogenase 2 enzyme, which is involved in the con-
version of retinoic acid during vitamin A metabolism [22]. Two other hand-OA asso-
ciated genes have since been reported, MGP (p-value = 1.8 × 10−15) [23] and WNT9A
(p-value = 2.4 × 10−13) [24]. The most recent large-scale meta-analyses of 177,517 indi-
viduals with OA (21,186 cases of hand OA) further identified 52 novel loci across 11 OA
phenotypes, seven of which are associated with hand OA [25]. Most of these seven iden-
tified loci are annotated to the intron region, except for rs8112559, which is annotated
upstream of the IRF2BP1 gene [25]. Their study incorporates nine populations, including
East Asian; yet, all of the hand OA subjects were of European or Caucasian ancestries [25].

GWASs have since uncovered ~100 OA genetic risk loci; however, only eight of
them are hand OA-related [22–26]. Besides, these findings were primarily replicated in
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European and Caucasian populations [22–26]. Asian descent remains disproportionately
underrepresented in the GWAS of hand OA. Hence, we carried out a GWAS to identify
novel genetic susceptibility loci and genes associated with hand OA in 1136 Han Chinese
subjects. We also carried out a reporter assay of the candidate SNPs to test their potential
functional effects on hand OA.

2. Results
2.1. Overview of the Study Population

A total of 1136 unrelated subjects (n = 420 hand OA-affected; n = 716 unaffected
control subjects) met the recruitment criteria for this study (Figure 1). Table 1 shows a
higher prevalence of female subjects (87%) affected by hand OA than male subjects (13%).
Of the unaffected subjects, 76% were female and 24% were male. The mean age was 64.7
and 64.1 years for affected and unaffected subjects, respectively. No significant differences
in the BMI between the affected and unaffected control subjects (24.64 vs. 24.67 kg/m2). A
summary of the sex and age distribution in the GWAS is presented in Supplementary Table
S5. The most common age group was 60–69 years for females and 70–79 years for males, in
both the affected and unaffected control subjects.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 18 
 

 

 
Figure 1. Flowchart of the GWAS hand OA study performed in the Han Chinese population residing 
in Taiwan. 

2.2. Hand OA Genome-Wide Association Analysis 
The MDS plot showed no evidence of population stratification between the GWAS and 

HapMap population (Supplementary Figure S1A) and between the affected and unaffected 
control subjects (Supplementary Figure S1B). The genomic inflation factor (λGC) of 1.0418 
also revealed a minimal effect of population stratification on the association results. The 
quantile–quantile (Q–Q) plot is deflated (Supplementary Figure S2), likely due to the mod-
erate sample size. 

The Manhattan plot of 4,587,241 SNPs that were tested for the association is shown in 
Figure 2. The GWAS identified 24 SNPs with a suggestive association (p-value < 1 × 10−5), of 
which 21 SNPs were imputed markers (Table 2). The strongest association signal identified 
was for rs883313 (p-value = 6.76 × 10−7; OR of 1.76 (95% CI, 1.41–2.19); regional association 

Figure 1. Flowchart of the GWAS hand OA study performed in the Han Chinese population residing
in Taiwan.



Int. J. Mol. Sci. 2023, 24, 3021 4 of 16

Table 1. Basic characteristics of study populations.

Characteristic Affected Unaffected Control

N 420 716
F/M (n, %) 365 (87)/55 (13) 547 (76)/169 (24)

Age at sampling, years ± SD a

(min–max) 64.7 ± 10.4 (32–94) 64.1 ± 9.7 (34–93)

Height, cm ± SD b (min–max) 155.81 ± 6.9 (137–184) 157.58 ± 6.9 (138.5–180)
Weight, kg ± SD (min–max) 59.87 ± 9.21 (36–100) 61.32 ± 9.91 (35–106)

BMI, kg/m2 ± SD b

(min–max)
24.64 ± 3.34 (15.51–39.11) 24.67 ± 3.53 (13.01–36.16)

BMI ≤ 24.9 kg/m2 244 (58.10%) 414 (57.90%)
25.0 > BMI < 29.9 kg/m2 155 (36.90%) 246 (34.41%)

BMI ≥ 30.9 kg/m2 21 (5%) 55 (7.69%)

BMI, body mass index. a mean ± standard deviation; b Data on height was missing for one unaffected
control subject.

2.2. Hand OA Genome-Wide Association Analysis

The MDS plot showed no evidence of population stratification between the GWAS and
HapMap population (Supplementary Figure S1A) and between the affected and unaffected
control subjects (Supplementary Figure S1B). The genomic inflation factor (λGC) of 1.0418
also revealed a minimal effect of population stratification on the association results. The
quantile–quantile (Q–Q) plot is deflated (Supplementary Figure S2), likely due to the
moderate sample size.

