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Abstract: Piperidines are among the most important synthetic fragments for designing drugs and
play a significant role in the pharmaceutical industry. Their derivatives are present in more than
twenty classes of pharmaceuticals, as well as alkaloids. The current review summarizes recent scien‑
tific literature on intra‑ and intermolecular reactions leading to the formation of various piperidine
derivatives: substituted piperidines, spiropiperidines, condensed piperidines, and piperidinones.
Moreover, the pharmaceutical applications of synthetic and natural piperidines were covered, as
well as the latest scientific advances in the discovery and biological evaluation of potential drugs
containing piperidine moiety. This review is designed to help both novice researchers taking their
first steps in this field and experienced scientists looking for suitable substrates for the synthesis of
biologically active piperidines.
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1. Introduction
Piperidine is a six‑membered heterocycle including one nitrogen atom and five car‑

bon atoms in the sp3‑hybridized state. Piperidine‑containing compounds represent one
of the most important synthetic medicinal blocks for drugs construction, and their synthe‑
sis has long been widespread [1]. Today, it can be unequivocally stated that heterocyclic
compounds play a significant part in the pharmaceutical industry, and one of the most
common in their structure is the piperidine cycle. Thus, more than 7000 piperidine‑related
papers were published during the last five years according to Sci‑Finder. Therefore, the
development of fast and cost‑effective methods for the synthesis of substituted piperidines
is an important task of modern organic chemistry.

In the last several years, a lot of reviews concerning specific methods of pipiridine
synthesis [2–13], functionalization [14], and their pharmacological application [15–20] were
published. Herein, we have summarized the main routes in modern organic chemistry to
the synthesis of piperidine derivatives (the scope is displayed in Figure 1, there and further,
the atoms and bonds forming the piperidine cycle are highlighted in blue.), as well as their
medical applications.
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In the first chapter, approaches to the synthesis of piperidines were structured, and
the features of the reaction mechanisms, the required conditions, and the limitations and
advantages of particular methods were discussed. The second chapter is devoted to the
main pharmacological applications of piperidine natural and synthetic derivatives, as well
as recent progress in the development of new drugs of this class.

We hope that this review will provide a broad perspective on the field and will attract
new creative minds to further develop the piperidine class.

2. Recent Advances in the Synthesis of Piperidine Derivatives
In this chapter, recent developments in the field of substituted piperidines synthesis

will be discussed. It is worth noting that only examples of the piperidine ring formation
will be considered and not the functionalization of already existing ones.

For thepurposesof our review,wehavedistinguished threemain routes to thepiperidines
synthesis (Scheme 1).
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2.1. Hydrogenation/Reduction
Chemists have used hydrogenation reactions since the early 19th century. This funda‑

mental process plays a key role in modern organic synthesis. Over many decades of scien‑
tific progress, researchers have developed approaches to the hydrogenation of a wide vari‑
ety of heterocyclic compounds and their derivatives, including furans [21–23], pyrroles [24],
indoles [25], thiophenes [26], imidazoles [27], oxazolones [28], quinolines [29], etc. Pyridines
are of particular interest for this review, as they are the most common source for obtaining
piperidines by this method.

Now, there are many ways to achieve N‑heteroaromatic compounds hydrogenation.
Usually, the reactions take place under transition metal catalysis and harsh conditions
(high temperature, great pressure, long reaction time), which makes them more expensive
than the use of the other methods. Moreover, in order to meet modern pharmaceutical
standards, in most cases, it is necessary to obtain a specific isomer. Thus, the reaction
must be stereoselective, which is difficult in view of the aforementioned conditions. How‑
ever, despite all the obvious problems of this approach, in the last decade, scientists offered
various methods for overcoming them.

Here, we have discussed some of the recent developments in this field regarding the
preparation of piperidines using metal‑ and organocatalysis. More information about N‑
heterocyclic hydrogenation methods is represented elsewhere [14,30].

