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Abstract: As the clinical complications induced by microbial infections are known to have life-
threatening side effects, conventional anti-infective therapy is necessary, but not sufficient to over-
come these issues. Some of their limitations are connected to drug-related inefficiency or resistance
and pathogen-related adaptive modifications. Therefore, there is an urgent need for advanced antimi-
crobials and antimicrobial devices. A challenging, yet successful route has been the development
of new biostatic or biocide agents and biomaterials by considering the indisputable advantages
of biopolymers. Polymers are attractive materials due to their physical and chemical properties,
such as compositional and structural versatility, tunable reactivity, solubility and degradability, and
mechanical and chemical tunability, together with their intrinsic biocompatibility and bioactivity,
thus enabling the fabrication of effective pharmacologically active antimicrobial formulations. Be-
sides representing protective or potentiating carriers for conventional drugs, biopolymers possess
an impressive ability for conjugation or functionalization. These aspects are key for avoiding mali-
cious side effects or providing targeted and triggered drug delivery (specific and selective cellular
targeting), and generally to define their pharmacological efficacy. Moreover, biopolymers can be
processed in different forms (particles, fibers, films, membranes, or scaffolds), which prove excellent
candidates for modern anti-infective applications. This review contains an overview of antimicrobial
polyester-based formulations, centered around the effect of the dimensionality over the properties of
the material and the effect of the production route or post-processing actions.

Keywords: polylactide; poly(lactide-co-glycolide); polycaprolactone; poly(3-hydroxybutyrate-co-3-
hydroxyvalerate); anti-infective therapy

1. Introduction

With the aim to overcome the current challenges of classical pharmacotherapy (drug-
related pharmacological mechanisms, such as partial specificity for receptor targeting,
limited control, and distribution over tissue volume, but also inappropriate or incorrect ad-
ministration) [1–3], emerging bio-nanotechnologies enable the progress of patient-oriented
and performance-enhanced therapeutic strategies. Modern pharmacotherapy relies on the
synergetic association between biomedical sciences (biochemistry and biophysics, cellular
and molecular biology, and physiological and pathological molecular interactions) and
nanotechnology (in-depth understanding and accurate manipulation of ultra-small-scaled
mater and materials), towards developing the necessary infrastructure for the implementa-
tion of personalized healthcare desideratum [4–6].

The progress of alternative antimicrobial therapies, which involve interdisciplinary re-
search, implies challenging and prospective protocols that study microbial interactions [7–9],
investigate biocidal and biostatic mechanisms [10–12], and develop functional anti-pathogenic
treatments [13–15]. The use of biopolymers as unconventional antimicrobial platforms (either
as intrinsic anti-pathogenic agents [16–18] or as active drug carriers [19–21]) is of great signifi-
cance when considering conventional antibiotherapy efficacy control, combating the alarming
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occurrence of drug-resistant pathogens, and limiting or eliminating the clinical implications of
biofilm-related complications.

When developing new and effective antimicrobials, polymeric platforms provide
indisputable advantages regarding the manufacturing of modern pharmacologically active
formulations. The main targeted aspects are the protection of embedded drugs, targeted
and triggered control over localized tissue distribution, specific and selective targeting
of cellular receptors, reduced or mitigated collateral/side effects, and pharmacological
efficacy [22,23]. In particular, the design and fabrication of pharmacological formulations
based on biodegradable polyesters is of great importance for the progress of personalized
biomedicine. Their intrinsic peculiarities are enabling modern and effective strategies for
molecular diagnosis and treatment [24,25], anti-infective therapy [26] and cancer manage-
ment [27,28], and tissue engineering and regenerative medicine [29,30].

An updated literature survey on the most recent reports in new and efficient antimi-
crobial formulations based on biodegradable polyesters is herein proposed. Our study
considers the most explored and prolific polyester candidates for developing modern anti-
infective platforms, evidencing their use as particulate, layered, or complex formulations
(Figure 1).
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2. Biopolyesters

The use of biodegradable polyesters in biomedicine relies on their versatile charac-
teristics, including biomimicking composition and microstructure, tunable degradabil-
ity and physiological metabolization, and complex functionality and biological perfor-
mance [31,32].

The degradation of polyesters (Figure 2) represents the essential feature of such
biopolymers, conferring excellent biocompatibility of polyester-based platforms (due to the
physiological processing and natural elimination of the hydrolysis-resulted degradation
products) and resulting in promising pharmacologically active formulations [33,34].
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The degradation of biopolyesters is mediated by the (auto)catalytic hydrolytic or
enzymatic degradation of constituent ester linkages and depends on specific intrinsic
physicochemical aspects, such as composition and molecular weight, hydrophobicity, crys-
tallinity, and glass transition temperature [35–37]. Slower drug release and delayed polymer
degradation have been evidenced in the case of biopolyesters with high molecular weight
(due to low chain mobility and reduced swelling and solubility) and high hydrophobicity
(due to increased hydrolytic resistance) [38–40]. Even with the high drug-loading efficiency
reported for highly crystalline polyesters, the consequences of increased crystallinity and
reduced glass transition temperature (through the drug-plasticizing effect) are seen in the
reduced drug release and polymer degradation rates [41–43].