The Manhattan plot of 4,587,241 SNPs that were tested for the association is shown in
Figure 2. The GWAS identified 24 SNPs with a suggestive association (p-value < 1 × 10−5),
of which 21 SNPs were imputed markers (Table 2). The strongest association signal iden-
tified was for rs883313 (p-value = 6.76 × 10−7; OR of 1.76 (95% CI, 1.41–2.19); regional
association plot in Figure 3A), followed by rs12713768 (p-value = 1.36 × 10−6; OR of 1.74
(95% CI, 1.40–2.17)) located downstream of cytochrome P450 family 26 subfamily B member
1 (CYP26B1; [MIM]: 605207; Figure 3A). The major C allele of the second strongest SNP
rs12713768 is conserved (Supplementary Figure S3A) and is mapped within 150 kb of
the CYP26B1 gene (Supplementary Figure S3B) across 16 mammalian genomes. Three
SNPs on chromosome 6 were mapped to the DNAH8 and ZRF1PS genes with a p-value of
5.30 × 10−6. The other seven SNPs on chromosome 6 were mapped to the AGPAT4 gene
(p-value = 5.05–8.50 × 10−6). Two markers, rs11108612 and rs11108617, on chromosome 12,
were mapped to the CFAP54 gene (p-values = 9.70 × 10−6 and 7.45 × 10−6, respectively).
Two SNPs on chromosome 17 were mapped to the ASIC2 gene, with p-values of 8.90 × 10−6

and 9.89 × 10−6. The remaining four SNPs on chromosome 17 were mapped to the genes
LYZL6, CCL14, CCL15, CCL16, and CCL23, with p-values in the range of 2.56–8.39 × 10−6.
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Figure 2. Manhattan plot for hand OA association in Han Chinese population. Manhattan plot of the
genome-wide association study of 420 subjects with hand OA and 716 unaffected controls. The x axis is
each of the SNPs in the initial scan, and the y axis is the -log10 p-value of the Cochran-Armitage trend
test. Horizontal dashed lines indicate −log10(p) = 5, whereas solid black lines indicate −log10(p) = 6.
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Table 2. Top SNPs associated with hand OA in the GWAS.

Chr SNP Position (bp) Allele Format Risk Allele Risk Allele OR
(95% CI) RAF Controls RAF Cases p-Value Nearest Gene a

2 rs1517396 72,228,008 CT T 1.588 (1.308–1.928) 0.6568 0.7525 3.43 × 10−6 CYP26B1 Imputed
2 rs883313 72,239,692 TC C 1.755 (1.409–2.185) 0.7468 0.8381 6.76 × 10−7 CYP26B1 Imputed
2 rs883312 72,239,762 CT T 1.581 (1.305–1.916) 0.6620 0.7560 3.65 × 10−6 CYP26B1
2 rs883311 72,239,809 GA A 1.560 (1.287–1.891) 0.6636 0.7548 7.31 × 10−6 CYP26B1 Imputed
2 rs12713768 72,240,527 AC C 1.737 (1.393–2.164) 0.7521 0.8405 1.36 × 10−6 CYP26B1
2 rs191066740 72,245,915 TG G 1.721 (1.364–2.173) 0.7746 0.8554 6.97 × 10−6 CYP26B1 Imputed

6 rs1614699 38,738,748 AT A 1.809 (1.399–2.338) 0.0949 0.1595 5.30 × 10−6 DNAH8, ZRF1PS Imputed
6 rs1678657 38,742,793 GT G 1.809 (1.399–2.338) 0.0949 0.1595 5.30 × 10−6 DNAH8, ZRF1PS Imputed
6 rs1738263 38,743,252 CT C 1.809 (1.399–2.338) 0.0949 0.1595 5.30 × 10−6 DNAH8, ZRF1PS Imputed
6 rs12197517 161,666,190 CG G 2.327 (1.577–3.432) 0.9088 0.9586 8.50 × 10−6 AGPAT4 Imputed
6 rs62437572 161,666,765 CT T 2.360 (1.601–3.479) 0.9076 0.9586 5.62 × 10−6 AGPAT4 Imputed
6 rs10945720 161,668,745 AG G 2.366 (1.605–3.488) 0.9076 0.9587 5.25 × 10−6 AGPAT4 Imputed
6 rs12190239 161,669,231 GC C 2.362 (1.602–3.482) 0.9077 0.9587 5.48 × 10−6 AGPAT4 Imputed
6 rs112790908 161,670,764 AAT AT 2.358 (1.600–3.477) 0.9079 0.9587 5.72 × 10−6 AGPAT4 Imputed
6 rs12207205 161,671,403 AG G 2.367 (1.606–3.489) 0.9075 0.9587 5.05 × 10−6 AGPAT4 Imputed
6 rs73019329 161,678,741 CT T 2.353 (1.596–3.469) 0.9083 0.9588 6.06 × 10−6 AGPAT4 Imputed