In the work of Beller et al., a various pyridine derivatives hydrogenation was dis‑
cussed [31–33]. A new heterogeneous cobalt catalyst based on titanium nanoparticles and
melamine allowed for acid‑free hydrogenation with good yields and selectivity. It was
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shown that it is possible to carry out the described conversions of substituted pyridines
into the corresponding piperidines in water as a solvent (Scheme 2A) [31]. Moreover,
the authors have optimized the method for obtaining piperidine‑based biologically ac‑
tive substances, including Melperone, a second‑generation antipsychotic [34]. Further, the
Beller group developed a ruthenium heterogeneous catalyst for the diastereoselective cis‑
hydrogenation of multi‑substituted pyridines (Scheme 2B) [32] and a previously unknown
nickel silicide catalyst (Scheme 2C) [33]. It is the first example of a nickel catalyst’s success‑
ful application in efficient pyridine hydrogenation. It is worth noting that all catalysts
possessed a high stability rate and remained effective after multiple uses.
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Scheme 2. Pyridine derivatives hydrogenation using cobalt‑ (A), ruthenium‑ (B) and nickel‑based
(C) nanocatalysts.

Along with ruthenium and cobalt, iridium is an effective transition metal for stere‑
oselective catalytic hydrogenation. Thus, Qu et al. reported the successful asymmetric
hydrogenation of 2‑substituted pyridinium salts using an iridium(I) catalyst containing a
P,N‑ligand (Scheme 3) [35]. The authors suggested that the reaction proceeds through the
outer‑sphere dissociative mechanism, which is known for this type of hydrogenation [36].
The reactant undergoes a series of successive protonations. The product configuration
is determined by the stereoselective enamine protonation. This approach is also suitable
for high‑volume synthesis. Thus, the authors performed the large‑scale enantioselective
reduction of 2,3‑disubstituted indenopyridine as part of the synthesis of a biologically
active substance—11β‑hydroxysteroid dehydrogenase type 1 inhibitor (11β‑HSD1) [37].
11β‑HSD1 is used for treating diseases associated with cortisol abnormalities [38].
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Rhodium and palladium are befitting for pyridine hydrogenation as well. For ex‑
ample, in 2019, Glorius et al. developed a strategy for accessing all‑cis‑(multi)fluorinated
piperidines from the corresponding fluoropyridines [39,40] (Scheme 4). First, the authors
used rhodium(I) complex and pinacol borane to achieve highly diastereoselective prod‑
ucts through the dearomatization/hydrogenation process (Scheme 4A) [39]. As a result,
a wide range of substituted fluoropiperidines have been obtained, including fluorinated
analogs of commercially available and biologically active substances, including Melper‑
one, Diphenidol, Dyclonine, Eperisone, and Cycrimine. The work represents a major
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advance in the underdeveloped field of fluoropiperidine derivatives acquirement. How‑
ever, the method has its limitations in the pyridine moieties range (products with hy‑
droxy, aryl, ester, and amide groups were not affordable) and moisture sensitivity. There‑
fore, in 2020, the Glorius group came up with another idea for accessing highly valu‑
able fluorinated piperidines. The method is based on palladium‑catalyzed hydrogenation
(Scheme 4B) [40]. The developed approach was suitable for most substrates that were in‑
accessible by rhodium catalysis and was effective in the presence of air and moisture. It
is worth noting that the axial‑position for fluorine atoms was prevalent in the majority of
experiments.
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The interruption of palladium‑catalyzed hydrogenation by water led to piperidinones
(Scheme 5) [41]. The method allows for the furthering of the one‑pot functionalization of
unsaturated intermediates, which usually requires multiple steps. Moreover, the reaction
possessed great selectivity, high yields, and a broad substrate scope.
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Scheme 5. Interrupted palladium‑catalyzed hydrogenation of pyridine derivatives.

Grygorenko et al. used palladium and rhodium hydrogenation for their approach
to all isomeric (cyclo)alkylpiperidines (Scheme 6) [42,43]. The method proposed by the
authors combines three reactions in one step: the removal of the metalation group, de‑
hydroxylation, and pyridine reduction (Scheme 6A). Unfortunately, due to the acid use,
some substrates were not accessible. It is possible to retain the hydroxyl group with rel‑
atively higher yields by using triethylamine instead of hydrochloric acid as an additive
(Scheme 6B) [42]. The rhodium catalyst proved to be more effective when 3‑substituted
piperidines bearing partially fluorinated groups were synthesized (Scheme 6C) [43]. The
reaction took place under milder conditions and required significantly less time. Never‑
theless, hydrodefluorination might occur in some cases, which leads to an undesirable
by‑product without any fluorine substituents.
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Usuki et al. proposed an interesting example of functionalized chemoselective piperi‑
dine synthesis combining multiple stages in one (Scheme 7A) [44]. One‑pot sequential
Suzuki–Miyaura coupling and hydrogenation were carried out under mild conditions. The
authors pointed out the utmost importance of maintaining the optimal starting material
concentration for the successful hydrogenation process. The mild hydrogenation method
was studied in detail on a broad spectrum of substrates (Scheme 7B) [45]. The authors
concluded that the HOMO/LUMO states and the bulkiness of the substituents majorly in‑
fluenced the reaction rate.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 56 
 

 

 
Scheme 6. Hydrogenation of bromopyridine derivatives using palladium catalyst with hydrochlo-
ric acid (A) or triethylamine additive (B), and rhodium catalyst (C). 

