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Abstract: At inflammatory sites, cytotoxic agents are released and generated from invading immune
cells and damaged tissue cells. The further fate of the inflammation highly depends on the presence
of antagonizing principles that are able to inactivate these host-derived cytotoxic agents. As long
as the affected tissues are well equipped with ready-to-use protective mechanisms, no damage
by cytotoxic agents occurs and resolution of inflammation is initiated. However, long-lasting and
severe immune responses can be associated with the decline, exhaustion, or inactivation of selected
antagonizing principles. Hence, cytotoxic agents are only partially inactivated and contribute to
damage of yet-unperturbed cells. Consequently, a chronic inflammatory process results. In this
vicious circle of permanent cell destruction, not only novel cytotoxic elements but also novel alarmins
and antigens are liberated from affected cells. In severe cases, very low protection leads to organ
failure, sepsis, and septic shock. In this review, the major classes of host-derived cytotoxic agents
(reactive species, oxidized heme proteins and free heme, transition metal ions, serine proteases, matrix
metalloproteases, and pro-inflammatory peptides), their corresponding protective principles, and
resulting implications on the pathogenesis of diseases are highlighted.

Keywords: cytotoxic agents; reactive species; transition metal ions; free heme; serine proteases;
angiotensin II; matrix metalloproteases; chronic inflammation

1. Introduction

Persistent, long-lasting inflammation is a general problem in many diseases. As these
chronic inflammatory states are only insufficiently or not terminated, novel immune cells
are again and again recruited to and activated at the inflamed loci. Often, an ongoing
immunocompromised condition exists in these patients, a condition that further disturbs
the recovery to normal tissue homeostasis.

During inflammation, immune responses are initiated by the ligation of pathogen-
associated molecular patterns (PAMPs) and/or damage-associated molecular patterns
(DAMPs) to pattern-recognition receptors (PRRs) [1,2]. DAMPs are host-derived molecules
that are also known as danger signals or alarmins. PRRs are distributed in both cell
membranes and cytoplasm [3,4]. As a result of PAMP and DAMP ligation to PRRs, signaling
events are induced leading to the release of cytokines and antimicrobial agents and the
attraction of immune cells [5]. These activities are generally directed to combat invading
pathogens and to decrease tissue damage. A second activity initiated by PRRs concerns the
maturation of dendritic cells for the presentation of antigens to T lymphocytes [5].

This very attractive concept of immune activation by molecular patterns covers a
broad range of initiating molecules including constituents of pathogens (viruses, bac-
teria, fungi, and others) and agents from damaged host cells. This concept is closely
associated with immune responses initiated by external and host-derived antigens. Im-
portant biomarkers of an ongoing inflammation are pro-inflammatory cytokines such as
interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α) and acute-
phase proteins such as C-reactive protein (CRP) and serum amyloid A (SAA) [6–11]. The
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termination of inflammation is also highly regulated and characterized in contrast to the ini-
tiation and propagation phases by an own set of cytokines and changed energy metabolism
of immune cells [10,12]. Importantly, anti-inflammatory cytokines contribute not only to
the resolution of immune responses but also to the replacement of damaged biological
material by novel cells and components of the extracellular matrix [13,14]. A transient
immunosuppression is typical of this phase of inflammation [15].

During inflammation, unperturbed cells and tissues of the host can be damaged.
Despite huge progress in understanding molecular and regulatory aspects of inflammation,
no clear answers are given about the general interplay between inflammation and cell
and tissue destruction, the severity of the resulting damage, and the fate of the affected
organism during chronic inflammation.

Besides physical factors such as traumata, heat, or cold impacts, the action of numer-
ous cytotoxic agents can seriously affect intact cells and tissues [16]. Like the initiating
factors of inflammation, cytotoxic agents can result from both external sources and affected
cells and tissues of the host. In the initiation and propagation phases of inflammation,
cytotoxic agents from activated immune cells and defective tissue cells act predominantly
destructively. During the resolution of inflammation, a shifted balance in the synthesis of
extracellular matrix can also affect tissue homeostasis.

In this review, the role of host-derived cytotoxic agents will be evaluated in the
development of cell and tissue damage during inflammation. In addition, deviations in
the balance between cytotoxic agents and protective principles will be highlighted. On
this basis, the role of insufficient protection against damage in the development of chronic
inflammatory states will be addressed.

2. The Balance between the Action of Cytotoxic Agents and Protective Principles
2.1. Major Classes of Host-Derived Cytotoxic Agents

The contact of cytotoxic agents with living matter worsens cell functions and can
induce irreversible changes in cells and tissues including cell death. According to the
source of these agents, they can be roughly divided into external and host-derived cytotoxic
components. The group of external cytotoxic agents comprises pathogen-derived toxins
and manifold external poisons that act on the organism by inhalation, direct contact, or
uptake with food. A third group represents environmental cytotoxic agents (for details see
Section 2.4). An overview about external cytotoxic agents is given in Figure 1. Selected
examples of these agents are included.
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Of course, these external cytotoxic agents can cause sufficient threat to the affected
tissues and finally the death of the organism. However, these agents are usually not
involved in long-lasting, chronic inflammation.
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Host-derived cytotoxic agents result from activated immune cells such as neutrophils,
eosinophils, monocytes, macrophages, and T cells, but also from affected tissue cells of
non-immunological origin, for instance, muscle cells and red blood cells. Immune cells
contain an arsenal of potentially cytotoxic agents that are needed to inactivate and kill
pathogens and to remove and digest affected cells and destroyed tissues [10]. Usually these
agents act within small, bounded compartments, e.g., within the phagosomes of neutrophils
and macrophages. However, a certain amount of these cytotoxic agents is released from
activated immune cells into the surrounding milieu, where they become dangerous to
unperturbed cells. The following classes of immune-cell-derived cytotoxic agents are
known: small reactive species, heme peroxidases, free metal ions, serine proteases, matrix
metalloproteases, and small pro-inflammatory peptides. These agents are either pre-
assembled or generated during cellular immune activation.

Damage to tissue cells of non-immunological origin can result in the uncontrolled
release of heme proteins such as hemoglobin and myoglobin and the subsequent formation
of free heme. Cellular stress is also associated with enhanced formation of reactive species
and deviations in free metal ion metabolism. As a result, the metabolism of mitochondria
is disturbed and numerous oxidative processes in biological constituents take place.

According to their mode of action, host-derived cytotoxic agents can be divided
into oxidant- and protease-based agents (Figure 2). Products of the first group promote
oxidative alterations of biological constituents, whereas members of the second group
cause proteolytic cleavage in cell and tissue components.
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Figure 2. Major classes of host-derived cytotoxic agents.

An overview of the major host-derived cytotoxic agents is given in Table 1. This
overview also includes key information about the modes of action of these dangerous
molecules and naturally occurring protective principles to avoid substantial damage. More
details about host-derived cytotoxic agents are given in Section 3.

2.2. Control of Cytotoxic Agents by Protective Principles

The destructive action of host-derived cytotoxic agents depends not only on the
mass of released cytotoxic agents, but also on the current status of host-own protective
principles [10,17]. In order to curtail or avoid destruction by these agents, numerous
ready-to-use mechanisms exist in cells and tissues to inactivate immediately hazardous
components released from activated immune and affected tissue cells. Usually, unperturbed
cells and tissues are well equipped with protective principles. In this way, any threat to
unperturbed tissue components is minimized. The major antagonizing principles are listed
in Table 1 in relation to their cytotoxic agents.
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Table 1. Major host-derived cytotoxic agents and their antagonizing principles.

