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Abstract: Glutathione (GSH) is necessary for maintaining physiological antioxidant function, which
is responsible for maintaining free radicals derived from reactive oxygen species at low levels and is
associated with improved cognitive performance after brain injury. GSH is produced by the linkage
of tripeptides that consist of glutamic acid, cysteine, and glycine. The adequate supplementation of
GSH has neuroprotective effects in several brain injuries such as cerebral ischemia, hypoglycemia,
and traumatic brain injury. Brain injuries produce an excess of reactive oxygen species through
complex biochemical cascades, which exacerbates primary neuronal damage. GSH concentrations
are known to be closely correlated with the activities of certain genes such as excitatory amino acid
carrier 1 (EAAC1), glutamate transporter-associated protein 3–18 (Gtrap3-18), and zinc transporter
3 (ZnT3). Following brain-injury-induced oxidative stress, EAAC1 function is negatively impacted,
which then reduces cysteine absorption and impairs neuronal GSH synthesis. In these circumstances,
vesicular zinc is also released into the synaptic cleft and then translocated into postsynaptic neurons.
The excessive influx of zinc inhibits glutathione reductase, which inhibits GSH’s antioxidant functions
in neurons, resulting in neuronal damage and ultimately in the impairment of cognitive function.
Therefore, in this review, we explore the overall relationship between zinc and GSH in terms of
oxidative stress and neuronal cell death. Furthermore, we seek to understand how the modulation of
zinc can rescue brain-insult-induced neuronal death after ischemia, hypoglycemia, and traumatic
brain injury.

Keywords: glutathione; excitatory amino acid carrier 1; zinc transporter 3; zinc; oxidative stress;
neuronal death

1. Introduction

Glutathione (GSH) is well known as an antioxidant that protects cells from brain-injury-
induced reactive oxygen species (ROS) production [1]. GSH is synthesized as a tripeptide
consisting of L-cysteine, L-glutamate, and glycine [2]. The concentration of GSH is regulated
by glutathione disulfide (GSSG) during the redox cycle [3,4]. GSH peroxidase converts
GSH to GSSG with H2O2, and GSH reductase converts GSSG to GSH with NADPH+H+ [5].
In various brain injury conditions, the presynaptic release of zinc activates a reaction with
free radicals to oxidize the reduced form of GSH to its dimer form (GSSG). Additionally,
zinc interferes with the formation of GSH by inhibiting glutathione reductase (GR), an
enzyme that converts the dimer GSSG to the GSH form [6]. Consequently, a reduction in
GSH concentration contributes to an elevation in intracellular ROS and free zinc levels,
leading to the disruption of homeostasis and apoptotic cell death [6].
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Zinc has important physiological functions in processes such as protein synthesis,
signal transduction, and cell proliferation [7,8]. Under normal conditions, released zinc
ionotropically and metabotropically modulates postsynaptic receptors [9,10]. However,
under pathological conditions such as stroke, epilepsy, or traumatic brain injury, the exces-
sive influx of zinc into neurons causes neurotoxicity, damage to neurons, and a reduction
in GSH [11]. Zinc inhibits glutathione reductase and causes intracellular mitochondrial
dysfunction, thereby interfering with GSH synthesis [11–13]. Zinc transporter 3 (ZnT3)
regulates the homeostasis of zinc and GSH in neurons [12,13]. ZnT3 knockout reduced
the translocation of zinc into synaptic vesicles and lowered vesicular zinc concentrations,
which enhanced GSH levels through the activation of the GSH synthesis pathway [14,15].