Usuki et al. proposed an interesting example of functionalized chemoselective piper-
idine synthesis combining multiple stages in one (Scheme 7A) [44]. One-pot sequential 
Suzuki–Miyaura coupling and hydrogenation were carried out under mild conditions. 
The authors pointed out the utmost importance of maintaining the optimal starting mate-
rial concentration for the successful hydrogenation process. The mild hydrogenation 
method was studied in detail on a broad spectrum of substrates (Scheme 7B) [45]. The 
authors concluded that the HOMO/LUMO states and the bulkiness of the substituents 
majorly influenced the reaction rate. 

 
Scheme 7. Chemoselective hydrogenation of pyridine derivatives: one-pot palladium(0)-catalyzed 
Suzuki–Miyaura/hydrogenation reaction (A), palladium(0)-catalyzed hydrogenation under ambi-
ent conditions (B), donepezil precursor synthesis through palladium(0)-catalyzed hydrogenation 
(C), serotonin reuptake inhibitor precursor synthesis through platinum-catalyzed hydrogenation 
(D). 

Scheme 7. Chemoselective hydrogenation of pyridine derivatives: one‑pot palladium(0)‑catalyzed
Suzuki–Miyaura/hydrogenation reaction (A), palladium(0)‑catalyzed hydrogenation under ambient
conditions (B), donepezil precursor synthesis through palladium(0)‑catalyzed hydrogenation (C),
serotonin reuptake inhibitor precursor synthesis through platinum‑catalyzed hydrogenation (D).
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Moreover, chemoselectivity proved to be useful in the synthesis of donepezil (Scheme 7C),
a widely used active component for Alzheimer’s disease treatment [46]. Li et al. used a sim‑
ilar approach in the synthesis of alkoxy‑piperidine derivatives (Scheme 7D) [47]. While the
indole moiety remained aromatic, the pyridine part was fully converted into piperidine.

Zhang et al. accomplished a stereoselective coupling/hydrogenation cascade (Scheme8) [48].
After the coupling phase, quaternary pyridinium salt (intermediate) undergoes a partial
reduction with Raney‑Ni as a catalyst. If sodium tetrahydroborate is used instead of nickel,
the reduction goes smoother and tetrahydropyridine is formed. The resulting piperidines
can go through further transformations without enantioselectivity loss.
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Borenium and hydrosilanes are often used as a non‑metal alternative in catalytic hy‑
drogenation [5]. Thus, Crudden et al. discovered that boron ions diastereoselectively re‑
duce substituted pyridines to piperidines in the presence of hydrosilanes (Scheme 9A) [49].
For bis‑substituted pyridines, hydrogenation took place under mild conditions, while for
ortho‑derivatives pressure and temperature were more than doubled. Silanes are necessary
to prevent the product‑catalyst adduct formation. Wang et al. have developed another
method for the hydroboration/hydrogenation cascade of pyridines (Scheme 9B) [50]. The
method was cis‑selective and especially effective for 2,3‑disubstituted pyridines. The re‑
action has a number of features. For example, 2‑furyl or 2‑thienyl substituents undergo
ring opening to form alcohols and thiols, respectively. In the reaction of 2,4‑substituted
pyridines, the reduction was incomplete in certain cases with the formation of tetrahydropy‑
ridines. Moreover, it is possible to obtain a cyclic imine with fluorine in the meta position.
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If hydrogen is not used, then, under similar conditions, as in the abovementioned
work of Cruden [49], a dearomative hydrosilylation will occur. Therefore, the resulting
enamine can be further functionalized. Joung et al. studied this approach in detail using the
example of the hydrosilylation of quinolines (Scheme 10A) [51], isoquinolines (Scheme 10B),
and pyridines (Scheme 10C) [52]. Generally, there are two variants of hydrosilylation de‑
pending on the position of the substituents in relation to the nitrogen atom. The main
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route is 1,4‑hydrosilylation (Scheme 10A,C), when a hydride attack occurs at C4. When‑
ever para‑substitution is in place,N‑heterocycles are reduced in a 1,2‑manner (Scheme 10B).
Chang et al. conducted a thorough mechanistic study [53].
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Double reduction is another interesting approach for the asymmetric synthesis of
piperidines. Phillips et al. demonstrated the efficient asymmetric synthesis of aminofluo‑
ropiperidine as a precursor for the CGRP (calcitonin gene‑related peptide receptor) antag‑
onist (Scheme 11A) [54].
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The first hydrogenation was carried out using sodium tetrahydroborate under mild
conditions and with high yields. The key step was the second asymmetric hydrogenation
involving a catalytic ruthenium(II) complex. Titanium isopropoxide was used to neutral‑
ize the fluorine released during the process, caused by catalyst poisoning. The procedure
provides the complete conversion of enamine into the desired piperidine, with a little
admixture of the defluorinated by‑product (~3%). Qu et al. used a rhodium(I) catalyst
with a ferrocene ligand in the similar reaction (Scheme 11B) [55]. Under these conditions,
the proportion of desfluoro‑impurities was less than 1%. Krasavin et al. described the
stereoselective hydrogenation of unsaturated substituted piperidinones, followed by the
reduction of the lactam group to give cis‑configured 2,4‑disubstituted 1‑alkylpiperidines
(Scheme 11C) [56].