Cytotoxic Agent Mode of Cytotoxic Action Antagonizing Principles Remarks

Superoxide anion radical Release of Fe2+ from [4Fe-4S]2+

clusters, formation of peroxynitrite
Superoxide dismutases,
cytochrome c

Hydrogen peroxide Formation of hydroxyl radicals in
reaction with Fe2+ or Cu+

Catalase, peroxiredoxins,
glutathione peroxidases

Hydroxyl radicals Diffusion-controlled oxidation of
many substrates

No antagonizing principles;
only limited protection
by carbohydrates

Prevention of their formation
is the main strategy
Very dangerous

Peroxynitrite
Formation of substrate radicals,
nitration of tyrosine residues,
initiation of lipid peroxidation

Myeloperoxidase, heme proteins

Hypochlorous acid,
hypobromous acid

Preferred oxidation of cysteine,
methionine residues
Interaction with aromatic amino acid
residues and amino groups

SCN−, taurine,
glutathione (GSH), ascorbate

Myeloperoxidase (MPO) Formation of HOCl, HOBr,
substrate radicals Ceruloplasmin

Free transition metal ions
Dangerous radical species in reaction
with H2O2 and
organic hydroperoxides

Proper control over all aspects of
iron and copper ion metabolism

Enhanced yield of free
transition metal ions
is dangerous

Free methemoglobin Formation of free heme Haptoglobin

Free metmyoglobin Formation of free heme Haptoglobin

Free heme

Oxidation at hydrophobic loci,
hemolysis of red blood cells, cytotoxic
to kidney and liver, interaction with
G4 structures in nucleic acids, can act
as DAMP

Hemopexin
Heme oxygenase Very dangerous

Oxidative products in lipid
phases such as lipid peroxyl
radicals and lipid hydroperoxides

Induction of further oxidative
modifications of yet-unperturbed
molecules

Lipid antioxidants such as
α-tocopherol, carotinoids,
ubiquinol, dehydrolipoic acid
Glutathione peroxidase 4 (GPX4),
and GSHProper control over
transition free metal ions

Oxidative products in
water-exposed molecules

Induction of further oxidative
modifications of yet-unperturbed
molecules

Urate, ascorbate, polyphenols
Proper control over transition free
metal ions

Neutrophil elastase
Cleavage of many extracellular
matrix components, formation
of angiotensin II

α1-antitrypsin (A1AT), secretory
leukocyte protease inhibitor
(SLPI), elafin, serpin B1,
α2-macroglobulin

Failure of anti-proteases to
inhibit elastase at severe
oxidative stress
Very dangerous

Cathepsin G
Cleavage of extracellular matrix
components, receptor shedding,
formation of angiotensin II

A1AT, α1-antichymotrypsin, SLPI

Proteinase 3 Cleavage of extracellular matrix
components, in particular elastin A1AT, elafin

Mast cell tryptases Cleavage of extracellular
matrix components

Heparin-binding proteins such as
lactoferrin, MPO, antithrombin III

Protected by heparin against
the action of anti-proteases

Mast cell chymase
Cleavage of extracellular matrix
components, chemokines, and
cytokines, formation of angiotensin II

α1-antichymotrypsin

Angiotensin II Receptor-mediated
pro-inflammatory effects

Angiotensin converting
enzyme 2 (ACE2) Very dangerous

Bradykinin Receptor-mediated
pro-inflammatory effects

Aminopeptidase P, angiotensin
converting enzyme (ACE)

Matrix metalloproteases (MMPs) Cleavage of extracellular
matrix components

Tissue inhibitors of
metalloproteases (TIMPs)

Problems at shifted balance
between MMPs and TIMPs
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The balance between host-derived cytotoxic agents and protective principles functions
well as long as the activation of immune cells is moderate enough and neighboring tissues
are well-equipped with ready-to-use protective mechanisms (Figure 3). Problems can
arise with severe and long-lasting immune responses and with the decline, exhaustion, or
inactivation of selected antagonizing principles despite an up-regulation of many protective
proteins under stress situations. In turn, long-lasting inflammatory processes can result
from the permanent release of cytotoxic agents from damaged cells in combination with
insufficient inactivation of these agents. In other words, low expression of a few protective
principles favors the continuous action of destructive agents and affects still-unperturbed
cells. In this vicious circle of permanent cell destruction, not only novel cytotoxic elements
but also novel alarmins and antigens are liberated from affected cells. In addition, pro-
inflammatory peptides such as angiotensin II and bradykinin are formed by insufficient
inactivation of serine proteases. Hence, the inflammation cannot be terminated sufficiently
and flares up again and again. In severe cases, a very low level of protection leads to organ
failure, sepsis, and septic shock.
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To overcome chronic inflammation, it is highly essential, besides inhibition of selected
pathways in the inflammatory cascade, to improve poorly expressed protective systems to
better detoxify the damaging agents.
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2.3. Disturbed Balance between De Novo Synthesis and Damage of Tissue Components during
Resolution of Inflammation

Termination of inflammation is characterized by the down-regulation of pro-inflammatory
cells, cytokines, and signaling pathways as well as by the formation of anti-inflammatory me-
diators and induction of repair processes. During this phase of inflammation, cytokines
of the transforming growth factor β (TGF-β) family, which are secreted from M2-type
macrophages and some other cells, suppress together with interleukin 10 (IL-10)-activated
immune cells [15,18]. These cytokines also promote tissue repair by stimulating fibroblasts
to synthesize collagen and other components of the extracellular matrix (ECM) and by the
release of tissue inhibitors of metalloproteases (TIMPs) [19,20]. The latter inhibitors down-
regulate the activity of matrix metalloproteases (MMPs) and thus prevent degradation of
ECM components.

2.4. Selected Environmental Cytotoxic Agents

Although not host-derived, we can also be exposed to external cytotoxic agents (see
Figure 1). Of these agents, environmental cytotoxic agents act more or less intensely and
permanently on our organism. As this exposure concerns nearly all persons, these agents
are usually detoxified by antagonizing principles when the exposure is moderate and does
not exceed a critical level. Examples of environmental cytotoxic agents, their mode of
action, and antagonizing principles are given in Table 2.

Table 2. Environmental cytotoxic agents and their antagonizing principles.

Cytotoxic Agent Mode of Cytotoxic Action Antagonizing Principles Remarks

Singlet oxygen (1O2)
DNA damage, especially
guanine [21,22] Carotenoids [23–25] Skin and eye exposure

Ozone Formation of ozonides and
cytotoxic aldehydes [26] Ascorbate, GSH, urate [27,28] Exposure to respiratory

system [29,30]

Sunlight Induction of photooxidative
processes, formation of 1O2 [31] Melanin, polyphenols, [32] Skin exposure

Ionizing irradiation

Water radiolysis, formation of
solvated electrons, O2

•−, H2O2,
•OH, and substrate
radicals [33–35]

See remarks in Table 1 Always present at very low
level

3. Selected Cytotoxic Agents and Their Counter-Regulating Principles
3.1. Small Reactive Species and Metal Ions
3.1.1. Superoxide Anion Radicals

The stepwise reduction of dioxygen yields the species superoxide anion radical (O2
•−)

and hydrogen peroxide (H2O2) [36]. These species are less dangerous concerning their
direct action on tissue components. However, they are involved in the formation of highly
reactive and tissue-damaging agents by interaction with radicals, metal ions, and iron-
containing proteins.

Activated leukocytes are able to generate large amounts of O2
•− by reducing dioxygen.

This reaction is catalyzed by NADPH oxidase, which is assembled from several mem-
branous and cytoplasmic components during the activation of neutrophils, eosinophils,
monocytes, and macrophages [37,38]. NADPH oxidases are also distributed in cells of
the blood vessel wall, respiratory tract, gastrointestinal tract, and thyroid gland [39–41].
However, these enzymes are less efficient in reducing dioxygen than NADPH oxidase from
immune cells. Other sources for superoxide anion radicals are reactions of xanthine oxi-
dase [42,43], autoxidation of hemoglobin and myoglobin [44,45], cytochrome P450-driven
redox recycling of some xenobiotica [46,47], and one-electron reduction of dioxygen by
different mitochondrial enzymes [48,49].
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Superoxide anion radicals are unstable. Two superoxide anion radicals dismutate
spontaneously to hydrogen peroxide and dioxygen [50]. The rate of this dismutation highly
depends on pH, with a maximal rate around pH 4.8, the pka value of O2

•−, and decreasing
rates with increasing pH [51]. With one unit pH increase, the dismutation rate of O2

•−

decreases by one order of magnitude. At pH 7.4 this rate is 2 × 105 M−1s−1 [51].
Superoxide anion radical reacts in a very rapid reaction with nitrogen monoxide, also

a radical species, under the formation of the powerful oxidant peroxynitrite [52,53]. In
mitochondria, superoxide anion radical is able to release Fe2+ from molecules containing
[4Fe-4S]2+ clusters such as aconitase [54,55].