GSH is also associated with excitatory amino acid transporters (EAAT1, 2, 3, 4,
and 5) [16,17]. EAATs serve a role as the transmembrane complexes that transport gluta-
mate, a major excitatory neurotransmitter, and function as sodium-dependent high-affinity
glutamate transporters [16,17]. EAAT1, 2, and 3 are related to the regulation of glutamater-
gic transmission. EAAT1 is localized in the cerebellum, particularly in astrocytes. EAAT2
is expressed in the forebrain and presynaptic terminals [18,19]. EAAT3 is located in the
hippocampus, striatum, and cerebellum [16,17,19]. EAAT4 is primarily present in the cere-
bellum and is mostly expressed in astrocyte-lineage Bergmann glia and neuronal Purkinje
cells. It has a high affinity for the excitatory amino acids L-aspartate and L-glutamate, and
previous results suggest that the loss of EAAT4 may contribute to the pathogenesis of spinal
cerebellar ataxia type 5 (SCA5) [17,20]. EAAT5 is mainly present in retinal neurons, where
it functions to influence light-activated chloride currents mediated by the glutamate activa-
tion of EAAT5 [17,20,21]. Among these transporters, mouse EAAT1, which corresponds to
human EAAC3, is encoded by the SLC1A1 gene. Mouse EAAT1 has a high affinity with
cysteine, which is one of components of GSH [17,19]. Thus, EAAC1 gene-deleted mice
show a significant decrease in neural GSH levels with an increase in ROS levels, leading
to oxidative damage [22,23]. Previous studies found that cysteine supplementation via
N-acetyl-cysteine (NAC) promoted GSH synthesis, eventually exerting a neuroprotective
effect. In addition, glutamate transporter-associated protein 3–18 (GTRAP3-18) is known to
be a negative regulator of EAAC1 expression [24,25]. Thus, reducing GTRAP3-18 activity
enhances GSH synthesis by increasing EAAC1 expression, which modulates the amount of
cysteine translocation into the intracellular space [24,25].

In the present review, we show that specific genes such as Gtrap3 and EAAC1 are
correlated with the formation of GSH. In the case of brain injury conditions, an excessive
amount of free zinc is accumulated in the neuron, which produces ROS via the NADPH
oxidase activation pathway. Accumulated zinc also reduces GSH synthesis by the inhibition
of glutathione reductase, which aggravates neuron death after stroke, traumatic brain injury,
hypoglycemia, and epilepsy. Thus, this review discusses the role of GSH on zinc-induced
neuronal death.

2. Glutathione Synthesis

Glutathione (GSH) is an antioxidant that protects the brain from the overproduction of
reactive oxygen species (ROS), ROS-induced free radical formation, and oxidative stress [26].
GSH consists of L-glutamate, L-cysteine, and glycine, which are linked by adenosine-
triphosphate-dependent steps. The GSH formation process is defined as follows [27,28].

L-glutamate and L-cysteine form gamma-glutamylcysteine via the glutamate–cysteine-
binding enzyme [29]. Glutamate–cysteine ligase (GCL) catalyzes the synthesis process,
which involves ATP-dependent synthesis from L-cysteine and L-glutamate to
γ-glutamylcysteine [30]. Glycine binds to γ-glutamyl cysteine to form glutathione syn-
thase for GSH synthesis [31]. GSH has a thiol group (-SH) and its hydrogen provides
electrons to remove ROS-induced free radicals. Glutathione exists in its reduced form of
GSH (glutathione-SH) and as an oxidized form, GSSG (glutathione-SS-glutathione) [32].
Reduced GSH is oxidized by hydroperoxides and thereby converted to GSSG. Electrons
of NADPH are transferred to GSSG by glutathione reductase, which is then transformed
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to GSH [31,33]. In other words, NADP+ is converted to NADPH by glucose-6-phosphate
dehydrogenase and the converted NADPH is converted to NADP+ by glutathione reduc-
tase, which reduces GSSG to GSH [31,33]. GSH is produced by the NADPH present in the
cytoplasm through glycolysis [34]. The pentose phosphate pathway (PPP) is a metabolic
pathway that oxidizes glucose 6-phosphate (G6P) to pentose phosphate. In addition,
astrocytes promote a high influx of glucose into the PPP pathway, which results in the
production of ATP and GSH [34,35]. Thus, astrocytes and their normal metabolism play an
important role in reducing oxidative stress in the brain and can provide GSH and ATP to
neurons by the astrocyte–neuron glutathione shuttle [36,37] (Figure 1).
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Figure 1. L-glutamate and L-cysteine are bound by glutamate–cysteine ligase enzyme. γ-glutamyl
cysteine and glycine combine to form glutathione synthase [31,38–40]. GSH and GSSG conversion
is mediated by hydroxy peroxide and GSH reductase [41–43]. Pentose phosphate pathway (PPP)-
derived NADPH supplies electrons to GSSG via GSH reductase [44,45].