Polylactide (PLA) and poly(lactide-co-glycolide) copolymer (PLGA) are key represen-
tatives of polyester-based therapeutics. Their intrinsic mechanical behavior, thermoplastic
properties, tunable solubility and degradation, and excellent biocompatibility enable their
implementation in the fabrication of modern biomedical platforms, such as biodegradable
and bioresorbable implantable devices [44,45], tailorable stimuli-responsive pharmaceuti-
cals [46,47], and patient-oriented tissue substitutes or augmentations [48,49]. In addition,
retard formulations [50] and long-term medical devices [51,52] can be developed by ex-
ploring the intrinsic features of polycaprolactone (PCL) and poly(3-hydroxybutyrate-co-3-
hydroxyvalerate) copolymer (PHBV), namely, thermoplasticity- and crystallinity-related
hydrophobicity and the reduced degradation rate. Moreover, the piezoelectric effect of
biodegradable materials and devices based on naturally derived PLA and PHBV represents
a strong argument for their incorporation in smart therapeutic platforms [53,54].

The degradation of PLGA and PHBV copolymers can be tailored through the molecu-
lar weight and ratio of constituent monomers. For instance, the fastest degradation rate
of PLGA copolymers is for the 50:50 lactide–to–glycolide (LA/GA) representative, which
decreases with the increasing of the lactide constituent, due to the LA-mediated abundance
of hydrophobic methyl side groups and GA-mediated reduced crystallinity [55,56]. In
PHBV, higher degradation rates have been evidenced for copolymers with more hydroxy-
valerate (HV) content, because of the HV-mediated reduced crystallinity and accelerated
hydrolysis [57,58].

Additives (drugs, biomolecules, and inorganic and organic reinforcers) impact the
stability and degradability of biopolyesters at a microstructural level [59–61], but their
degradation profile can also be modulated by external factors, such as pH [62], tempera-
ture [63,64], electromagnetic radiation [65,66], and enzymes [67,68].
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In [69], the effect of femtosecond laser irradiation on the biodegradability of PLGA
films was shown. Comparisons of the 800 nm and 400 nm heat-affected zones for irradiation
have shown that infrared irradiation provides a small affected area. The results were also
corelated with the degradation rate of the PLGD when 400 nm irradiated films had a
considerably higher degradation rate when compared with the 800 nm ones. The behavior
was explained by the decrease in molecular weight as a result of the dissociation of the
chemical bonds. The aforementioned results are amongst the first reports on the dependence
of the degradation rate of biodegradable polymers on the irradiation wavelength.

3. Particulate Formulations

Biodegradable polyesters represent attractive candidates for the fabrication of new and
efficient antimicrobials. Conventional and modified emulsification protocols are usually
employed for the synthesis of biopolyester-based micro-/nano-sized particles [70,71],
but superior outcomes have also been reported by using nano-precipitation [72,73] and
microfluidic and membrane emulsion [74,75]. The proper synthesis method (the selection
of which is strongly influenced by the stability, half-lifetime, hydrophilicity, or lipophilicity
of the antimicrobial payload) [76,77] facilitates the formation of compact or porous spheres
and capsules with intrinsic microstructures that are directly related to the degradation and
release profiles.

The chemical reactivity and compositional versatility of such systems enable im-
pressive possibilities for conjugation or functionalization (micro-/nano-particles), load-
ing or entrapment (compact or porous micro-/nano-spheres), and encapsulation (micro-
/nano-capsules) of the antimicrobial cargo, which may consist of drugs, phytochemicals,
biomolecules, inorganic nanosystems, and macromolecules [78–80]. The same features open
the path for additional surface modifications and coatings, with the final goal to fabricate
multifunctional formulations with active targeting abilities. The surface of biopolyester-
based particulate formulations can be (bio)chemically tailored to target microbial pathogens
(electrostatic interactions or specific binding to surface molecules overexpressed by mi-
crobial cells) [81–83] or infected tissues (selective coupling to specific tissue receptors,
including the stealth effect) [84–86]. Besides such targeting abilities, most polyester-based
formulations exert their therapeutic action through passive targeting, which is mainly
a concentration-dependent effect that occurs at the infection site due to the increased
retention and accumulation caused by the vascular and lymphatic impairment [87–89].

PLA-based pharmacological platforms possess reduced immunogenicity (owing to
their intrinsic degradation mechanisms, which results in non-toxic and metabolically active
secondary products) and enable controlled and/or targeted delivery mechanisms [90,91].
As a result, several PLA-based formulations have been approved by regulatory institutions
for safe use in clinical practice [92,93].

Prominent inhibitory effects on Gram-negative strains were reported by encapsulating
eugenol and linalool in PLA particles [94], due to hydrophobicity-mediated interactions
between particles and microbial outer membranes. By contrast, the embedding of carvacrol
(53.9%) within polyethyleneimine-coated PLA nanoparticles (114.7 ± 1.02 nm) resulted
in long-term antimicrobial activity against Gram-positive strains [95], through enhanced
cellular uptake facilitated by the cationic-charged nanoparticles. Further, a prolonged
anti-staphylococcal efficacy has been shown for gentamicin-loaded PLA microspheres [96].

In addition, in the case of bone fixing screws modified with layered coatings of PLA
films and vancomycin-loaded PLA nanospheres, the long-term release of the antibiotic (up
to 24 days) led to the eradication of Staphylococcus aureus (S. aureus) during the contamina-
tion phase, followed by a drastic inhibition of the staphylococcal bacterial biofilm [97].

Micro-/nano-sized PLGA-based platforms have an essential role in emerging modern
pharmacotherapy, with several clinically approved formulations [98,99]. The anti-infective
clinical potential of PLGA systems, evidenced by efficient drug entrapment and effec-
tive drug release, has been evidenced for various antibiotics, including ceftiofur [100],
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doxycycline [101,102], gentamycin [103], rapamycin [104], rifapentine [105,106], and van-
comycin [107].