In humans, control over O2
•− is realized with three isoforms of superoxide dismutase

(SOD) and cytochrome c. SOD1 is distributed in the cytoplasm, intermembrane space
of mitochondria, and nuclei [56,57]. In the mitochondrial matrix, SOD2 dominates [58].
SOD3 is mostly found in blood vessel walls and lungs [59]. These enzymes catalyze the
dismutation of O2

•− with a rate several orders higher than the spontaneous dismutation
reaction of O2

•−. In the intermembrane space of mitochondria, oxidized cytochrome c
oxidizes O2

•− to O2, thus contributing to the detoxification of O2
•− [60,61].

Figure 4 depicts the major pathways for the formation of reactive species with a special
focus on processes in activated neutrophils and stressed mitochondria. In both systems,
the generation of small reactive species starts with the reduction of dioxygen to superoxide
anion radicals.

3.1.2. Hydrogen Peroxide

Spontaneous and SOD-catalyzed dismutation of O2
•− represent the main route of

formation of H2O2. Thus, all processes generating O2
•− also yield H2O2. Otherwise,

different peroxisomal enzymes are able to reduce O2 directly to H2O2 [62].
Due to its electronic structure, reactions of H2O2 are restricted to transition metal ions,

complexes of these ions, and some proteins with selenocysteine (or cysteine) residues at the
active site [63,64]. Hydrogen peroxide is freely permeable through biological membranes,
unlike O2

•−. The interaction of transition metal ions such as Fe2+ and Cu+ with H2O2 yields
very reactive hydroxyl radicals and metal-based reactive species that can cause manifold
damaging reactions on biological material [65,66].

Heme peroxidases, different cytochromes, hemoglobin, and myoglobin are activated
by H2O2 leading to reactive states of the heme in these proteins. During immune response,
H2O2 activates the heme peroxidases myeloperoxidase (MPO), eosinophil peroxidase
(EPO), and lactoperoxidase (LPO), which are involved in both pro- and anti-inflammatory
activities [17,67–70].

Several enzymes are known to catalyze the reduction of H2O2 to H2O (Figure 4).
Glutathione peroxidase (GPX) utilizes glutathione (GSH) to reduce H2O2. The highly
distributed isoforms GPX1 and especially GPX4 also detoxify peroxynitrite, lipid hydroper-
oxides, and other organic hydroperoxides [71,72]. GSH is recovered from the resulting
oxidized glutathione (GSSG) by glutathione reductase [73]. Peroxiredoxins, which are
closely coupled to the thioredoxin system, also efficiently reduce H2O2 to H2O [74]. Cata-
lase removes H2O2 by both reduction to H2O and oxidation to O2 [75].

3.1.3. Transition Metal Ions and Hydroxyl Radicals

In the reaction between H2O2 and Fe2+, which is known as the Fenton reaction,
the highly reactive hydroxyl radical is formed. Alternatively, iron–oxygen complexes
such as ferryl or perferryl compounds are discussed as products of this reaction [65,66].
Similarly, the reaction of H2O2 with Cu+ also yields hydroxyl radicals [76]. Organic
hydroperoxides are also oxidized by Fe2+ and Cu+ under the formation of reactive radical
species that are involved in subsequent destructive reactions. Beyond Fenton chemistry,
further mechanisms apparently contribute to metal-ion-induced tissue damage such as
the interaction of Fe2+ with biological buffer components or the formation of Fe2+–O2 and
Fe2+–O2–Fe3+ complexes [77–81].
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Hydroxyl radicals react in a nearly diffusion-controlled manner with many substrates
by abstraction of an H-atom or by addition to an unsaturated system under formation of a
hydroxylated product [82]. In both reaction types, substrate radicals are formed that can
undergo manifold further reactions.
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Figure 4. Major pathways in formation of reactive species in activated neutrophils (upper panel) and
stressed mitochondria (lower panel). Antagonizing principles against these species are displayed on
grey backgrounds. In deactivation of transition metal ions, the term chelators stands for numerous
proteins that scavenge, transport, and store iron and copper ions. Further explanations are given in
the text. Abbreviations: MPO—myeloperoxidase, SOD—superoxide dismutase.

To avoid the disastrous formation of reactive species such as hydroxyl radicals and
others, the main strategy of living matter is the tight control of transport, storage, and
utilization of free metal ions (Figure 4) as both iron and copper ions are necessary con-
stituents of many proteins [83,84]. Major components controlling iron metabolism are
hepcidin (intestinal absorption), transferrin (blood transport), transferrin receptor (uptake
by cells), and ferritin (intracellular storage) [85–88]. Similarly, different import and export
transporters and chaperones are involved in copper metabolism [89]. Ceruloplasmin is able
to oxidize both Fe2+ and Cu+ [90]. Lactoferrin released from activated neutrophils binds
Fe3+ and promotes its transfer to transferrin [91].
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3.1.4. Peroxynitrite

As already mentioned, peroxynitrite is formed in a very rapid reaction between
O2

•− and NO [52,53]. Peroxynitrite is involved in the formation of thiyl radicals and
nitration of tyrosine residues, and is able to induce lipid-peroxidation processes [92–95].
In reaction with CO2, it yields nitrosoperoxycarbonate, which can decompose into radical
species [96,97].

At inflammatory sites where heme peroxidases are present, peroxynitrite is decom-
posed in its reaction with resting MPO [98–100]. Other redox-active heme proteins scavenge
peroxynitrite and inactivate this powerful oxidant [101–103].

3.1.5. Heme Peroxidases and Hypohalous Acids

At an inflammatory site, the heme protein MPO can be released from activated neu-
trophils (Figure 4) [67,104]. Eosinophils contain a similar peroxidase, the eosinophil per-
oxidase (EPO) [105]. A third immunologically relevant heme peroxidase is LPO, which is
distributed in mucous surfaces [68]. All three heme peroxidases are able to oxidize SCN−

to −OSCN. MPO and EPO also oxidize Br− to HOBr, whereas only MPO is able to yield
HOCl from Cl− oxidation [70].

The MPO product HOCl reacts efficiently with methionine and cysteine residues of
proteins. Further major protein targets for HOCl are residues of cystine, histidine, trypto-
phan, lysine, and α-amino groups [106,107]. HOBr , like HOCl, also oxidizes many residues
in proteins, especially cysteine and methionine ones. HOBr induces ring halogenation in
tyrosine residues more efficiently than HOCl [108].

Both HOCl and HOBr are inactivated at a high rate by thiocyanate (SCN−) [109,110].
HOCl is additionally inactivated by Br−. Further antagonizing principles against both
hypohalous acids are ascorbate, GSH, taurine, and, additionally for HOBr, urate [111].

In blood, MPO and EPO are inactivated by ceruloplasmin through the formation of a
tight inhibitory complex between heme peroxidase and ceruloplasmin [112–115].