Glucose-6-phosphate dehydrogenase is involved in the PPP process and converts
nicotinamide adenine dinucleotide phosphate (NADP+) to NADPH [46]. Transformed
by glucose-6-phosphate dehydrogenase, NADPH delivers high-energy electrons (i.e., re-
ducing equivalents) to cells, maintains cellular redox balance, and supplies reductive
biosynthesis [46]. In its reduced form (GSH), it plays a role in removing ROS that cause
cellular damage. The sulfhydryl (-SH) moiety, a residue of GSH, neutralizes ROS, and is
oxidized to its inactive dimer form (GSSG) when the GSH monomer reacts with ROS [47].
After that, GSH is reduced again by the coenzyme NADPH, formed through a G6PD-6PD-
dependent pathway [46,47].

Glutathione peroxidase 4 (GPX4) is an enzyme that converts active GSH to GSSG by
replacing lipid hydroperoxide (LOOH) with a lipid hydroperoxyl radical (LOO), which
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is a glucose-6-phosphate dehydrogenase (G6PD) of pentose phosphate. Importantly, glu-
tathione peroxidase 4 (GPX4) converts GSH to GSSG and at the same time converts ROS-
induced lipid peroxidase into lipid alcohols, with it being known to play a role in preventing
an apoptotic mechanism called ferroptosis [48,49]. The signaling pathway associated with
ferroptosis is mainly split into two main pathways: The exogenous, transporter-dependent
pathway, which is derived from the amino acid anti-porter system Xc

− inhibition of iron
carrier activation, and the intrinsic, enzyme-dependent pathway, which is derived from
the reduction of antioxidant enzymes such as GSH or GPX4 [48–50]. Finally, the inacti-
vation of GPX4 induced by the GSH depletion caused by multiple neuronal injuries in-
creases intracellular lipid peroxide and induces ferroptosis, which greatly affects neuronal
apoptosis [47] (Figure 1).

Therefore, GSH plays a major role in the suppression of reactive oxygen species,
which induce neuronal cell death if unchecked [51]. GSH is synthesized through com-
plex biochemical and cellular mechanisms, and GSH deficiency has been proven to be an
important factor that can lead to the upregulation of apoptosis and exacerbate neurologi-
cal diseases [27,32,33].

3. Zinc-Induced Glutathione Deficiency

Zinc is the most abundant metal ion in the brain and is essential for cell growth and
proliferation and tissue development [52]. However, the excessive accumulation of zinc
in postsynaptic neurons accelerates neuronal injuries [53]. Zinc mediates nicotinamide
adenine dinucleotide phosphate oxidase (NOX) activation, which results in intracellular
ROS production through an NADPH-oxidase-dependent pathway [54,55]. ROS promotes
zinc-induced PARP activation, resulting in ATP depletion and neuronal death [54,55].

Zinc accumulation induces oxidative stress by interfering with endogenous antioxi-
dant systems and causing neuronal damage [56,57]. Zinc impairs thiol residue homeostasis,
increases lipid peroxidation, and inhibits glutathione reductase to maintain an oxidation-
promoting state [56,58]. Astrocytic GSSG was increased under conditions of zinc overload
and led to a decreased ratio of GSH transfer to neurons through the astrocyte–neuron
glutathione shuttle [36]. In addition, zinc itself makes several contributions to the induction
of the lipid peroxidation of sulfhydryl groups in the phosphorus membrane, mitochon-
drial dysfunction, thioredoxin reductase, and ROS production [58,59]. Consequently, a
low concentration of GSH in neurons contributes to oxidative damage after several brain
insults [58,59] (Figure 2).

To enhance neuronal GSH concentrations, several studies have evaluated the chelation
of synaptically released zinc using a thiol-containing chemical compound, N-acetyl-cysteine
(NAC). The administration of NAC showed a neuroprotective effect after several brain
insults [14,15,61]. Brain insults induce the liberation of zinc from zinc-binding proteins
such as metallothionein [24,62]. NAC treatment after brain insults revealed that cysteine,
an essential component of GSH, supplied the thiol residue of NAC, which has the ability
to chelate presynaptically released or detached intraneuronal zinc [24,62]. NAC inhibits
transient receptor potential melastatin 2 (TRPM2), one of the nonselective cation channels
induced by ROS production, to block the influx of zinc into the cytoplasm of neurons,
thereby reducing neuronal cell death and oxidative damage [63]. Moreover, EAAC1 defi-
ciency inhibits the influx of L-cysteine, which reduces the formation of internal GSH [61,62].
Finally, it was found that EAAC1 gene deletion increased basal levels of cytoplasmic
free zinc, which later increased neuronal death in hippocampus and cerebral cortex after
brain insults [61,62].