The efficient loading of tobramycin/dioctyl sulfosuccinate conjugates within PLGA
nanoparticles (>89%) determined significant bactericidal effects against Pseudomonas aerugi-
nosa (P. aeruginosa), even when using sub-inhibitory antibiotic concentrations [108]. Comple-
mentary studies evidenced that the antimicrobial efficacy of ciprofloxacin, florfenicol, and
cefpodoxime proxetil was enhanced following their incorporation into particles of PLGA
conjugated with polysorbate surfactant [109], Eudragit (enteric methacrylic polymer) [110],
and (CS) chitosan/Eudragit [111], respectively.

While exhibiting important antibacterial and hemostatic effects, the sustained release (up
to 2 weeks) of tylotoin peptide molecules from CS-coated PLGA nanocapsules determined
reduced inflammatory events and accelerated healing in full-thickness skin wounds [112]. PLGA
nanospheres were recently proposed to overcome solubility limitations of plant-derived gen-
tiopicroside, demonstrating important anti-staphylococcal effects and accelerated healing rates
in diabetic wounds [113]. Considerable bactericidal and bacteriostatic effects have also been
reported by encapsulating cinnamaldehyde (33.20 ± 0.85%) in PLGA/CS nanoparticles [114],
while porous PLGA microspheres embedding antimicrobial peptides showed promising poten-
tial for the local management of bone infections [115].

Composite PLGA/CS microspheres provided a prolonged release of antimicrobial
peptides and determined subsequent long-lasting antibacterial effects (almost 3 months)
against microorganisms from the oral flora [116]. Aiming to reduce the cariogenic risk, effec-
tive anti-streptococcal platforms have been developed by incorporating chlorhexidine salts
into PLGA microparticles [117] and PLGA-coated mesoporous silica nanoparticles [118].
The prophylactic potential of PLGA nanoparticles modified with antimicrobial peptides
on periodontal disease has also been highlighted; such platforms prevented the adhesion
of oral microorganisms to the endogenous streptococcal community and, consequently,
inhibited the formation and development of polymicrobial biofilms [119].

Bacteriophage-loaded PLGA microparticles exhibited pronounced bactericidal effects
against planktonic and sessile P. aeruginosa. Following their murine inhalation, the as-
developed systems induced a drastic reduction of the pulmonary microbial community and
an effective control over pneumonia-associated pulmonary and hepatic complications [120].
The intracellular release of clarithromycin [121] and amikacin-moxifloxacin complex [122]
from PLGA nanocapsules has shown promising potential to combat opportunistic infec-
tions associated with lung disease. Inhalable platforms based on curcumin-loaded PLGA
nanoparticles embedded in drug matrix (tobramycin/ciprofloxacin/azithromycin and
N-acetylcysteine) have been proposed for the multivalent treatment of lung infections, as
evidenced by their cumulative anti-inflammatory, antibacterial, and mucolytic effects [123].

The triggered release of clarithromycin from hybrid microparticles based on the
magnesium core, antibiotic-loaded PLGA layer, and CS coating significantly reduced the
gastric level of Helicobacter pylori [124]. With a similar goal, the targeted therapeutic
potential of amoxicillin-loaded nanocapsules based on PLGA and CS derivatives has
been reported [125]. PLGA nanocapsules loaded with meropenem–cyclodextrin complex
provided antibiotic stability under acidic conditions and enabled controlled antibiotic
release under neutral conditions. As a result, they have been proposed as efficient anti-
infective platforms for the gastrointestinal tract [126]. Considerable anti-amoebic effects
have been reported for the efficient encapsulation of gallic acid (82.86%) into PLGA particles
(~100 nm) [127].

Though it is more difficult to safely assess their efficiency, promising antiviral outcomes
of biopolyester-based formulations have also been reported (Table 1).
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Table 1. Particulate biocompatible polyester-based antiviral formulations.

System Description Therapeutic Potential Refs.

PLA oligomers
Inhibitory and virucidal effects against human Influenza

A virus (IAV) and severe acute respiratory syndrome
(SARS) virus

[128]

PLA/Ag nanocomposites (green tea extract reduced
metallic particles)

Virucidal effects against human IAV and adenovirus
serotype 2 [129]

PLA nanoparticles entrapping bacterial antigen
adjuvanted with aluminum hydroxide

Long-lasting and efficient protection against infection
caused by SARS coronavirus 2 (SARS-CoV-2) [130]

Curcumin-loaded PLGA nanoparticles
Controlled and targeted local management of
SARS-CoV-2 infection through antimicrobial

photodynamic therapy
[131]

Oseltamivir-loaded PEGylated PLGA nanoparticles Effective targeted treatment of pulmonary cancer and
IAV infection [132]

Peptide-conjugated maleimine-functionalized PLGA
nanoparticles encapsulating lamivudine Controlled and targeted local treatment of hepatitis B

virus (HBV) infection

[133]

Adefovir-loaded PLGA microspheres [134]

PLGA-CS microparticles encapsulating interferon-alpha Effective protection against mengovirus infection [135]

PLGA nanoparticles entrapping protein or peptide
antigens and immunostimulatory adjuvants Effective protection and targeted local treatment of

IAV infection

[136]

PLGA nanoparticles entrapping viral antigen
adjuvanted with pattern-recognition receptor agonists [137]

PLGA microparticles loaded with viral nucleoprotein
adjuvanted with immunostimulatory agonists and

carbomer–lecithin nanoemulsion

Effective protection and targeted local treatment of IAV
and SARS-CoV-2 infection [138]