12 rs11108612 97,041,461 AG G 1.484 (1.244–1.771) 0.5380 0.6335 9.70 × 10−6 CFAP54 Imputed
12 rs11108617 97,047,776 AG G 1.499 (1.253–1.792) 0.5359 0.6338 7.45 × 10−6 CFAP54 Imputed

17 rs76055737 31,565,197 TC C 1.947 (1.442–2.629) 0.8632 0.9248 9.89 × 10−6 ASIC2 Imputed
17 rs79186365 31,565,269 AG G 1.953 (1.447–2.638) 0.8629 0.9248 8.90 × 10−6 ASIC2 Imputed

17 rs111761296 34,309,769 CCCCTT C 2.124 (1.552–2.905) 0.0579 0.1156 2.56 × 10−6
LYZL6, CCL14,
CCL15, CCL16,

CCL23
Imputed

17 rs76190126 34,310,256 AC A 2.024 (1.485–2.758) 0.0601 0.1147 8.39 × 10−6
LYZL6, CCL14,
CCL15, CCL16,

CCL23
Imputed

17 rs10491118 34,314,886 TG T 1.971 (1.475–2.636) 0.0677 0.1253 5.99 × 10−6
LYZL6, CCL14,
CCL15, CCL16,

CCL23
Imputed

17 rs12051658 35,988,597 GA G 1.988 (1.488–2.656) 0.0677 0.1262 4.35 × 10−6
LYZL6, CCL14,
CCL15, CCL16,

CCL23

Results are shown for SNPs with p < 1 × 10−5. Chr, chromosome; OR, odds ratio for risk allele; 95% CI, 95% confidence interval; RAF, risk allele frequency; p-value, trend p-value of
Cochran-Armitage test; Nearest gene, gene nearest to the SNPs; a Nearest gene is within 150 kb away.



Int. J. Mol. Sci. 2023, 24, 3021 6 of 16

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 3. Regional plot for the novel loci associated with hand OA. (A) LocusZoom plot of the chro-
mosome 2 locus at SNP rs883313 and rs12713768 showing –log10(p-value) in the GWAS cohort, recom-
bination rates in Han Chinese study populations, and annotated CYP26B1 protein coding transcript in 
the region below. Presented in the zoom in the region surrounding SNP rs12713768 are (B) CADD 
score, (C) RegulomeDB score, (D) chromatin state data of two tissue types: E049, human mesenchymal 
stem cell (hMSC)-derived cultured chondrocyte cells and E129, primary osteoblasts, and (E) eQTL data 
of CYP26B1 generated using FUMA. ReprPC, repressed by Polycomb. ReprPCW, repressed by Poly-
comb (Weak). eQTL, expression quantitative trait locus. 

2.3. CYP26B1/rs12713768 Is a Potential Causal Gene for Hand OA 
Subsequent to GWAS, we performed post-GWAS analysis using FUMA to identify 

causative variants. SNP rs12713768 is predicted to be a potentially deleterious variant, with 
a C-score of 18.65 (Figure 3B), and it has a regulatory function, with a RegulomeDB rank of 
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Figure 3. Regional plot for the novel loci associated with hand OA. (A) LocusZoom plot of the
chromosome 2 locus at SNP rs883313 and rs12713768 showing –log10(p-value) in the GWAS cohort,
recombination rates in Han Chinese study populations, and annotated CYP26B1 protein coding
transcript in the region below. Presented in the zoom in the region surrounding SNP rs12713768 are
(B) CADD score, (C) RegulomeDB score, (D) chromatin state data of two tissue types: E049, human
mesenchymal stem cell (hMSC)-derived cultured chondrocyte cells and E129, primary osteoblasts,
and (E) eQTL data of CYP26B1 generated using FUMA. ReprPC, repressed by Polycomb. ReprPCW,
repressed by Polycomb (Weak). eQTL, expression quantitative trait locus.