3.2. Hemoglobin and Myoglobin Metabolites

There is always a release of intact hemoglobin from red blood cells and myoglobin
from muscles at low levels. Intravascular hemolysis and rhabdomyolysis can be markedly
enhanced under stress and disease situations (Figure 5). Once released from red blood
cells, tetrameric ferric hemoglobin dissociates into dimers and is easily oxidized to methe-
moglobin. This oxidation is usually caused by nitric monoxide. Excessive intravascular
hemolysis can affect the bioavailability of NO [116,117]. The serum protein haptoglobin is
able to scavenge free methemoglobin. The resulting haptoglobin–methemoglobin complex
is eliminated from circulating blood by spleen and liver macrophages in a CD163-dependent
process [118,119]. In a similar way, haptoglobin also scavenges metmyoglobin formed after
the release of myoglobin from muscle cells.

Although it is an acute-phase protein, the capacity of haptoglobin is limited when
severe intravascular hemolysis or rhabdomyolysis occur. Both methemoglobin and met-
myoglobin spontaneously liberate ferric protoporphyrin IX, briefly known as free heme,
a very dangerous molecule [120]. Free heme easily intercalates into the lipid phases of
membranes and lipoproteins and the hydrophobic areas of proteins. At these loci, it cat-
alyzes oxidative processes [121,122]. In intact red blood cells, free heme induces hemolytic
processes, thus enhancing existing intravascular hemolysis [123,124]. Free heme is highly
cytotoxic to kidney and liver [125,126]. It is also a ligand to toll-like receptor 4 and thus
contributes to the intensification of inflammatory processes [127,128]. In the nucleus, free
heme interacts with parallel guanine-rich quadruplex DNA and RNA structural elements,
known as G4 structures [129,130].

In order to avoid the disastrous activities of free heme, different serum proteins are
able to complex and inactivate free heme. Hemopexin binds free heme with high affinity.
This free-heme–hemopexin complex is liberated from circulating blood via CD91-mediated
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internalization by hepatocytes [131]. In humans, unlike mice, hemopexin is not an acute-
phase protein [132].

Inside cells, free heme is detoxified by an interaction with heme oxygenase [133,134].
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3.3. Oxidation of Cell and Tissue Components

In addition to proteolytic cleavage, lipids, proteins, nucleic acids, and carbohydrates
are subjected under stress conditions to numerous chemical processes, whereby oxidative
modifications predominate [135]. The major initiating agents of these oxidative processes
are highly reactive species, free transition metal ions, free heme, and aldehydes. Besides
the open chain form of glucose [136], aldehydes result mostly from oxidative modifications
of lipids [137,138].

Oxidative alterations of biological substrates are counterbalanced by lipid- and water-
based antioxidant mechanisms. In lipid phases, major natural antioxidants are α-tocopherol,
β-carotene, ubiquinol, and dehydrolipoic acid. They are mainly involved in the scavenging
of lipid peroxyl radicals [139–141]. Inactivation of lipid hydroperoxides is a further strategy
to prevent oxidative processes. This is achieved most of all by the action of glutathione
peroxidase 4 (GPX4). A high intracellular level of GSH is essential for the proper action
of GPX4 and other glutathione peroxidases [71,72]. In addition, perturbed acyl residues
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in phospholipids are cleaved by phospholipases [142]. A thorough control over transition
free metal ions also contributes to the prevention of oxidative processes in membranes
and lipoproteins.

Urate and ascorbate are the main water-soluble antioxidants in our organism [143,144].
Different polyphenols are important dietary antioxidants [145]. They exert their protective
action by radical scavenging, sequestration of free metal ions, and interaction with activated
complexes of heme proteins [146–148].

3.4. Serine Proteases
3.4.1. Release of Serine Proteases from Immune Cells

At inflammatory sites, activated neutrophils can release the serine proteases elastase,
cathepsin G, proteinase 3, and neutrophil serine protease 4. These proteases are primarily
involved in the deactivation, killing, and digestion of phagocytosed microorganisms in
neutrophils. Their pH optimum is around 8–9, a condition that predominates in early
phagosomes of neutrophils [149,150]. Elastase exhibits a killing activity against Gram-
negative bacteria [151,152] and a variety of cancer cells [153]. In cancer cells, unlike
non-cancer cells, elastase cleaves CD95 to liberate a death domain fragment that acts
cytotoxically together with histone H1 [153].

Serine proteases participate in the recruitment of neutrophils to a destination site
by digestion of the surrounding tissue components and the induction and regulation of
immune signaling. Elastase and proteinase 3 are able to cleave a broad range of chemokines
and cytokines [154]. The substrate specificity of cathepsin G is also relatively broad but
more restricted than that observed for elastase and proteinase 3 [155]. In these experiments,
only a few cytokines and chemokines, such as TNF-α, interleukin 5 (IL-5), interleukin 8
(IL-8), macrophage colony-stimulating factor (M-CSF), monocyte chemoattractant protein 1
(MCP-1), IL-1α, and Rantes, were resistant to neutrophil serine proteases.

Elastase and other serine proteases are attached together with other neutrophil proteins
to a DNA network in neutrophil extracellular traps. These traps can kill external microbes
independent of phagocytosis [156,157].

Activated mast cells release the serine proteases chymase, tryptase, and cathepsin
G [158]. These proteases are involved in matrix destruction, tissue remodeling, and regula-
tion of inflammation. Mast cell tryptase and chymase are more restrictive than neutrophil
serine proteases in the cleavage of chemokines and cytokines [154,155].

3.4.2. Activities of Neutrophil Serine Proteases

Although all serine proteases contribute to damaging reactions, the focus is mostly
directed on elastase. An overview about multiple activities of neutrophil elastase during
immune response is given in Figure 6. Once released from activated neutrophils, elastase
can affect healthy tissues. Elastase is involved in the destruction of extracellular matrix
components such as elastin, collagens, proteoglycans, and laminin [159].

Like cathepsin G, proteinase 3, and cathepsin B, neutrophil elastase is able to convert
angiotensinogen and angiotensin I into angiotensin II [160–162]. This pro-inflammatory
peptide can further foment inflammatory processes.

At inflammatory sites, neutrophil elastase activates MMP2, MMP3, and MMP9 from
inactive precursors by cleaving an inhibitory protein residue [163–166]. Cathepsin G is
also able to activate MMP3 [163]. Cathepsin G and proteinase 3 are involved in MMP2
activation [164]. Elastase might additionally degrade TIMP-1 [165,167].

3.4.3. Mast Cell Serine Proteases

Human mast cells contain several types of tryptases and two members of chymase-like
proteins, namely α-chymase and cathepsin G, which are secreted in response to allergens
and pathogens [158]. Mast cell proteases are known to stimulate the production of pro-
inflammatory mediators such as IL-6 and IL-8 from bronchial epithelial cells and promote
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procollagen cleavage. With these activities they contribute to the recruitment of neutrophils
and eosinophils at inflamed epithelium [168–171].
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Other inflammation-promoting activities of chymase are the cleavage of angiotensin I
into angiotensin II, activation of MMPs, and release of selected extracellular matrix ele-
ments [172]. Tryptase is involved in the degradation of fibronectin and chemokines [172].
Both tryptases and chymases contribute to the activation of different MMPs [173–175].
MMPs are implicated in the pathogenesis of atherosclerosis and abdominal aortic
aneurysms [176–180]. Mast cell proteases are implied in airway epithelial remodeling
and alterations in epithelium functions [181]. They also contribute to angiogenesis induc-
tion during tumor growth [182]. Chymase promotes the formation of active TGF-β from
its precursor [183].

Tetrameric tryptase is stabilized by heparin and some other glycosoaminoglycans [184].
In this complex, tryptase is not accessible to anti-proteases such as A1AT, SPLI, and α2-
macroglobulin [185,186]. Lactoferrin, myeloperoxidase, and antithrombin III, which are
known to have heparin-binding domains, can inhibit tryptase activity [187–190]. Spon-
taneous dissociation of the tryptase tetramer is a further mechanism to control tryptase
activity [184,191].