Based on the above-mentioned results, there is a clear correlation between the amount
of zinc and the processes responsible for the synthesis of GSH. The excessive release of zinc
from synaptic vesicles or cytoplasmic proteins decreases the synthesis of GSH, which causes
neuronal cell death [15,62,63]. Targeting presynaptically released zinc or GSH components
via supplementation may have the potential to provide new therapeutic tools to prevent
neuronal death after various brain insults [15,62,63].
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Figure 2. (A) Zinc inhibits glutathione reductase (GR) [60]. GR-mediated conversion of GSSG to GSH
is inhibited by accumulated zinc [60]. Abnormal GR function leads to mitochondrial dysfunction
and disturbs GSH synthesis [59]. Depletion of GSH inhibits GR activity following zinc overload
and induces neuronal damage [56]. (B) Immunofluorescence images show degenerating neurons
in the hippocampal CA1 region 24 h after traumatic brain injury (TBI), detected using Fluoro-Jade
B (FJB, green color); immunofluorescence images show degenerating neurons detected using a
glutathione antibody, N-ethylmaleimide adduct (GS-NEM, green color), in the hippocampal CA1
region 24 h after TBI; zinc-specific representative fluorescence image displays TSQ (+) neurons by N-
(6-methoxy-8-quinolyl)-para-toluene sulfonamide (TSQ) in the hippocampal CA1 region 24 h after TBI.
Scale bar = 100 µm.

4. EAAC1 and Glutathione Formation

Excitatory amino acid transporters (EAATs, EAACs) regulate neuronal signaling
through the influx of glutamate from the synaptic cleft into the neuron. EAATs have
five isoforms, of which EAAT1-3 are the most abundantly distributed in the brain [64,65].
EAAT1 (glutamate-aspartate transporter, GLAST) and EAAT2 (glutamate transporter-1,
GLT-1) are expressed in neuroglia cells. EAAT3 (exciting amino acid carrier 1, EAAC1) is
expressed in mature neurons [64–66].

EAAC1 is the primary neuronal glutamate transporter and is responsible for the trans-
port of high-affinity sodium-dependent L-glutamate. EAAC1 also plays an important role
in GSH synthesis in the midbrain via the uptake of cysteine into neurons [64–68]. When
brain-disease-induced oxidative stress induces EAAC1 dysfunction, caused by peroxyni-
trite or H2O2, this reduces the concentration of neuronal cysteine, indicating a disturbance
of GSH synthesis in the mouse midbrain [24,63,65,67,68]. The oxidative-stress-induced dys-
function of EAAC1 was further revealed to contribute to neuronal damage in Alzheimer’s
and ischemic stroke patients [24,63,65]. In addition, the GTRAP3-18 gene, which is func-
tionally related to the EAAC1 gene, contributes to GSH regulation [25,69–71]. GTRAP3-18
is a family of RAB receptors (PRA) that have subtypes of PRA1 and PRA2 [25,69]. The
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subtypes of PRA1 and PRA2 have been shown to have intracellular positions in the Golgi
complex and vesicles (ER) [25].

The hydrophobic domain interaction between GTRAP3-18 and EAAC1 inhibits EAAC1
translocation from the ER [25,69]. Thereafter, GTRAP3-18 binds to the C-terminal domain
of EAAC1 and inhibits glutamate uptake [25,67,69]. It was also confirmed that EAAC1 was
increased in the plasma membrane in GTRAP3-18 gene-deleted mice and the concentrations
of cysteine and GSH in the brain were elevated in GTRAP3-18 gene-deleted mice [25,69].
In other words, as GTRAP3-18 gene expression increased, the expression of the EAAC1
gene decreased, and it was confirmed that the two genes play opposite roles. Finally, it
was confirmed that the increased expression of GTRAP3-18 caused an increase in oxidative
stress, a decrease in GSH levels, and was deleterious to neurons [25,66,69].