2.3. CYP26B1/rs12713768 Is a Potential Causal Gene for Hand OA

Subsequent to GWAS, we performed post-GWAS analysis using FUMA to identify
causative variants. SNP rs12713768 is predicted to be a potentially deleterious variant, with
a C-score of 18.65 (Figure 3B), and it has a regulatory function, with a RegulomeDB rank of
2b (Figure 3C). We also used RegulomeDB to investigate 17 SNPs located on chromosome 2
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(mapped within 200 kb to CYP26B1) in tissues most relevant to OA, including osteoblasts
and chondrocytes. Fifteen of the tested SNPs returned scores of 1-6, four of which were
predicted to have regulatory functions, with RegulomeDB scores ≤ 3. Two of these pre-
dicted regulatory variants were SNPs with strongest association signal identified in our
GWAS (CYP26B1/rs883313, RegulomeDB score = 3a; CYP26B1/rs12713768, RegulomeDB
score = 2b; Supplementary Table S4). Roadmap DHS annotations [27] further showed that
SNPs rs12713768 and rs10208040 (LD; D’ = 1, r2 = 0.651) were mapped within the enhancer
region. This variant is mapped to the polycomb-repressed region in chondrogenic cells and
primary osteoblasts (Figure 3D). The C alleles of SNP rs12713768 have also been previously
associated with the higher expression of the CYP26B1 gene according to its eQTL analysis
(GTEx Portal database; Figure 3E).

Next, we tested 24 SNPs in an independent hand OA cohort from Geisinger. Data
for 20 SNPs were available from Geisinger, and none showed associations with the SNPs
of the present study (Supplementary Table S6). We also tested previously reported hand
OA-associated SNPs. Some signals are replicated, with p-values < 0.05, including 39 SNPs
within the ALDH1A2 [22], SNP rs4764133 near MGP gene [23], and SNPs rs7294636 and
rs11071366 nearest to C12orf60 and ALDH1A2, respectively [25] (Supplementary Table S7).
They did not reach genome-wide significance, but the effects were in the same direction as
in our cohort.

To clarify whether our top SNPs rs883313 and rs12713768 are specifically associated
with hand OA, we performed GWAS of the 289 subjects affected by knee and/or hip OA
(without hand OA). These subjects were previously excluded from our hand OA cohort
(Figure 1). These two SNPs, rs883313 and rs12713768, did not reach the suggestive p-value
threshold of 10−5, having p-values of 0.3113 and 0.3946, respectively (Supplementary Table
S8). In addition, we also estimated the relative risk-conferring allele frequency of these
SNPs. SNP rs883313 has a risk allele frequency of 0.766436, while rs12713768 has an allele
frequency of 0.768166 compared to the allele frequency of 0.8381 and 0.8405 in the subjects
with hand OA, respectively (Supplementary Table S9).

Furthermore, we analyzed the association of SNPs rs883313 and rs12713768 in the
Taiwan Precision Medicine Initiative (TPMI) cohorts of hip OA (ICD-10 M16), knee OA
(ICD-10 M17), and rheumatoid arthritis (RA; ICD-10 M05 and M06). The p-values of these
SNPs did not reach p-values of <0.05 in all cohorts (Supplementary Table S10). Our findings
suggest that these two SNPs are more likely to affect the development and severity of hand
OA than those of hip OA, knee OA, and RA.

We further genotyped 33 SNPs in at least 188 hand OA-affected subjects to validate
our findings. Fifteen out of the 16 SNPs on chromosome 2 were mapped within 150 kb of
the gene CYP26B1, and one was within 200 kb. The genotype concordance between the
two platforms was ≥98%, except for SNP rs1738263, which had a concordance rate of 96%
(Supplementary Table S3). Taken together, our results suggest that rs12713768 is a potential
regulatory variant for the novel hand-OA associated gene, CYP26B1.

2.4. Effect of SNP Variants rs12713768 and rs10208040 on the Predicted Enhancer Activity of
CYP26B1 Gene

Two SNPs selected for validation, rs12713768 and rs10208040, were mapped to the
predicted enhancer region (2:72,240,035–72,241,404, hg19). We also mapped the promoter
of gene CYP26B1 at the position of 2:72,148,038–72,150,001 (hg19). We performed a re-
porter assay to determine if the predicted enhancer region is functional and whether
SNPs rs12713768 and rs10208040 could affect the regulation of gene expression (Figure 4).
Figure 4B shows that the CYP26B1 promoter has robust activity in driving reporter vector
expression as compared to the pGL3-basic vector without a promoter (p-value = 0.0011).
Alleles A and C of rs12713768 are in strong linkage disequilibrium (LD, D’ = 1, r2 = 0.651)
with the T and C alleles of rs10208040, respectively (Figure 5). We constructed the pro-
moter and enhancer sequences with AT, AC, CT, and risk-conferring CC haplotype in
a pGL3-basic vector (Figure 4A). Sequences with the enhancer showed a 2.0- to 2.5-fold
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increase in reporter activity compared to the construct with the promoter only, supporting
the functionality of the enhancer region (Figure 4B). Moreover, the risk-conferring CC
haplotype group displayed 18.9% higher enhancer activity than the AT haplotype group
(p-value = 0.0429; Figure 4B). This suggests that the presence of risk-conferring CC hap-
lotype in the enhancer region increases reporter gene activity. Our findings confirmed
that the predicted enhancer sequence is functional and that the CC haplotype of SNPs
rs12713768 and rs10208040 contributed to the increased activity of the enhancer.
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3. Discussion