3.4.4. Antiproteases

Several antagonizing proteins against elastase and other serine proteases exist in blood
and tissues (Figure 7). The most abundant anti-protease is the serpin α1-antitrypsin (A1AT).
This serum protein is synthesized in the liver and represents an acute-phase protein. A1AT
inhibits elastase and cathepsin G but not in the presence of heparin [192,193]. The activity
of proteinase 3 is affected by A1AT to a lesser degree. Heparin, however, enhanced the
inactivation of proteinase 3 [194].

Several factors contribute to the failure of A1AT to inhibit elastase. The inactivation of
elastase requires two unperturbed methionine residues (Met-351 and Met-358) at the active
site of A1AT. By oxidation of these residues A1AT loses its ability to inhibit elastase [195].
Under stress conditions methionine oxidation in A1AT can be initiated by highly reactive
species such as hydroxyl radicals, peroxynitrite, HOCl, HOBr, and others [196]. Tobacco
smoke and activated phagocytes are under discussion to contribute to methionine oxidation
in A1AT and thus cause an acquired A1AT deficiency [196]. Furthermore, neutrophil
elastase can bind to negatively charged surfaces and polymers. Surface-bound elastase
cannot be inhibited by endogenous antiproteases [197].
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Serpin A3, also known as α1-antichymotrypsin, is, like A1AT, an acute-phase protein.
This antiprotease efficiently inactivates cathepsin G and mast cell chymase [198–200].

Secretory leukocyte protease inhibitor (SLPI) is able to inactivate several serine pro-
teases such as neutrophil elastase, cathepsin G, tryptase, and chymase [201]. SLPI is
constitutively expressed in mucous secretions [202,203] and also secreted from activated
immune cells. It is assumed that SLPI exhibits an anti-apoptotic effect on immune cells and
thus contributes to a better removal of dying cells and microbes at inflammatory sites [204].

Elafin, which is also known as proteinase inhibitor 3, is able to inactivate neutrophil
elastase and proteinase 3 [205,206]. It exerts anti-inflammatory, anti-microbial, and wound-
healing effects [205,206]. Contradictory results were reported about the action of elafin
on tumorigenesis. These results range from promotion of cell proliferation and induc-
tion of resistance against chemotherapy to tumor-suppressive effects [207,208]. In early-
stage hepatocellular carcinoma, elafin promotes metastasis formation via activation of
EGFR/AKT signaling [209].

The antiprotease serpin B1 efficiently inactivates elastase, cathepsin G, and proteinase
3 [210]. Under oxidative stress, the cysteine residue at the active site in serpin B1 is oxidized
with the loss of the antiprotease activity.

In contrast to the aforementioned antiproteases, which directly interact with the active
site of proteases, α2-macroglobulin forms a tetrameric cage around active proteases, thus
inhibiting the direct contact between protease and substrate molecules. In this way, large
substrate molecules such as collagen are excluded from direct contact, whereas small peptide
substrates can be digested [211,212]. Although α2-macroglobulin inhibits the activities of
elastase, cathepsin G, proteinase 3, and MMP9 released from neutrophils [213–215], the
complex between elastase and α2-macroglobulin is still active against small substrates [214].
Moreover, neutrophil-derived reactive species such as HOCl can hinder α2-macroglobulin
to form tetramers and promote stabilization of dimers with the loss of the antiprotease
activity [216,217].
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High-affinity complexes are also known between ceruloplasmin and serine proteases of
neutrophils [91]. In this way, a destructive action of serine proteases on tissue components
is minimized.

3.5. Small Pro-Inflammatory Peptides
3.5.1. Angiotensin II

The peptide hormone angiotensin II is an essential part of the renin–angiotensin–
aldosteron system. It is involved in the regulation of blood pressure and water metabolism.
During this activity, angiotensin II is formed from angiotensin I by the angiotensin-
converting enzyme (ACE).

At inflammatory sites, angiotensin II can also be produced from cleavage of both
angiotensinogen and angiotensin I by serine proteases released from immune cells such
as elastase, cathepsin G, proteinase 3, and mast cell chymase (Figure 8) [160–162,218].
Increased angiotensin II contributes via docking to AT1 and AT2 receptors to proteoly-
sis, actin cleavage, apoptosis induction, and activation of the ubiquitin-mediated protein
degradation [219–221]. It also promotes superoxide anion radical production via activa-
tion of NADH/NADPH oxidases [222]. Generally, these pro-inflammatory activities of
angiotensin II mediate the prolonged existence of inflammatory states [223].
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Angiotensin II is under the control of ACE2, which converts this octapeptide to
angiotensin 1–7 [224]. This limits the devastating activity of angiotensin II. Moreover,
angiotensin 1–7 exerts an anti-inflammatory activity [225].

3.5.2. Bradykinin

As an essential member of the contact system, the nonapeptide bradykinin is responsi-
ble for increased vascular permeability, vasodilation, hypotension, and other effects via in-
teraction with its constitutively expressed B2 receptor [226,227]. A further pro-inflammatory
metabolite is des-Arg9-bradykinin, which is formed from bradykinin by carboxypeptidase
N. At inflammatory sites, des-Arg9-bradykinin acts selectively via bradykinin B1 receptors,
which are only expressed in inflamed and injured tissue [228–230].
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Bradykinin is a short-lived mediator of inflammation. It is inactivated by aminopep-
tidase P and the angiotensin-converting enzyme (ACE). Inhibition of ACE enhances
bradykinin’s effects [229].

3.6. Inhibition of Matrix Metalloproteases

In human tissues, 23 MMPs and four TIMPs are found. Most MMPs are normally not
expressed in healthy tissue. The activity of MMPs is essential in tissue remodeling, such as
angiogenesis, bone growth, wound healing, and repair processes during the resolution of
inflammation [231,232].

MMPs are secreted as inactive enzymes bearing an inhibitory prodomain that must be
cleaved. In addition to neutrophil serine proteases (see Section 3.4.2), plasmin, chymases,
and other MMPs are involved in MMP activation [233]. At low concentrations, highly
reactive species such as HOCl, •OH, and ONOO− can activate MMPs. However, higher
concentrations of these species inactivate active MMPs [234].

During the exudation and infiltration phase of inflammation, MMP2 and MMP9 are
mainly secreted from invading immune cells, smooth muscle cells, and fibroblasts [235–237].
These and other MMPs contribute to cleaving the matrix components collagen and elastin.

The activity of MMPs is tightly controlled by TIMPs and α2-macroglobulin. The latter
inhibitor, which has a very broad activity range against proteases, acts in blood and other
biological fluids [238]. Generally, TIMPs have a broad spectrum of inhibition of MMPs.
The constitutively expressed TIMP-2, like TIMP-3 and TIMP-4, is able to inhibit nearly
all MMPs. TIMP-1 has a low activity against membrane-bound MMPs [232]. TIMP-3
additionally inhibits members of disintegrin metalloproteinases. Moreover, it is the only
TIMP that binds to the ECM [239].

4. Enhanced Cell and Tissue Damage during Chronic Inflammatory Diseases
4.1. Most Prominent Degradative Agents

Of note, most aforementioned host-derived cytotoxic agents execute a dual role in
cells and tissues. They are involved in numerous beneficial functions during metabolism
and immune response. Thus, these agents are mandatory to ensure tissue homeostasis
and normal functioning of the organism. To control their bad side numerous protective
mechanisms help to minimize the destruction of biological constituents.

Despite the long list of host-derived damaging agents and counter-regulating princi-
ples, only a few of these agents are responsible for initiating cell and tissue degradation
under pathological conditions. The reason for this damage is mainly the weakness or
exhaustion of the corresponding protective system. In turn, this favors prolonged activity
of the damaging agents, induces the release of DAMPs and antigens from perturbed cells
and tissues, and causes attraction of further immune cells.

Considering the aforementioned data, the most prominent candidates for this fail-
ure are the loss of control over the sequestration of transition metal ions, exhaustion of
haptoglobin and hemopexin, enhanced activity of elastase, the disastrous action of an-
giotensin II, and the disturbed balance between MMPs and TIMPs.