Nanoparticles of PLGA-PEG and PCL grafted with
membrane receptor ligands and loaded with remdesivir

Efficient and targeted local treatment of SARS-CoV-2
infection [139]

Blank PCL nanocapsules with Eudragit surface coating Selective inhibitory effects against Herpes simplex virus
(HSV) type-1 [140]

Cidofovir-loaded PEG-PCL nanoparticles
ink formulation

Controlled and prolonged efficiency for the local
treatment of human papilloma virus (HPV) infection [141,142]

Highly stable PCL-based micelles showed efficient loading of luteolin (97.3% ± 1.1%)
and ofloxacin (64.23%) and determined their prolonged release (up to 8 hours), being pro-
posed as tablet formulations for the local treatment of fungal infections [143] or as particu-
late systems for treating ocular infections [144], respectively. Sustained and pH-responsive
drug release was evidenced for negatively charged PCL nanoparticles encapsulating cefo-
taxime, determining important anti-fouling activity against bacterial pathogens [145].

The surface coating of urinary catheters with chlorhexidine-loaded PCL nanospheres
(152 ± 37 nm) [146] and PEG-block-PCL micelles (40.21 ± 3.85 nm) [147] proved an ef-
fective and prolonged strategy for reducing the contamination by and colonization of
uropathogenic microorganisms. Complementary studies evidenced that nanosystems-
based multilayer coatings determined long-term antibacterial and anti-biofilm effects
through the sustained release of chlorhexidine (for up to 4 weeks), while exhibiting good
biocompatibility and reducing the longevity-related limitations of catheterization (encrus-
tation and crystal deposition) [26,148].

The particular degradation kinetics of PHBV-based biomaterials are beneficial for the
successful development of therapeutically effective formulations, with promising outcomes
for tissue engineering [52,149] and modern pharmacotherapy [150,151].

Impressive therapeutic efficacy and preventive action have been reported in Salmonella
Typhimurium systemic infection following the intramuscular administration of ceftiofur-
loaded PHBV microparticles. The pharmacokinetic and toxicological studies revealed
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no changes in the biochemical and hematological parameters, and a lack of hepatotoxic
and nephrotoxic effects, respectively [152]. Nano-magnetite-loaded PHBV/ceftiofur com-
posite nanoparticles significantly inhibited the development of Escherichia coli (E. coli),
while exhibiting high cytocompatibility in human hepatocytes. The as-developed hybrid
nanosystems (243.0 ± 17 nm) have been evaluated as multifunctional platforms for the
local management of infections, by means of magnetic resonance imaging, magnetic hyper-
thermia, and controlled release of the antibiotic [153]. The multi-faceted functionality of
PHBV–Fe3O4 (magnetite) composites have also been reported in the case of biopolymer
microspheres loaded with magnetic nanoparticles functionalized with lauric and oleic
acids [154,155].

The encapsulation of epirubicin within composite PHBV–PEG (polyethylene glycol)
particles determined important antibacterial effects against Gram-positive and Gram-
negative strains, with superior efficiency to equivalent concentrations of free drug. The
obtained nanosystems (152.3 ± 0.6 nm) exhibited fast and sustained pH-dependent drug
release, as evidenced under acidic and neutral physiologically simulated conditions (2 and
8 days, respectively) [156]. Highly cytocompatible PHBV–CS spheres proved to have
potentiating effects on different bioproduced antibiotics (against various clinically rele-
vant bacterial strains); however, only kanamycin-loaded composites exhibited reduced
pro-inflammatory effects beneficial for the modulation of the healing process and microbi-
cidal mechanisms.

Owing to their superior mechanical properties and tunable degradability, PHBV-
based formulations are extensively investigated regarding the development of biomaterials
and devices for restorative and regenerative applications of bone tissue. With the aim to
reduce the bacterial contamination and colonization susceptibility of metallic implants,
levofloxacin-loaded PHBV microspheres were embedded within alginate matrix and val-
idated as compact coatings that exert sustained bactericidal effects against E. coli [157].
Superior antimicrobial efficacy and prolonged release of cinnamaldehyde (7 days) and
vancomycin (4 days) have been reported in the case of PHBV-based microspheres em-
bedded with mesoporous vitroceramic nanoparticles [158] or loaded within vitroceramic
scaffolds [159], respectively.

The effects of WS2 nanotubes addition of the mechanical properties of biodegradable
polymers (PLLA) were also investigated [160]. The best improvement of the mechanical
properties are shown for INT–WS2 addition up to 0.5 wt. %. The addition of nanotubes in
the composition of polymers reportedly also reduces the friction coefficient of the polymer–
nanotube composite.

Additionally, no hindering of viscosity or polymer matrix moduli is reported based
on rheological sties performed on the composites. The polymers’ bond stretching was
highlighted by the use of Raman Spectroscopy, with no observable interference with respect
to the polymerization process by the insertion of WS2 nanotubes. Increases in the PLLA’s
crystallinity are also reported by use of differential scanning calorimetry investigations
and confirmed by X-ray diffraction with nanotubes acting as nucleation centers, thus
transforming the composite into a semi-crystalline material.