We identified novel causal variants, rs883313 and rs12713768, showing the strongest
association signals with radiographic hand OA. The risk-conferring CC haplotype of SNPs
rs12713768 and rs10208040 (LD, D’ = 1, r2 = 0.651), both located downstream nearest to the
cytochrome P450 family gene CYP26B1, is predicted to increase the expression of CYP26B1.
Our bioinformatics and functional validation further suggest that CYP26B1 is potentially a
novel causal gene for hand OA.

CYP26B1 plays an important role in the vitamin A metabolism pathway by catabo-
lizing excess retinoic acid into its inactive polar forms [28]. Retinoic acid, the most active
metabolite derivative of vitamin A, is a critical signaling molecule in regulating chondro-
genesis and osteogenesis during vertebrate embryonic growth and development [29,30].
Genetic deficiencies in CYP26B1 in mice display craniofacial abnormalities and limb mal-
formation [31,32]. The CYP26B1 gene is also highly conserved in all chordates, further
affirming its critical role in vertebrate development [33].

A retinoic acid-related gene (ALDH1A2) had previously been linked to the hand OA
phenotype in the Icelandic population [22]. The ALDH1A2 gene encodes an enzyme in-
volved in retinoic acid synthesis [22]. Studies by Styrkarsdottir et al. [22] and Shepherd
et al. [34] revealed that the reduced bioavailability of retinoic acid might increase the risk
of hand OA. Higher expression of CYP26B1 in OA hip cartilage compared to non-OA
control hip cartilage was also observed in their RNA-seq data, albeit it was not significantly
differentially expressed [34]. On the contrary, Davies et al. [35] proposed that excess levels
of retinoic acid detected in synovial fluid of OA patients may cause detrimental effects on
the cartilage. Taking our findings into consideration, we deduce that increased expression
of CYP26B1 may also lower the level of retinoic acid in the tissues and lead to the same
phenotypic outcome as Styrkarsdottir et al. [22] and Shepherd et al. [34]. The low bioavail-
ability of retinoic acid is known to compromise cartilage integrity through modulation of
the expression of a key chondrogenic transcription factor, SRY-Box Transcription Factor 9
(SOX9) [34]. Our study highlights the importance of retinoic acid and vitamin A metabolism
pathway for hand OA phenotype in both European and Han Chinese populations, despite
affecting different genes.

Joint pain is one of the hallmark symptoms of OA, and the treatment of OA is mainly
aimed at pain relief [36]. Our GWAS identified several genes that have been documented for
their functional relationship with OA pain (AGPAT4 [37] and ASIC2 [38–40]) and low bone
mineral content (AGPAT4 [41]). AGPAT4 (1-acylglycerol-3-phosphate O-acyltransferase
4) encodes a catalyze enzyme involved in the conversion of lysophosphatic acid (LPA)
to phosphatidic acid in the phospholipid biosynthesis [41]. McDougall et al. [37] has
demonstrated that LPA contributes to the neuropathic component of OA. Furthermore,
AGPAT4-knockout mice showed a decrease in bone mineral content [41]. ASIC2 (acid-
sensing ion channel 2) is a member of the proton-gated cation channels [42]. It is a nociceptor
that is part of the amiloride-sensitive degenerin/epithelial sodium channel (DEG/ENaC)
superfamily [39,42]. Previous studies demonstrated that ASIC2 expressed in bone cells may
have a role in regulating the pain signal transmission associated with bone metabolism [39,
40]. Cho et al. [38] observed an increase in the mRNA expression and protein levels of
ASIC2 in the frozen shoulder patients as compared to the controls, implying its possible
role in the pathogenesis of shoulder pain caused by frozen shoulder.