4.2. Diminished Control over Transition Metal Ions

Ferrous and cupric ions are several-fold involved in damaging reactions of biological
constituents. In stressed mitochondria, enhanced formation of O2

•− favors the release of
Fe2+ from proteins with [4Fe-4S]2+ clusters and thus contributes to mitochondrial dysfunc-
tion and apoptosis induction [240,241]. Stress situations are also responsible for the increase
in iron ions in biological fluids and cytoplasm [242,243]. These free ions can result from
damaged biological material, necrotic cells, heme destruction, release from ferritin, release
from the labile iron pool, and overload of protective systems with transition metal ions.

In the reduced state, transition metal ions catalyze the oxidation of hydrogen peroxide
and organic hydroperoxides. As a result of these reactions, highly reactive hydroxyl radicals
and different substrate radicals are generated [65,66]. In oxidized lipids, alkoxyl radical
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species are formed from lipid hydroperoxides by Fe2+. The latter reaction promotes further
destructive actions in lipid phases [26,244,245].

Ferroptosis is a special form of programmed cell death that is caused by enhanced
values of free iron ions and lipid hydroperoxides [246,247]. In addition to an increased
concentration of free iron ions, ferroptosis is promoted by a disturbance in glutathione
supply and diminished activity of GPX4. Glutathione is the cofactor for GPX4, which is
able to remove lipid hydroperoxides within biological membranes [248,249].

Excessive accumulation of copper ions takes place in patients with Morbus Wilson.
This condition is associated with destructive reactions in liver, brain, and other organs
initiated by the interaction of copper ions with hydroperoxides [250]. Enhanced values
of free copper not bound to ceruloplasmin apparently contribute to the pathogenesis of
Alzheimer’s disease [251,252].

Highly reactive hydroxyl radicals can also be generated as a result of water radiolysis
induced by X-ray or radioactive irradiation [33,253].

4.3. Haptoglobin and Hemopexin Exhaustion

Exhaustion of haptoglobin and hemopexin promotes the disastrous action of free heme.
Both severe intravascular hemolysis of red blood cells and rhabdomyolysis of muscle cells
contribute to a decline in these protective proteins.

Enhanced intravascular hemolysis is reported for several diseases such as thalassemia,
glucose-6-phosphate dehydrogenase deficiency, malaria, paroxysmal nocturnal hemoglobin-
uria, hereditary spherocytosis, and some others [117,254–256]. Increased hemoglobin release
from red blood cells is also favored by osmotic stress, sheer stress, lytic poisons, secreted
components from Gram-positive bacteria, chirurgical actions on the cardiovascular sys-
tem, autoantibodies, oxidative processes in membranes of red blood cells, burn-associated
necrosis, hemorrhagic conditions, and storage of blood for transfusion [40,117,119,126].
Increased rhabdomyolysis is observed after intensive muscle exercise, traumata, alcohol
and drug abuses, the use of certain medications, electrical injury, heat stroke, prolonged
immobilization, and as a result of some infections [257,258].

Decline of plasma haptoglobin is regarded as a marker of intravascular hemoly-
sis [259,260]. In hemolytic diseases, a decrease in hemopexin levels follows haptoglobin
depletion [261].

A massive release of hemoglobin from red blood cells, e. g. during malaria [262], or
myoglobin from traumatic muscles [263,264] can induce acute kidney injury by several
mechanisms. Although tubular heme oxygenase is able to detoxify some amount of free
hemoglobin and free myoglobin, this enzyme exerts pro-oxidative and damage-promoting
activities at a higher load of these heme proteins [265]. Further damage of tubular cells
results from free heme by inducing proteasome inhibition, accumulation of misfolded
proteins, and favoring the unfolded protein response [133,134,266–268].

4.4. Inactivation of Antiproteases

At inflammatory sites, elastase and other serine proteases are released from activated
neutrophils. Although different antiproteases limit the activity of elastase by the formation
of inactive complexes, elastase can promote long-lasting degradation of extracellular matrix
components under conditions of oxidative stress. The latter situation favors the oxidation
of critical residues in antiproteases with inactivation of these proteins.

The disastrous action of elastase and the failure of antagonizing principles are dis-
cussed in chronic obstructive pulmonary disease (COPD) and other lung diseases [269–275].
In different lung diseases, elastase affects mucus production and causes mucus hyperpla-
sia [276]. Importantly, the activity of surface-bound neutrophil elastase correlates with
parameters of diminished airflow and hyperinflation in lungs [197]. A diminished level of
SLPI favors the development of emphysema and fibrosis in the lung [277]. Cathepsin G
also plays a role in the pathogenesis of COPD and cystic fibrosis [278].
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In hereditary A1AT deficiency, the circulating level of A1AT is decreased and repre-
sents a risk factor for the development of COPD and emphysema [279]. This hereditary
deficiency of A1AT also promotes fibrosis in liver tissue and the formation of liver cirrhosis.

4.5. Disastrous Action of Angiotensin II

A shifted balance between ACE and ACE2 towards ACE promotes angiotensin II
effects on the cardiovascular system such as vasoconstriction, hypertension, and cardiac
hypertrophy [280]. Angiotensin II is involved in damage to the respiratory system and
contributes to acute lung injury and acute respiratory distress syndrome [280].

Importantly, ACE2 is the receptor for severe acute respiratory syndrome (SARS)
viruses [281]. Upon infection with SARS virus, the expression of ACE2 receptors is
markedly downregulated in lungs [282]. The inhibition of ACE2 by SARS-COVID-19
also markedly prolongs the fatal action of angiotensin II on lung tissues [283,284]. In
COVID-19 patients, antibodies against angiotensin II were found [285]. Downregulation of
ACE in COVID-19 also affects bradykinin metabolism and elevates bradykinin level [286].

4.6. Disturbed Balance between MMPs and TIMPs

At inflammatory sites, MMPs promote the cleavage of collagen and elastin and can
thus impair the stability of blood vessel walls. Hence, instable atherosclerotic plaques,
thrombotic events, and aortic aneurysms can result [287,288]. In the formation of aneurysms,
inflammatory cells infiltrate into an injured vessel wall. Different MMPs, especially MMP2
and MMP9, contribute together with reactive species, neutrophil elastase, and angiotensin II
to the pathogenesis of aneurysms [289–292]. An increased ratio of MMP to TIMP expression
was found in aneurysmal aortic specimens [293,294].

In repair processes during the termination of inflammation, the right balance between
TIMPs and MMPs is highly important for recovery to normal tissue homeostasis [295–297].
Excess accumulation of ECM constituents leads to scar formation and the development
of fibrosis in many organs. The major constituent of scars is collagen. Organ fibrosis is
often followed by organ failure [298,299]. Generally, these deviations are caused by a
limited activity of MMPs and prolonged activation by TGF-ß cytokines. Several patho-
physiological factors are discussed to contribute to fibrosis, namely conserved PAMPs from
pathogens [300,301], uncontrolled TGF-β signaling [302], T-cell derived cytokines [303],
autoantibodies [304], and the action of angiotensin II [305,306].

The pathophysiological consequences of a disturbed equilibrium between MMPs and
TIMPs are schematically presented in Figure 9.

4.7. Cytotoxic Agents in Tumorigenesis

In order to survive, many types of tumors manipulate their microenvironment in such
a way that immune cells are unable to eliminate these degenerated cells. For example,
tumor-associated macrophages are driven by lactate accumulated in cancer cells into an
anti-inflammatory M2 subtype [306]. Lactate and extracellular acidosis suppress antitumor
immunity and promote angiogenesis and tumor progression [307,308]. Lactate-induced
release of hyaluronan by adjacent fibroblasts supports tumor growth, invasion, and metas-
tasis [309]. Moreover, tumor cells can secrete high levels of TGF-β, which dampens the
activity of many types of immune cells [310,311].