More than extending the safe use of conventional antimicrobials and limiting their
negative side effects, biopolyester-based particle formulations represent ideal candidates
for modern anti-infective therapy, contributing to the emerging clinical evaluation of more
effective, comfortable, and compliant treatments. Intrinsic and circumstantial biodegrad-
ability, but also excellent biocompatibility and thermoplasticity, represent key aspects that
highlight their promising use for the development of modern and efficient antimicrobial
platforms, susceptible to various administration routes. Being biosafe and biodegradable
materials, polyesters have a great potential for the commercial fabrication of particulate
antimicrobials, providing specific, selective, controlled, targeted, and personalized anti-
infective effects.
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4. Layered Formulations

Fabricating protective and highly biocompatible surface-modifying coatings [161]
and nano-sized/-structured bidimensional formulations [162,163] is an attractive and
emerging strategy to modulate the microbial susceptibility of commercial medical devices
and develop new anti-infective devices, respectively. Given their tunable biomechanics,
thermophysics, and biochemistry, but also their versatile processability, polyesters are
indisputable candidates for the fabrication of such active carriers or enhancers for local
antimicrobial effects.

Various synthesis methods have been employed to obtain antimicrobial coatings for
biomedical materials and devices [164,165] (Figure 3). The degradation and release profiles
of such formulations can be tuned at a microstructural and morphological level, depending
on the therapeutic effect and final use. Furthermore, boosted bioactivity and additional
functionality may be achieved by means of polyester coatings.
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PLA films were reported to have the role of active matrices for the release of metallic
(silver) and oxide (zinc and titanium oxide) nanoparticles with intrinsic anti-pathogenic
activity, exhibiting pronounced inhibitory effects against the E. coli strain [166]. By contrast,
increased anti-staphylococcal efficacy was obtained in the case of layered films of PLA and
thymol-encapsulated zein-chitosan solid particles [167]. Enhanced anti-biofilm activity
against S. aureus was also demonstrated for PLA films embedded with stearate-stabilized
silver nanoparticles [168] and nano-magnetite conjugated with eucalyptus essential oil [169],
while exhibiting excellent biocompatibility with respect to human-derived endothelial cells
and mesenchymal stem cells, respectively.

Excellent bioactivity and prolonged anti-staphylococcal efficacy have been reported
for hybrid structures based on PLA films reinforced with gentamicin-oaded coralline
hydroxyapatite (HAp) nanoparticles (as evidenced up to 4 weeks [170,171]) and PLA–PVA
(polyvinyl alcohol) microsphere coatings entrapping usnic acid [172].

The immobilization of recombinant antimicrobial peptides in PLA membranes has
been successfully evaluated for topical bactericidal use, with additional beneficial effects
on the adhesion and proliferation of human fibroblasts [173]. Concerning the fabrication
of antimicrobial wound dressings, PLA/gelatin nanofiber mats demonstrated a sustained
release of phyto-conjugated silver nanoparticles, but also proper mechanical and gela-
tion properties [174]. Antibacterial and antioxidant activity have been also reported for
PLA–PEG composite films incorporating silver nanoparticles conjugated with phytochemi-
cals [175], while PLA/PEG nanofibrous mats were recently proposed for the transdermal
administration of acyclovir against HSV type-1 infection [176]. Non-toxic nanocompos-
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ites with ultraviolet-light barrier properties have been developed by the impregnation of
cinnamaldehyde within PLA/lignin nanoparticle films [177].

An increased antimicrobial efficiency has also been reported in the case of biodegrad-
able PLGA membranes loaded with phytochemicals, such as cinnamaldehyde and car-
vacrol [178], aloe vera [179], and thymol [180]. The immobilization of eugenol and
clove essential oil within PLGA films was beneficial for potentiated anti-biofilm activ-
ity against enterohemorrhagic E. coli [181]. Excellent efficiency against mature microbial
biofilms has been evidenced in the case of nanostructured coatings based on PLGA mi-
crospheres or PLGA films embedded with phytochemical-conjugated [182] and antibiotic-
functionalized magnetite nanoparticles [183,184]. Superior anti-staphylococcal efficacy was
also reported for hybrid coatings of PLGA–PVA microspheres loaded with usnic acid and
nano-magnetite [185].

Using graphene oxide filler proved effective for increasing the hydrophilicity and
modulating the adsorption ability of biomolecules (antimicrobial peptides and growth
factors) in PLGA films. Such nanostructured formulations showed important antibacterial
effects against opportunistic strains and accelerated healing and tissue regeneration ability,
being evaluated as promising platforms for the infection-free regeneration of wounds [186].
Superior mechanical properties and enhanced acyclovir loading efficiency were reported for
PLGA/PCL nanofibrous mats, in comparison with bare PLGA materials. Besides exhibiting
short-term viral inhibition, the reduced polymer degradation and continuous drug release
resulted in long-term protection against viral transmission of HSV type-2 infection [187].

HAp/PLGA coatings entrapping ceftriaxone and cefuroxime are suitable materials for
the normal development of osteoblasts [188] and showed enhanced anti-biofilm activity
against the E. coli strain. Bacterial inhibition has also been demonstrated in the case
of multi-layered membranes consisting of either collagen nanofibers loaded with PLGA
nanoparticles and aspirin or curcumin-functionalized collagen nanofibers. Besides their
antibacterial efficiency, the as-developed hybrid structures exhibited important osteogenic
activity, being proposed for reducing infection-associated complications in guided bone
regeneration [189]. Hybrid films consisting of vancomycin-loaded chitosan hydrogel and
PLGA nanoparticles loaded with osteoinductive protein enabled the sequential release of
biosubstances (2 and 12 days, respectively) and resulted in accelerated and uncomplicated
osteointegration [190]. Therapeutic effects (stable prosthetic fixation and faster healing) and
prophylactic effects (effective control of methicillin-resistant S. aureus contamination for
up to 28 days) were revealed by the encapsulation of linezolid within PLGA nanofibrous
membranes [191].