We also identified several genes expressing inflammatory chemokines that previ-
ously have been detected in the inflamed synovium samples of OA patients (CCL14 [43],
CCL15 [43], and CCL16 [43]) or have been reported to be expressed in human fetal osteoblast
and chondrocytes (CCL23 [44]). CCL15 was also detected to significantly elevate in the
severe-stage OA group compared to the early-stage OA group [45]. The involvement of
inflammatory chemokine in the pathogenesis of OA has gained more attention, as it has
been known that chemokine can be secreted by chondrocytes and synovial cells, which can
be detected in the synovial fluid of OA patients [45–47]. However, the complexity of the
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inflammation-induced signaling pathway warrants more studies to define the mechanisms
in which chemokine may be involved in the pathogenesis of OA.

Nevertheless, the top SNPs identified in this study were not replicated in an inde-
pendent cohort from Geisinger. These differences are most likely attributed to ethnic
heterogeneity, as more than 95% of the Geisinger population is of white European ances-
try [48]. SNP rs12713768 has a risk allele frequency of 47% and 55% in American and
European populations, respectively, but it is higher, at 77%, in the East Asian population,
according to the 1000 Genome Project (Phase 3; Supplementary Table S11). In addition, the
Geisinger cohort used the ICD codes, rather than the strict radiographic criteria used in
this study, which could also contribute to the differences in results.

We were also not able to validate the previously reported hand OA-associated vari-
ants. This could be owing to the relatively small sample size used in this study, het-
erogeneity of hand OA phenotypes and ethnic groups, and different case definitions
(radiographically confirmed cases of hand OA in the present study as compared to ICD
codes). The undetermined misclassification rate was a weakness for some of the pre-
vious studies and the Geisinger cohort used in this study. On the other hand, the lack
of replication suggests the complexity of the polygenic background of hand OA, which
involves multiple genes, variable phenotypic penetrance of the variants, and complex
gene–environment interactions.

For the first time, our study revealed the association between CYP26B1 gene with
hand OA. We identified SNPs located within a functional enhancer region mapped closest
to the vitamin A metabolizing gene CYP26B1, which likely accounts for the progression of
hand OA through the reduced bioavailability of retinoic acid. Future studies with larger
sample sizes are required to replicate these findings and to identify markers that are weakly
associated with the target traits. In addition, we also identified several genes linked to joint
pain and inflammation that have not been associated with hand OA. However, further
analysis is required to demonstrate their potential role as candidate genes for hand OA or
to delineate their molecular mechanism in the association with hand OA. Our findings,
together with previous genetic studies [22,34], highlight the genetic contribution of target
SNP variants in the vitamin A metabolism pathway in association with the severity of
hand OA.

4. Methods
4.1. Study Populations

A total of 1434 subjects were recruited from five medical centers in Taiwan (National
Taiwan University Hospital, Taipei Medical University Hospital, Taipei Veterans General
Hospital, Tri-Service General Hospital, and Linkou Chang Gung Memorial Hospital) be-
tween 2005 and 2009 (Figure 1). All hand OA-affected and unaffected control subjects
were of Taiwanese Han background, and range in age from 32 to 94 years (with a mean of
64.4 years; Table 1).

4.2. Phenotype Definition for Hand OA
4.2.1. Inclusion Criteria

The inclusion criteria to define hand OA cases follow those of The Genetics of Gener-
alized Osteoarthritis (GOGO) study [49]. The severity of hand OA was graded according
to the Kellgren-Lawrence (KL) scaling system (grades 0–4) [50]. Radiographic hand OA
was defined as the presence of three or more joint involvements of KL grade ≥ 2, at least
one DIP of digits 2–5, two of the three involved joints within a joint group (DIP, PIP, or
CMC), with the first IP joint of a thumb being considered in the PIP group, bilateral hand
involvement, and no more than three swollen metacarpophalangeal (MCP) joints ≥2 by
clinical examination, as defined in the Dictionary of Rheumatic Diseases [51].
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4.2.2. Exclusion Criteria

Subjects were excluded if they had a diagnosis of bone and joint disease (including
rheumatoid arthritis, gout arthritis, psoriatic arthropathy, hypertrophic osteoarthropathy,
hypermotility syndrome, hemochromatosis, Paget’s disease, spondyloarthropathy, post-
traumatic OA, other secondary-form OA, or lupus) or had more than three swollen MCP
joints with KL grade ≥ 2, or they were excluded if they had MCP changes compatible
with hemochromatosis. Additionally, if fasting transferrin saturation (FE/TIBC) ratio
outcomes were >55%, the subjects were excluded. Female subjects who had a positive urine
pregnancy test at screening were excluded.