In particular, the EAAC1 gene is highly involved in the entire process of neurogenesis,
including cell proliferation, differentiation, and survival after cerebral ischemia [72]. It
is important for hippocampal neurogenesis via the regulation of cysteine influx through
EAAC1 and its interaction with glutamate [72,73]. EAAC1 deletion promotes increased
ischemic damage due to low concentrations of glutathione owing to a lack of cysteine
uptake [72,73]. However, when NAC is administered, it acts as a substitute for cysteine, is
combined with glutamate, and facilitates GSH synthesis through the GSH synthetic path-
way [72,74]. It regulates ROS and glutamate, neurotrophic, and inflammatory pathways
via GSH synthesized by NAC and ultimately plays a role in reducing neuronal cell death
after cerebral ischemia [63,65,69,72–74] (Figure 3).Int. J. Mol. Sci. 2023, 24, 2950 7 of 14 
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Figure 3. Traumatic brain injury or ischemic stroke when EAAC1 knockout inhibits cysteine translo-
cation [13,73]. Deletion of EAAC1 induced loss of L-cysteine and L-glutamate uptake, and ROS-
mediated neuronal damage was preserved [13,73]. NAC can bind to presynaptically released zinc,
and cysteine supplementation promotes enhanced GSH synthesis and zinc binding [13,73].

5. The Role of Glutathione in Zinc-Induced Neuron Death after Brain Injury
5.1. Zinc and Glutathione in Stroke

Global cerebral ischemia (GCI) is caused by a sudden and drastically decreased blood
flow to the brain, resulting in primary neuronal damage due to lack of oxygen and energy
supply [75]. Secondary damage leads to the disruption of the blood–brain barrier (BBB),
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activation of microglia, and production of ROS [75]. ROS-mediated free radicals trigger
oxidative damage by releasing zinc and glutamate from the presynaptic terminal, leading
to the activation of neuronal death cascades [75]. GSH neutralizes free radicals generated
through excessive free zinc release after cerebral ischemia and is critical for neuronal sur-
vival [75]. Previous studies have demonstrated that EAAC1 gene deletion exacerbates
neuronal cell death after cerebral ischemia [13]. In addition, it has been demonstrated that
the accumulation of a large amount of zinc after cerebral ischemia is also directly linked
to the deletion of the EAAC1 gene [13,72–74]. Cysteine uptake via EAAC1 contributes to
the production of glutathione (GSH), a potent cellular antioxidant. Furthermore, cysteine,
a thiol-containing amino acid, has been demonstrated to have a zinc-chelating effect and,
consequently, to protect neurons against brain damage [13,72–74]. Restricted neuronal cys-
teine transport due to the deletion of the EAAC1 gene leads to elevated levels of free zinc
in the presynaptic terminal and cytoplasm, suggesting that zinc accumulation exacerbates
subsequent neuronal cell death after brain injury. In addition, zinc accumulation in neurons
triggers the inhibition of glutathione reductase, ROS production, and increased neuronal
death [13,72–74]. In the absence of functional EAAC1, the administration of the transmem-
brane cysteine prodrug N-acetylcysteine (NAC) rescues neuronal cysteine homeostasis, a
function normally provided by EAAC1, allowing the free passage of cysteine through the
cell membrane of neurons into the cytoplasmic compartment [13,72–74]. Taken together,
we can infer that cysteine introduced through NAC administration inhibits neuronal free
zinc influx, strongly suggesting that it plays a protective role in neurons by the enhancing
synthesis of glutathione [13,72–74]. Although the impairment of cysteine uptake by EAAC1
gene deletion increases free zinc levels in neurons, we demonstrated that NAC treatment
reduced neuronal free zinc levels in EAAC1-knockout mice [13,72–74]. Therefore, these
results demonstrate the important role of EAAC1 in zinc homeostasis and in bolstering
endogenous antioxidant defense mechanisms after acute brain injury [72–74]. Finally, after
the administration of N-acetylcysteine (NAC, 150 mg/kg, i.p.), a membrane-permeable cys-
teine prodrug, we observed increased GSH content and reduced BBB destruction, vascular
disorganization, and neuronal cell death after GCI [73].