Observations of tumor patients and experimental animals confirm the enhanced forma-
tion and release of cytotoxic agents in affected tissue regions. Dysfunctional mitochondria
are described in many types of cancers [312]. Oxidative stress can promote the release of
iron from 4Fe-4S clusters of mitochondrial proteins such as aconitase and can produce
agents damaging mitochondrial DNA [311]. In mice with Lewis lung carcinoma, functional
degeneration of mitochondria already occurs at an early disease state [313,314].

In patients with pancreatic cancer and other cancer types, the circulating level of
TIMP-1 is up-regulated and associated with a poor clinical outcome [315,316]. TIMP-1
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activates via binding to CD63 hepatic stellate cells and thus creates a pre-metastatic niche
in the liver [317].

Intratumoral hemorrhages and hemoglobin level in tumors are also associated with a
poor clinical prognosis for affected individuals [318–320]. In these hemorrhages, hemoglobin
can be released from red blood cells and the formation of free heme is likely. Indeed, free
heme contributes to the progression of prostate cancer by controlling the expression of
key target genes via docking to guanine-rich (G4) elements [321]. In the blood of prostate
cancer patients, an inverse correlation between the levels of free heme and hemopexin was
observed [321].
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Elastase released from human neutrophils efficiently kills a wide range of cancer cells
in contrast to elastase from murine neutrophils [153]. In neutrophils of mice, unlike human
neutrophils, elastase is co-released with the antiprotease SLPI, which dampens elastase’s
effects [153]. In the tumor microenvironment, the ability of elastase to kill cancer cells can
be abrogated by the release of serine protease inhibitors and suppressing effects on immune
cells [322,323].

Otherwise, neutrophil elastase is able to drive tumorigenesis as shown in preclinical
studies using elastase knockout mice and pharmacological inhibition [324]. Intriguingly,
the incubation time of cancer cells with elastase affects the functional results. While short
incubation (1 h) promotes cellular proliferation, prolonged treatment (6–24 h) induces death
of cancer cells [325,326].

In 4T1 and CT26 syngeneic mouse tumor models, angiotensin II promotes the forma-
tion of an immunosuppressive microenvironment [327]. Overexpression of the AT1 receptor
in tumors is associated with more aggressive tumor features and a poor prognosis [328,329].

4.8. Diminished Protection during Sepsis

Sepsis and septic shock are very dangerous clinical conditions that can be associated
with multiple organ failure and lethal outcome. Immunocompromised persons such as
injured, diseased, and elderly people and newborns are most frequently prone to the
development of sepsis. On the basis of impaired host immunity, opportunistic microbes,
fungi, and latent viruses can be activated during sepsis [330–336]. These pathogens further
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deteriorate the health status of patients. Thus, in sepsis, host-derived cytotoxic agents can
contribute together with pathogen-derived cytotoxic agents to cell and tissue damage.

Concerning tissue damage in septic patients, no consensus exists about the predom-
inating damaging mechanisms as the actual status of individual protective systems can
vary widely from patient to patient [337,338]. Numerous reports exist about the accumu-
lation of immune cells, in particular neutrophils, in patients with sepsis and septic shock.
Neutrophils from septic patients exhibit delayed apoptosis and diminished chemotactic
mobility [339,340]. These cells can be activated far from infection sites [341,342]. In sep-
tic shock patients, the percentage of immature neutrophils increases. This parameter is
associated with a higher risk of lethal outcome after septic shock [340].

In septic patients, enhanced values were reported for neutrophil products such as
elastase [343], myeloperoxidase [344–346], and neutrophil extracellular traps [347–349].
Moreover, neutrophil-derived cytotoxic agents, enhanced formation of free heme [350–352],
dysregulation in the sequestration of transition metal ions [353,354], and dysfunctional
mitochondria [355–357] were also reported to contribute to damaging reactions in sepsis.

In sepsis, it is very challenging to predict which protective mechanism will be ex-
hausted first. Several factors contribute to this uncertainty, such as the local protective
status in the affected organs, the energy and immune status of patients, existing comorbidi-
ties, and genetic predisposition [358]. A personalized analysis of the status of protective
systems is mandatory for individual therapeutic approaches.

5. Conclusions

A functioning immune system is mandatory for long-term surveillance of our organ-
ism by removing any harm that can disturb the integrity of cells and tissues. Otherwise,
the activation of immune cells is associated with the release of aggressive, cell-damaging
agents. These host-derived cytotoxic agents are an essential part of the immune response.
The interplay between these agents and ready-to-use antagonizing principles determines
the further fate of the inflammatory process.

Multiple mechanisms contribute to cell and tissue damage and thus to the develop-
ment of chronic inflammatory disease states. The permanent damage of unperturbed cells
by cytotoxic agents causes again and again the release of alarmins and antigens and the
recruitment of novel immune cells. An important pathophysiological aspect in this vicious
circle of initiation of immune responses and destruction of biological material is the decline,
exhaustion, or inactivation of ready-to-use acting protective mechanisms in the affected
tissues. Further complications result from dysregulated synthesis of ECM components,
the existence of long-lasting immunocompromised conditions, and the colonization of
commensal and mutualistic pathogens in inflamed tissue areas.

Although protective principles can act very efficiently against the corresponding
damaging agent, their capacity is limited. As long as damaging agents are only weakly
expressed, efficient protection is given, additional protective systems can be induced, and
supplementation of consumed systems is working. Problems arise under conditions of
severe and long-lasting action of damaging agents. Then, protection is diminished step by
step and biological material is progressively damaged.

Both enhancement of oxidative modifications in biological material and increased
proteolytic cleavage of substrates are central events in cell and tissue damage initiated
by host-derived cytotoxic agents. In the pathogenesis of chronic inflammatory diseases,
several types of host-derived cytotoxic agents often act in concert and promote each other.
Enhanced formation of reactive species not only affects the release of transition metal ions
and heme components, which have a high potential to further promote oxidative reactions,
but also contributes to increased proteolytic damage of ECM and other constituents by
inactivation of antiproteases, activation of pro-inflammatory peptides, and initiation of
disturbances in the synthesis of novel matrix components. Although some links have been
shown in activation and inactivation pathways between different cytotoxic agents and
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their antagonizing principles, we are far from a thorough understanding of the underlying
molecular processes.

It also remains very challenging to determine which cytotoxic agents predominate in
damaging reactions in a certain pathology. Moreover, individual expression of protective
mechanisms against host-derived cytotoxic agents varies considerably from patient to
patient. These uncertainties substantially impede the implementation of personalized
therapies based on substitution of inefficient counter-regulating principles for patients
with chronic inflammatory diseases. Their successful implementation requires not only the
development of novel therapeutic approaches, but also progress in the diagnosis of the
individual status of protective mechanisms.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article.

Conflicts of Interest: The author declares no conflict of interests.

References
1. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 1994, 12, 991–1045. [CrossRef] [PubMed]
2. Janeway, C.A.; Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 2002, 20, 197–216. [CrossRef] [PubMed]
3. Takeuchi, O.; Akira, S. Pattern recognition receptors and inflammation. Cell 2010, 140, 805–820. [CrossRef] [PubMed]
4. Thompson, M.R.; Kaminski, J.J.; Kurt-Jones, E.A.; Fitzgerald, K.A. Pattern recognition receptors and the innate immune response

to viral infection. Viruses 2011, 3, 920–940. [CrossRef]
5. Suresh, R.; Moser, D.M. Pattern recognition in innate immunity, host defense, and immunopathology. Adv. Physiol. Educ. 2013, 37, 284–291.

[CrossRef]
6. Gewurz, H.; Mold, C.; Siegel, J.; Fiedel, B. C-Reactive protein and the acute phase response. Adv. Intern. Med. 1982, 27, 345–372.