PCL films loaded with ciclopirox olamine-modified vermiculite determined the long-
term inhibition of bacterial and fungal biofilms, while the addition of zinc oxide (ZnO)
nanoparticles resulted in potentiated anti-biofilm effects [192]. Highly hemocompatible
PCL films embedded with copper oxide nanoparticles have been evaluated as promis-
ing candidates for the management of diabetic foot ulcers infected with opportunistic
methicillin-resistant S. aureus [193].

PCL/poly(ethylene succinate) polyester mixture provided extended release of the
biocide agent and prolonged antibacterial effects when used as a shell coating for drug-
loaded polyvinylpyrrolidone core nanofibers, leading to the development of bacteria-
degradable nanofibrous membranes for wound care management [194]. As hydrophilicity
and water retention are important aspects when designing wound dressings, the addition
of gelatin proved beneficial for increasing these parameters in PCL nanofibers. Meshes
based on ciprofloxacin-loaded PCL core/tetracycline-loaded gelatin shell fibers showed
improved mechanical properties (when compared to uniaxial membranes) and exhibited
long-lasting antibacterial effects [195]. Also aiming at the development of efficient topical
platforms, biocompatible PCL nanofiber arrays decorated with ZnO tetrapod nanoparticles
demonstrated important and sustained dose-dependent antiviral effects against both type-1
and type-2 HSV [196]. The successful revaluation of anti-pathogenic phytochemicals in
the development of antimicrobial alternatives has been demonstrated in the case of PHBV
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films loaded with rosemary and green tea extracts [197], oregano essential oil [198,199],
and eugenol-encapsulated mesoporous silica nanoparticles [200].

Nanostructured coatings of PHBV–PVA microspheres entrapping eugenol-functionalized
nano-magnetite exhibited important anti-adherence and sustained anti-biofilm effects (evi-
denced against S. aureus and P. aeruginosa), showing superior cytocompatibility with respect
to human endothelial cells [201]. Prolonged anti-biofilm efficiency against Gram-positive and
Gram-negative pathogens, as well as excellent biological behavior on osteoblasts and endothelial
cells, was reported for coatings based on lysozyme-embedded PHBV/PEG microspeheres [202].

With the aim to fabricate performance-enhanced topical formulations, PHBV nanofi-
brous membranes were reinforced with hybrid systems consisting of cellulose nanocrystals
(NCC) and ZnO, which resulted in improved mechanical strength and thermal stability, and
antibacterial efficiency (demonstrated against both E. coli and S. aureus strains) [203]. In a
similar study, the cumulative release of tetracycline (~80%) from PHBV and NCC composite
membranes grafted with methacrylic polymer was attained after 4 days of testing under
physiologically simulated conditions. Under weakly acidic conditions or by increasing
the temperature, the antibiotic release period was reduced to only 2 hours [204]. The
reinforcement of PHBV/alginate films with graphene nanoplatelets led to the formation
of thermally stable, highly hydrophobic, and electrically conductive biomaterials, which
exhibited important action against a bacteriophage-based model of enveloped viruses [205].

Volova et al. [206] investigated the effect of CO2 laser irradiation of PHA’s films
produced by the solvent cast technique. Two different working modes were considered—a
continuous wave using a power of 3 W and a scanning speed of 2 m/s and a pulsed
wave using a power of 13.5 W and a scanning speed of 1 m/s—for the irradiation of
poly-3-hydroxybutyrate in a mixture with 30% 4-hydroxybutyrate, 3-hydroxyvalerate,
or 3-hydroxyhexanoate. The polyhydroxyalkanoates (PHA) films offer a wide range of
thermal, mechanical, or molecular properties, with the irradiation affecting all of their key
parameters on top of biocompatibility. For example, the poly-3-hydroxybutyrate (P(3HB))
films present a decrease in contact angle from 92 to 80, while both the surface energy and
the roughness increase from 30 to 57 mN/m and from 144 up to a maximum value of
290 nm, respectively. All PHA’s films irradiated in continuous mode present a decrease in
contact angle down to 80 and an overall roughness increase up to 45 mN/m. The pulsed
irradiation regime defines stronger morphological changes, as expected due to the higher
local beam power, and thus a steeper decrease in contact angle down to 67. Assessing the
cell metabolic activity for a culture of mouse fibroblast proved the advantage of pulsed
treatment, which increased the number of viable cells with a factor of 1.5. These new results
offer the perspective of targeted surface modification for cell attachment control.

5. Complex Formulations

The successful use of biopolyesters in fabricating more complex constructs (scaffolds,
sponges, and foams) and topical formulations (gels) has also been evidenced [207,208].

Owing to their facile processability and impressive clinical outcomes, biodegradable
polyesters have been extensively used for fabricating three-dimensional constructs for im-
plantable devices and regenerative medicine. More than representing adequate mechanical
and biochemical support for beneficial interactions with physiological biomolecules and
resident cells, such constructs own the indisputable structural advantage. The porous mi-
crostructure of scaffold-type formulations facilitates local nutrient transport and provides
adequate biomimetic support for cellular ingrowth, but also promotes local vascularization
and tissue repair/regeneration.