Protocatechuic acid (PCA), one of the major metabolites of antioxidant polyphenols,
has a strong antioxidant effect on cells, an antiproliferative effect on tumor cells, and a
protective effect against neuronal apoptosis after cerebral ischemia [75]. In particular, PCA
has a neuroprotective effect against neuronal cell death through the inhibition of ROS
due to the antioxidant effect of PCA [75]. The administration of PCA (30 mg/kg, p.o.)
after GCI increased hippocampal glutathione levels and reduced neuronal cell death, ROS
production, and BBB disruption. In addition, as an inflammatory mediator, PCA plays a
key role in reducing the activity of microglia and astrocytes [75] (Table 1).

5.2. Zinc and Glutathione in Traumatic Brain Injury

Traumatic brain injury (TBI) is one of the most prevalent brain disorders and is caused
by physical trauma from an accident or violent impact to the head [24,80]. TBI causes
edema of the brain as a primary injury and a vast and diverse inflammatory response,
followed by secondary damage which leads to neuronal death [24,80,81]. In the secondary
damage of TBI, oxidative stress and the activation of microglia and astrocytes play a large
role [24,76]. Glutathione deletion and the accumulation of zinc in neurons induces oxidative
stress, which promotes neuronal death [24,76]. It is significant that the neuronal death
that occurs when a traumatic brain injury is induced in mice deficient in the EAAC1 gene,
which is related to deficient glutathione synthesis, can be prevented by a single dose of
NAC (150 mg/kg, i.p.), which acts as an alternative source of cysteine in the absence of
functional EAAC1 [24,72].

In addition, the TBI-induced loss of GSH via the influx of excessive presynaptically
released zinc and ROS production was shown to trigger neuronal cell death and cogni-
tive impairment [76]. However, previous studies found that the administration of PCA
(30 mg/kg, i.p.), known as a powerful antioxidant, had a neuroprotective effect in the
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context of TBI by enhancing GSH levels. Moreover, PCA treatment after TBI reduced
dendritic damage in the hippocampus and cortex, reduced microglia and macrophage
activation, and prevented delayed neuronal death after TBI [76] (Table 1).

Table 1. Neuroprotective effects of GSH supplementation in several brain insults.

Disorder Animal Model Genetic
Manipulation Treatment Result References

Excitatory amino-acid
carrier 1 (EAAC1) Protocatechuic acid (PCA) ROS ↓

Stroke C57BL/6J
SD rat

Glutamate
transporter-associated

protein 3–18
(GTRAP3-18)

N-acetylcysteine (NAC)
activity of microglia

and astrocytes ↓
neuronal cell death ↓

[13,22,73,75]

zinc accumulation ↓
GSH levels ↑

- ischemic brain injury ↓

Traumatic
brain

injury (TBI)

C57BL/6J
SD rat

Excitatory amino-acid
carrier 1 (EAAC1)

Zinc transporter 3 (ZnT3)

Protocatechuic acid (PCA)
N-acetylcysteine (NAC)

ROS ↓
activity of microglia

and astrocytes ↓
neuronal cell death ↓
zinc accumulation ↓

traumatic brain injury
↓

[15,24,76]

Epilepsy SD rat Protocatechuic acid (PCA)

activity of microglia
and astrocytes ↓

neuronal cell death ↓
GSH levels ↑

ROS ↓

[77]

Hypoglycemia SD rat Pyruvic acid
N-acetylcysteine (NAC)

ROS ↓
activity of microglia

and astrocytes ↓
neuronal cell death ↓
zinc accumulation ↓

GSH levels ↑
disruption of the

blood–brain barrier
(BBB) ↓

[78,79]

5.3. Zinc and Glutathione in Hypoglycemia

Hypoglycemic brain damage is caused by insufficient glucose supply, especially in
diabetic patients on insulin therapy [78,79]. Hypoglycemia induces low-frequency EEG
activity, which can lead to cognitive impairment and neuronal cell death due to low glu-
cose and ATP depletion [78,79]. To recover from the hypoglycemic condition, glucose
reperfusion is necessary. However, rapid glucose reperfusion also triggers secondary
damage, called “glucose-reperfusion injury”. Glucose reperfusion causes ROS production,
the activation of glutamate receptors, and the release of extracellular zinc, triggering neu-
ronal cell death [78,79]. In particular, when zinc influx arises from presynaptic terminals,
poly(ADP-ribose)polymerase (PARP) is activated, resulting in ATP depletion, superox-
ide production, and a lack of GSH [78,79]. However, as a result of administering NAC
(300 mg/kg, i.p.) after hypoglycemia, translocated zinc into the hippocampal neurons is
chelated and GSH levels are increased, thereby reducing oxidative damage, BBB disruption,
microglia activation, and neuronal death [78,79] (Table 1).