[CrossRef]
7. Pepys, M.B.; Baltz, M.I. Acute phase proteins with special reference to C-reactive protein and related proteins (pentraxins) and

serum amyloid A protein. Adv. Immunol. 1983, 34, 141–212. [CrossRef]
8. Vandivier, R.W.; Henson, P.M.; Douglas, I.S. Burying the death: The impact of failed apoptotic cell removal (efferocytosis) on

chronic inflammatory lung disease. Chest 2006, 129, 1673–1682. [CrossRef]
9. Pober, J.S.; Sessa, W.C. Inflammation and the blood microvascular system. Cold Spring Harbor Perspect. Biol. 2015, 7, 016345.

[CrossRef]
10. Arnhold, J. Immune response and tissue damage. In Cell and Tissue Destruction. Mechanisms, Protection, Disorders; Academic Press:

London, UK; San Diego, CA, USA; Cambridge, MA, USA; Oxford, UK, 2020; pp. 155–204. [CrossRef]
11. Arnhold, J. Acute-phase proteins and additional protective systems. In Cell and Tissue Destruction. Mechanisms, Protection,

Disorders; Academic Press: London, UK; San Diego, CA, USA; Cambridge, MA, USA; Oxford, UK, 2020; pp. 205–228. [CrossRef]
12. Mosser, D.M.; Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008, 8, 958–969. [CrossRef]
13. Yoshimura, A.; Wakabayashi, Y.; Mori, T. Cellular and molecular basis for the regulation of inflammation by TGF-β. J. Biochem.

2010, 147, 781–792. [CrossRef] [PubMed]
14. Oishi, Y.; Manabe, I. Macrophages in inflammation, repair and regeneration. Int. Immunol. 2018, 30, 511–528. [CrossRef]
15. Li, M.O.; Flavell, R.A. Contextual regulation of inflammation: A duet by transforming growth factor-beta and interleukin-10.

Immunity 2008, 28, 468–476. [CrossRef] [PubMed]
16. Arnhold, J. Cells and organisms as open systems. In Cell and Tissue Destruction. Mechanisms, Protection, Disorders; Academic Press:

London, UK; San Diego, CA, USA; Cambridge, MA, USA; Oxford, UK, 2020; pp. 3–22. [CrossRef]
17. Arnhold, J. The dual role of myeloperoxidase in immune response. Int. J. Mol. Sci. 2020, 21, 8057. [CrossRef]
18. Li, M.O.; Wan, Y.Y.; Sanjabi, S.; Robertson, A.K.; Flavell, R.A. Transforming growth factor-β regulation of immune responses.

Annu. Rev. Immunol. 2006, 24, 99–146. [CrossRef]
19. Frangogiannis, N.G. Transforming growth factor-β in tissue fibrosis. J. Exp. Med. 2020, 217, e20190103. [CrossRef]
20. Budi, E.H.; Schaub, J.R.; Decaris, M.; Turner, S.; Derynck, R. TGF-β as a driver of fibrosis: Physiological roles and therapeutic

opportunities. J. Pathol. 2021, 254, 358–373. [CrossRef]
21. Cadet, J.; Teoule, R. Comparative study of oxidation of nucleic acid components by hydroxyl radicals, singlet oxygen and

superoxide anion radicals. Photochem. Photobiol. 1978, 28, 661–667. [CrossRef]
22. Agnez-Lima, L.F.; Melo, J.T.A.; Silva, A.E.; Oliviera, A.H.S.; Timoteo, A.R.S.; Lima-Bessa, K.M.; Martinez, G.R.; Medeiros, M.H.G.; Di

Mascio, P.; Galhardo, R.S.; et al. DNA damage by singlet oxygen and cellular protective mechanisms. Mutat. Res. 2012, 751, 15–28.
[CrossRef] [PubMed]

23. Di Mascio, P.; Devasagayam, T.P.A.; Kaiser, S.; Sies, H. Carotenoids, tocopherols and thiols as singlet oxygen quenchers. Biochem.
Soc. Trans. 1990, 18, 1054–1056. [CrossRef] [PubMed]

http://doi.org/10.1146/annurev.iy.12.040194.005015
http://www.ncbi.nlm.nih.gov/pubmed/8011301
http://doi.org/10.1146/annurev.immunol.20.083001.084359
http://www.ncbi.nlm.nih.gov/pubmed/11861602
http://doi.org/10.1016/j.cell.2010.01.022
http://www.ncbi.nlm.nih.gov/pubmed/20303872
http://doi.org/10.3390/v3060920
http://doi.org/10.1152/advan.00058.2013
http://doi.org/10.1080/21548331.1982.11702332
http://doi.org/10.1016/S0065-2776(08)60379-X
http://doi.org/10.1378/chest.129.6.1673
http://doi.org/10.1101/cshperspect.a016345
http://doi.org/10.1016/B978-0-12-816388-7.00006-1
http://doi.org/10.1016/B978-0-12-816388-7.00007-3
http://doi.org/10.1038/nri2448
http://doi.org/10.1093/jb/mvq043
http://www.ncbi.nlm.nih.gov/pubmed/20410014
http://doi.org/10.1093/intimm/dxy054
http://doi.org/10.1016/j.immuni.2008.03.003
http://www.ncbi.nlm.nih.gov/pubmed/18400189
http://doi.org/10.1016/B978-0-12-816388-7.00001-2
http://doi.org/10.3390/ijms21218057
http://doi.org/10.1146/annurev.immunol.24.021605.090737
http://doi.org/10.1084/jem.20190103
http://doi.org/10.1002/path.5680
http://doi.org/10.1111/j.1751-1097.1978.tb06991.x
http://doi.org/10.1016/j.mrrev.2011.12.005
http://www.ncbi.nlm.nih.gov/pubmed/22266568
http://doi.org/10.1042/bst0181054
http://www.ncbi.nlm.nih.gov/pubmed/2088803


Int. J. Mol. Sci. 2023, 24, 3016 21 of 32

24. Conn, P.F.; Schalch, W.; Truscott, T.G. The singlet oxygen and carotenoid interaction. J. Photochem. Photobiol. B Biol. 1991, 11, 41–47.
[CrossRef] [PubMed]

25. Di Mascio, P.; Bechara, E.J.H.; Medeiros, H.G.; Briviba, K.; Sies, H. Singlet molecular oxygen production in the reaction of
peroxynitrite with hydrogen peroxide. FEBS Lett. 1994, 355, 287–289. [CrossRef] [PubMed]

26. Pryor, W.A. The formation of free radicals and the consequences of their reactions in vivo. Photochem. Photobiol. 1978, 28, 787–801.
[CrossRef] [PubMed]

27. Kermani, S.; Ben-Jebria, A.; Ultman, J.S. Kinetics of ozone reaction with uric acid, ascorbic acid, and glutathione at physiologically
relevant conditions. Arch. Biochem. Biophys. 2006, 451, 8–16. [CrossRef] [PubMed]

28. Behndig, A.F.; Blomberg, A.; Helleday, R.; Duggan, S.T.; Kelly, F.J.; Mudway, I.S. Antioxidant responses to acute ozone challenge
in the healthy human airway. Inhal. Toxicol. 2009, 21, 933–942. [CrossRef]

29. Devlin, R.B.; Folinsbee, L.J.; Biscardi, F.; Hatch, G.; Becker, S.; Madden, M.C.; Robbins, M.; Koren, H.S. Inflammation and cell
damage induced by repeated exposure of humans to ozone. Inhal. Toxicol. 1997, 9, 211–234. [CrossRef]

30. Frank, R.; Liu, M.C.; Spannhake, E.W.; Mlynarek, S.; Macri, K.; Weinmann, G.G. Repetitive ozone exposure of young adults.
Evidence of persistent small airway dysfunction. Am. J. Respir. Crit. Care Med. 2001, 164, 1257–1260. [CrossRef]

31. Tyrrell, R.M. UVA (320–380 nm) radiation as an oxidative stress. In Oxidative Stress: Oxidants and Antioxidants; Sies, H., Ed.;
Academic Press: London, UK; San Diego, CA, USA; Cambridge, MA, USA; Oxford, UK, 1991; pp. 57–83.
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