Highly biocompatible and bioactive systems able to recover the integrity and func-
tionality of damaged tissues through their restoration, replacement, or regeneration can
be fabricated by properly adjusting the composition, microstructure, wettability, surface
charge, morphology, topography, and reactivity of biopolyester-based platforms [209,210].
In addition, their advanced biofunctionality can be modulated by using composite con-
structs of polyesters and natural polymers, such as polysaccharides and proteins [211,212].
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Excellent bioactivity and prolonged anti-staphylococcal efficacy have been reported
for hybrid structures based on collagen, nano-Hap, and vancomycin-loaded PLA scaffolds
(18 days) [213]. Highly biocompatible architectures based on PLA, barium sulphate particles
embedded in polydopamine, and levofloxacin with excellent inhibitory activity against the
development of S. aureus have been proposed as bone fixation devices [214].

The incorporation of green indocyanine into PLA nanofibrous networks has been
attempted in order to eradicate bacterial contamination and colonization of chronic wounds
by means of photodynamic therapy. The newly developed materials are exhibiting accel-
erated degradation under alkaline conditions or in the presence of proteases, promoting
physiological cellular events and encouraging pro-angiogenic effects [215].

Electrospun PLGA scaffolds modified with growth factor and antimicrobial peptide
have been proposed for the accelerated healing of cutaneous wounds, while reducing
the risk for opportunistic contamination with E. coli and S. aureus [216]. Considerable
antimicrobial effects have been reported by the immobilization of ciprofloxacin within
PLGA/alginate nanofibrous networks [217] and PLGA nanoparticles embedded into PVA
hydrogels [218]. Moreover, demineralized bone matrix loaded with PLGA microparticles
co-encapsulating vancomycin and HAp nanoparticles was proposed as osteogenic and
highly efficient antibacterial fillers for infected bone defects [219].

For altering the hydrophobic nature of polyester, PCL/gelatin [220–222] and
PCL/chitosan [223] composite scaffolds, with suitable mechanical behavior for skin tissue
use, were developed. The porosity-related features (release profile, swelling, and perme-
ability) of such constructs were beneficial for infection-free wound-healing applications
when loaded with antibiotics and phytochemicals. Similar outcomes were also evidenced
for juglone-modified PCL scaffolds [224]. Improved biomechanics and hydrophilicity were
reported for PCL/gelatin scaffolds reinforced with calcium phosphate-modified graphene
oxide. Exhibiting important antibacterial activity, the clindamycin-loaded osteoinductive
scaffolds represent promising candidates as electrically actuated bone substitutes [225].

The release of vancomycin over a period of 22 days was evidenced in the case of com-
posite structures based on PHBV, nano-diamond, and nano-HAp [226]. Recently, bilayer
PHBV/pullulan nanofibrous scaffolds were developed as bacteria-repellent formulations
for wound-healing applications. While the polyester layer provided suitable microstructure
for increased water and oxygen retention and suitable architecture for cellular prolifera-
tion and migration, the hydrophilic polysaccharide layer acted as a protective membrane
against bacterial transmission [227]. Enhanced and sustained antibacterial activity has been
evidenced by cephalexin-loaded PHBV nanofibrous sheets against different methicillin-
resistant S. aureus strains, both in cellular and animal models. The as-developed dressing
material has been evaluated as a biosafe platform for the efficient treatment of opportunistic
infections in chronic diabetic foot ulcers [228].

Besides representing active carriers or enhancers for local antimicrobial treatment, The
biomechanical compliance, biomimetic microstructure, and bioresorbable ability of such
formulations represent key aspects promoting biodegradable polyester in designing and
fabricating functional tissue substitutes.

Though exhibiting optimal biomechanical properties and biodegradability, the hy-
drophobicity, slow degradation rate, and drug release profiles of biopolyester-based for-
mulations should be properly tuned for specific biomedical uses. In this regard, their
modification with highly hydrophilic and stimuli-responsive polymers represents an at-
tractive strategy to fabricate advanced platforms, as confirmed by several in vivo and ex
vivo studies (Table 2).
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Table 2. Biopolyester-based gel formulations with antimicrobial activity.

System Description Therapeutic Effects Refs.

Ketoconazole-entrapped PLGA nanoparticles loaded into
alginate-chitosan in situ gel formulations

Augmented drug permeation and sustained drug release
Treatment of Candida albicans fungal keratitis and endophthalmitis [229]

Norfloxacin-loaded PLGA nanoparticles incorporated within
hydroxypropyl methylcellulose hydrogels Prolonged drug release and superior biosafety profile

Treatment of P. aeruginosa keratitis

[230]

Besifloxacin-loaded PCL/PEG nanofibrous inserts entrapped
within thiolated sodium alginate [231]

Vancomycin-loaded PLGA/Eudragit and PCL/Eudragit
nanoparticles incorporated in Carbopol-based hydrogels

Prolonged drug release and superior biosafety profile
Treatment of S. aureus keratitis [232]

Levofloxacin-encapsulated PLGA nanoparticles embedded in
prednisolone-containing CS/gelatin hydrogels

Extended dual-drug release and improved ocular bioavailability
Treatment of S. aureus keratitis, management of endophthalmitis [233]

Ciprofloxacin-encapsulated PLGA microspheres loaded within
poloxamer/hyaluronic acid hydrogels entrapping ginsenoside

Sequential release ability (short-term release of the immunomodulatory
ginsenoside and long-term release of the antibiotic)

Treatment of skin infections through synergistic efficiency against
methicillin-sensitive and methicillin-resistant S. aureus

[234]

Mupirocin-/ketoprofen-co-encapsulated mesoporous PHBV
microparticles embedded in κ-carrageenan/locust bean gum

hydrogels

Thermo-sensitive and prolonged dual-drug release
Potential wound-healing applications [235]

Rifampicin-loaded PHBV microparticles embedded in
streptomycin-containing gellan gum hydrogels