4.3. Phenotype Definition of Non-OA Control Subjects
4.3.1. Inclusion Criteria

Non-OA controls for the study were recruited of age and ethnic match to the hand
OA-affected subjects. All non-OA control subjects were age ≥ 30 years of Taiwanese Han
ancestry. Non-OA controls were defined as subjects without OA in hands, hips, and knees
(no more than two hand joints involvement of KL grade ≥ 2, hip-KL grade of <2, and
knee-KL grade < 2, respectively). If greater than three joints with KL grade ≥ 2 were
present in hand joints, then it should be neither bilateral joint involvement nor two joints in
the same joint group (DIP, PIP or CMC). If the hip-KL grade is equal to 2, the review joint
space width has to be ≥2.5.

4.3.2. Exclusion Criteria

Subjects with OA in the hand joint, or had hip and/or knee OA, or had any bone
and joint disease as mentioned above, were excluded. Subjects with a knee-KL grade ≥ 2,
and/or a hip-KL grade ≥ 2, or those that had any osteophytes in the hip with joint space
width < 2.5, were excluded. Subjects were excluded if they had more than three swollen
MCP joints with KL grade ≥ 2, MCP changes compatible with hemochromatosis, or iron
overload > 55%. None of the first-degree relative subjects was enrolled in the study.

Of the 1434 subjects who participated, 289 individuals having knee and/or hip OA
(without hand OA) were excluded from the analysis (Figure 1). A total of 1145 individuals
were genotyped (n = 421 hand OA-affected; n = 724 unaffected control subjects). The
replication cohort was identified from within the Geisinger MyCode community health
initiative (MyCode®), a system-wide research biorepository in Geisinger, Pennsylvania,
USA with more than 265,000 participants enrolled to date [48]. Hand OA-affected and
control population of the Geisinger cohort was identified using International Classification
of Diseases (ICD) codes (Supplementary Table S1).

4.4. Genotyping, Quality Control, and Imputation

Genomic DNA was extracted from the blood using the QIAamp DNA Blood Mini
kit (QIAGEN Inc., Valencia, CA, USA). Genotyping was performed using the Axiom Asia
Precision Medicine Research Array (Affymetrix, Santa Clara, CA, USA). Genotype calls
were determined using the BirdSeed genotyping algorithm implemented in Affymetrix
Power Tools (Affymetrix, Santa Clara, CA, USA). The overall call rates of all samples were
>95%. Per-individual quality control (QC) excluded the following samples for further
analysis: (i) call rate < 95%; (ii) discrepancy between recorded and genotype-determined
sex; (iii) first-degree relatives identified by kinship analysis; and (iv) outliers in the multidi-
mensional scaling plot. Genotype QC for each SNP was evaluated by the total call rate and
minor allele frequency (MAF) in cases and controls combined. Autosomal SNPs that met the
following criteria were excluded from further analysis: (i) nonpolymorphic, (ii) sample call
rate < 95%, (iii) MAF < 1% and total call rate < 99%, and (iv) Hardy-Weinberg equilibrium
p-value < 1 × 10−6. After QC and removing individuals who had kinship relationships (one
in cases and eight in controls), 507,468 SNPs were retained in the 420 hand OA-affected and
716 unaffected control subjects (Supplementary Table S2). Genotype data passed QC were
imputed with IMPUTE2 (https://mathgen.stats.ox.ac.uk/impute/impute_v2.html) with
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East Asian 1000 Genomes Project data as the references. After imputation (info score > 0.9),
4,587,241 SNPs were obtained.

4.5. Genome-Wide SNPs Cross-Platform Validation

Thirty-three SNPs that are located nearest to CYP26B1 or have p-values < 1 × 10−5

were further validated (Supplementary Table S3). Top SNPs rs883313 and rs12713768 were
validated in all controls and cases (n = 1136). The other 31 SNPs were validated in at least
188 hand OA-affected subjects in the current study. SNPs of interest were genotyped using
either the Sequenom MassARRAY iPLEX platform (Sequenom, San Diego, CA, USA) at
the National Center for Genome Medicine, Academia Sinica, Taiwan, or standard Sanger
direct sequencing on an ABI Prism 3730XL DNA Analyser (Applied Biosystems, Foster,
CA, USA).

4.6. Statistical and Bioinformatics Database Analysis

All statistical analyses were performed using PLINK1.07 (http://pngu.mgh.harvard.
edu/~purcell/plink). Multidimensional scaling (MDS) showed that all individuals in-
cluded in the study were clustered closely within the East Asian 1000 Genomes Project.
The genomic variance inflation factor (λGC), calculated according to Devlin et al. [52], was
1.0418. We performed the Cochran-Armitage trend test to compare allele and genotype
frequencies between cases and controls. The distribution of the p-value was examined by
plotting a quantile–quantile (Q–Q) plot. Logistic regression models were performed to
evaluate the odds ratio (OR) with 95% confidence intervals (CI). Manhattan and Q–Q plots
were generated using the CMplot package (https://CRAN.R-project.org/package=CMplot;
accessed on 12 March 2021) [53]. The locus-specific plot was generated using LocusZoom
(http://locuszoom.sph.umich.edu/locuszoom/), with recombination rates taken from the
East Asian component of the 1000 Genomes Project. Haplotype analysis was performed
using SNPStats [54] and Haploview [55].