Recurrent moderate hypoglycemia (R/M hypoglycemia)-induced PARP-1 activation
depends on cytoplasmic NAD. NAD is an essential component of glycolysis, and even
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when glucose availability is restored by PARP-1 activation after hypoglycemia, cells become
unable to use glucose, resulting in ATP depletion [78,79]. The depletion of ATP leads to
oxidative damage, zinc accumulation, and the depletion of GSH [78,79]. However, the
administration of pyruvate acid (500 mg/kg, i.p.), which provides an alternative source
of ATP production through the TCA cycle, has been shown to decrease dendritic damage,
microglia activation, vascular loss, and zinc accumulation [78,79] (Table 1).

5.4. Zinc and Glutathione in Epilepsy

Epilepsy is caused by the excessive activation of excitatory synaptic neurotransmission,
or the imbalanced regulation of inhibitory neurotransmission and oxidative stress caused
by an imbalance in free radical and nitrogen production [77]. In particular, epilepsy
has been identified to lead to a significant increase in oxidative stress, and it has been
found that an alteration in the antioxidant system in epilepsy is therefore of considerable
importance [77]. Previous studies verified that PCA (25 mg/kg) treatment after pilocarpine-
induced (25 mg/kg) epilepsy reduced oxidative damage, microglia activation, and neuronal
death, and prevented a deficiency in GSH [77] (Table 1).

5.5. Zinc and Glutathione in Brain Injuries

Taken together, when brain insult occurs, excessive amount of vesicular zinc is re-
leased from the presynaptic terminals and translocated into the postsynaptic neurons. Then,
accumulated zinc activates PKC (Protein kinase c), which translocates NADPH subunits
P47(phox) and P67(phox) to the cytoplasmic membrane [81–84]. Moved subunits P47(phox)
and P67(phox) activate membrane components of gp91 (phox) and p22(phox)) to form
superoxide-generating enzyme components [81–84]. This reaction increases ROS produc-
tion and increases oxidative stress [78,79,81–84]. Oxidative stress activates PARP-1 (Poly
ADP-Ribose Polimerase-1), which consumes the existing ATP and results in severe neuron
damage [78,79,81–84] (Figure 4A). However, when GSH is present in the postsynaptic
neurons, it binds free zinc translocated from the synaptic cleft, thereby reducing the free
zinc level, and inhibiting PKC activation [13,72–74]. Then zinc-induced PKC activation
and ROS production is inhibited [13,72–74,77]. Additionally, GSH itself functions as an
antioxidant component to reduce ROS, thereby having a protective role against neuronal
death after stoke, traumatic brain injury, hypoglycemia and epilepsy [13,72–74,77] (Table 1).
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Figure 4. (A) When a brain injury occurs, excess vesicular zinc influxes into the cytoplasm of neurons.
Then, protein kinase c (PKC) is overexpressed by the vesicular zinc [81–84]. Due to activated PKC,
nicotinamide adenine dinucleotide phosphate (NADPH) is activated, and, as a result, p47(phox) and
p67(phox) of NADPH subunits activate gp91(phox) and p21(phox) present in the neuron membrane
to generate superoxide [81–84]. (B) However, when GSH is formed, it binds to free zinc to reduce
NADPH oxidase activation, which thereby reduces the final product, ROS, or GSH prevents neuronal
death by acting as an antioxidant, reducing ROS directly [13,72–74].
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6. Conclusions

Glutathione (GSH) is a major component of cellular antioxidant systems and has a
neuroprotective role in several brain insults. Previous studies have demonstrated that
GSH plays a neuroprotective role by inhibiting the generation of reactive oxygen species
after cerebral ischemia, traumatic brain injury, hypoglycemia, and epilepsy. The excessive
neuronal accumulation of zinc downregulates GSH synthesis, which aggravates neuronal
injuries after the above brain insults. Thus, in this review, we discussed evidence that GSH
is an essential factor for preventing zinc-induced neuronal death. Furthermore, we suggest
that the modulation of zinc in the brain may have neuroprotective effects via the protection
or conservation of the integrity of GSH-dependent cellular antioxidant systems.
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