Sustained dual-drug release
Treatment of skin ulcers caused by Mycobacterium ulcerans infection [236]

Vancomycin-loaded oligochitosan nanoparticles mixed with
PLGA-PEG-PLGA gels

Thermo-sensitive and sustained drug release, osteogenic differentiation ability, and
important antibacterial and anti-biofilm effects against S. aureus and S. aureus

mutans, respectively
Treatment of osteomyelitis and regeneration of infected bone tissue

[237]

Vancomycin-embedded and HAp-loaded PLGA-PEG-PLGA
gels [238]

Cefazoline-loaded PCL scaffold encapsulated in
rifampicin-containing alginate hydrogels

Prolonged dual-drug release and important antibacterial and anti-biofilm effects
against S. aureus

Treatment of osteomyelitis
[239]

Osteogenic protein-entrapped PLGA microspheres loaded in
vancomycin-containing CS hydrogels

Sequential release ability (fast release of the antibiotic for 2 days and sustained
long-term release of the protein for 12 days)

Important antibacterial activity and reduced infection-mediated inflammation
caused by S. aureus mutans, osteogenic differentiation, and bone

regeneration ability

[191]

Magnetic nanoparticles have been at the center of an impressive number of studies,
as they have been categorized as reliable candidates for a wide range of applications in
biomedicine. Their attractive intrinsic physical properties, often in combination with de-
sired high biocompatibility and low immunogenicity, have the potential to tackle modern
issues in nanotechnology and materials engineering directed towards biomedicine. Recent
reports [240–242] have presented different routes to improve and highlight the properties
of these magnetic nanoparticles, either by thin film coatings, sensors, or drug carriers or
as components in polymer structures. Various applications have been developed based
on their unique properties in order to induce spatial displacement on nanometer scales
for cell seeding, materials engineering, or targeted drug delivery [243]. While there are
reports [244–247] that present control over the functionality of certain cells by using mag-
netic nanoparticles, limitations have risen from adverse effects on the cells, which are yet
to be understood [248]. Recent reports [249–251] on magnetic actuation have shown that
there are promising results towards controlling mesenchymal stromal cells or other cells
aimed at bone or cardiovascular issues, for example, bone tissue engineering performed by
means of magnetic nanocomposite (nanoparticle-embedded polymers) engineering via thin
films, scaffolds, or implants [252]. The main goal of these studies is to obtain differential
selectivity for specific molecules towards cell functionalization control under magnetic
field action [253–255].

Simultaneously, a continuous effort has been performed towards regenerative medicine
by controlling the healing and repair process for certain biological structures by pheno-
typic modulation of stromal cells via matrix tailoring of the physical properties or by
molecular targeting of intercellular paths [256–262]. The development of materials with
smart dynamics having the ability to aid regenerative processes at a cellular level is also
done by external reactive processes, such as optical or thermoelectric stimulation, or by
self-regeneration and enzymatic sensitivity control [263–267]. While the literature con-
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cerning tissue healing by magnetic field manipulation at a cellular level is generous, the
results mostly relate to specific conditions and are very often experiment dependent in
terms of the type of cell used or the stimulation of the cell with matrices with magnetic
response [268–270]. The advantages of using magnetic nanocomposite for cell modulation
have been the main driving forces behind state-of-the-art research concerning innovating
and developing new strategies for tissue repair. Most utilized routes involve the control
of cell behavior by functionalization, surface modulation, and cell-environment tailoring.
In [271], the manufacturing of hydrogels responsive to anisotropic magnetic field tissue
engineering is reported, indicating a strong correlation between the physical properties
of the polymer matrix and those of the applied magnetic field. Further development of
nanoparticle–polymer composites was focused mainly on increasing the response and
sensitivity to the magnetic field, together with lowering the chances of biological tissue
poisoning by controlling the number of magnetic nanoparticles and the cytotoxicity.

The production of spherical Pd nanoparticles generated by pulsed laser ablation in
liquid (PLAL) is reported in [272]. Different routes for NP control in size and crystallinity
are attempted by utilizing different solvents, as well as different wavelengths for irradiation.
Multivariable control over NP production led to the generation of NP with an average
dimension of 6 nm. When the antimicrobial activity was investigated, it was reported
that NP produced with 1024 nm and in methanol had a better response to Staphylococcus
aureus. The antimicrobial activity is understood as Pd ions release from the NP coating,
with no reported harmful effects to the cells. Besides the elevated antimicrobial activity,
the encouraging report of cytocompatibility shown by estimating the bactericidal factor
promotes further biological testing for these promising nanostructures.

6. Conclusions

To overcome the clinical complications induced by microbial infections, known to
have life-threatening side effects, conventional anti-infective therapy is generally preferred.
Yet, one should note its important shortcomings concerning drug-related inefficiency
or resistance and pathogen-related adaptive modifications. In this respect, advanced
antimicrobials and antimicrobial devices are urgently needed.

Besides their role as protective or potentiating carriers for conventional drugs, biopoly-
mers are characterized by an impressive ability for conjugation or functionalization, which
proves beneficial to avoid collateral and side effects, and to provide targeted and trig-
gered drug delivery, specific and selective cellular targeting, and pharmacological efficacy.
It should be mentioned that biopolymers can be fabricated in various forms, i.e., parti-
cles, fibers, thin films, membranes, or scaffolds, which are demonstrated to be excellent
candidates for modern anti-infective applications.

This is a comprehensive study that gathers the recent antimicrobial, polyester-based
formulations, centered around the effect of the dimensionality, production route, or post
processing actions on the properties of the investigated materials.
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