Variant regulatory region annotation was performed using the SNP2GENE tool from
Functional Mapping and Annotation (FUMA) [56]. FUMA annotation includes combined
annotation-dependent depletion (CADD) score [57], RegulomeDB score [58], chromatin
state, and expression quantitative trait loci (eQTL) data. CADD ranks the pathogenicity of
a variant as a C-score ranging from 1 to 99. Any variant with a C-score ≥ 10 is considered
to be within the top 10% of deleteriousness substitutions in the human genome [59].
RegulomeDB online database (https://regulomedb.org/; accessed on 27 August 2021) [58]
was used to explore the functionality of 17 SNPs on chromosome 2 in tissues most relevant
to OA (Supplementary Table S4). It scores SNP functionality according to experimental
datasets from the Encyclopedia of DNA Elements (ENCODE) project, Gene Expression
Omnibus, and the published literature covering 962 datasets and over 100 tissues and cell
lines [58]. SNPs are graded from ranks 1-6, with lower rank indicating the more likely the
SNP is to be located within a potentially functional region [58].

4.7. Construction of Luciferase Reporter Plasmids

SNPs rs12713768 and rs10208040 (strong linkage disequilibrium (LD); D’ = 1, r2 = 0.651)
were further selected for functional validation, as they were mapped to the predicted
enhancer region (2:72,240,035–72,241,404, hg19) according to Roadmap DNase hyper-
sensitivity site (DHS) annotations [27]. Five constructs were synthesized and cloned
into the pGL3-basic vector by Bio Basic Inc. (Markham, ON, Canada). The pGL3-basic
plasmid was digested with SacI and MluI, where the DNA fragment of chromosome
2:72,148,038–72,150,001 (hg19) was ligated to generate the pGL3-basic-P construct. The
DNA fragment was excerpted from the promoter region of CYP26B1 (contains the region
of ENSR00000118913 but without the region ENSE00001956510) according to Ensembl
Database (http://www.ensembl.org/; accessed on 7 August 2020). Four of the pGL3-basic-
P constructs were digested with BamHI and SalI. The predicted enhancer sequences with
different interest variants of rs12713768 (2:72,240,527, hg19; C or A allele) and rs10208040
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(2:72,241,295, hg19; C or T allele) were ligated into these constructs, generating constructs
with risk haplotype, pGL3-basic-P-CC, pGL3-basic-P-CT, pGL3-basic-P-AC, and construct
with alternative haplotype, pGL3-basic-P-AT. Positive clones were sequence-verified by
Sanger sequencing. Renilla luciferase, the pRL-TK vector, was used as an internal control,
while pGL3-basic vector was used as a negative control. Plasmid DNA was isolated using
PureLink™ HiPure Plasmid Maxiprep Kit (Invitrogen, Waltham, MA, USA).

4.8. Cell Cultures and Luciferase Reporter Assay

Human embryonic kidney (HEK) 293T cells were maintained at 37 ◦C and 5% CO2
in Dulbecco’s modified essential medium, containing 10% FBS, 100 U/mL penicillin, and
100 µg/mL streptomycin antibiotics. Liposome-based transfection was carried out using
Lipofectamine 2000 (Invitrogen, Waltham, MA, USA) according to the manufacturer’s
instructions. HEK293T cells were seeded into 96-well plates at a density of 10,000 cells
per well for 24 h. Cells were co-transfected with the same plasmid copy number of each
construct DNA and pRL-TK and lysed after 24 h. Luminescence was measured using
Firefly & Renilla Luciferase Single Tube Assay Kit (Biotium, Fremont, CA, USA) on an
EnSpire™ Multilabel Plate Reader (Perkin Elmer, Waltham, MA, USA). Firefly luciferase
activity was normalized to the activity of Renilla luciferase. Three independent experiments,
with at least four technical replicates, were performed per construct. The relative luciferase
activities are presented regarding the activity of pGL3-basic-P construct being defined as 1.

4.9. Statistics for Luciferase Assays

Statistical analysis was conducted in R 4.1.1 (https://www.R-project.org/), and a
p-value < 0.05 was considered significant. p-values were calculated using the unpaired
two-tailed Student’s t-test. Assay figures were plotted using the package ggplot2 [60].
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