Previously, Li et al. proposed a catalytic complex of rhodium(I) with aP‑chiral bispho‑
sphorus ligand for the enantioselective asymmetric hydrogenation of aliphatic carbocyclic
and heterocyclic tetrasubstituted enamides (Scheme 12) [57]. The authors showed that the
interaction of the substrate and the ligands isopropyl group could play a significant role
in the enantioselectivity. The developed method made it possible to carry out an efficient
and practical synthesis of the Janus kinase inhibitor—Tofacitinib.
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Scheme 12. Tofacitinib precursor synthesis: rhodium‑catalyzed asymmetric hydrogenation.

In conclusion, the synthesis of piperidines by hydrogenation/reduction has been an ef‑
fective and popular approach in recent years. The main substrates are substitutedpyridines
with both protected and unprotected nitrogen. Most often, before hydrogenation, the sub‑
strate already has all the substituents necessary for the target product. However, current
approaches combine hydrogenation and functionalization as a one‑pot process, making
the synthesis faster and less costly. In addition to the classic metal catalysis, the organocatal‑
ysis is gaining popularity.

2.2. Intramolecular Cyclization
Intramolecular cyclization (or intramolecular ring closure) is a unique case of an in‑

tramolecular reaction in which a cycle is formed within the structure of a singular molecule.
Thus, the backbone of the cyclic product is entirely represented in the original reactant.

The initiation of intramolecular cyclization occurs through the activation of various
functional groups or bonds. This usually requires the addition of a catalyst, an oxidizing
or a reducing agent (depending on the substrate), the maintenance of the environment, etc.
The main challenge for this approach is the achievement of stereo‑ and regioselectivity.
Chiral ligands and catalysts can solve this problem. However, the selection of reaction
conditions for their stability is a serious obstacle.

In piperidine formation by intramolecular cyclization, the substrate contains a nitro‑
gen source (usually an amino group) and one or more active sites directly involved in
cyclization. It is noteworthy that, with the direct participation of the nitrogen atom in cy‑
clization, a new C‑N bond is formed. In other cases, the formation of a new C‑C bond is
observed (Scheme 13). In most cases, cyclizations proceeds according to Baldwin’s rules,
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established by Jack Baldwin in 1976 [58] and revised by Alabugin and Gilmore in 2016 [59].
Possible variants of piperidine cyclization are shown in the figure below (Figure 2).
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There are many approaches to the preparation of piperidines by intramolecular ring
closure: asymmetric synthesis [60], metal‑catalyzed cyclization [9,12], intramolecular silyl‑
Prins reaction [2,61], electrophilic cyclization [6,13], aza‑Michael reaction [8], etc. Further,
we outlined the recent updates on this topic within the last five years. For easier under‑
standing, the chapter was divided by substrate classes. Reacting groups and newly formed
cycle bonds are highlighted in a red color.

2.2.1. Alkene Cyclization
Nevado et al. proposed a synthetic route for the oxidative amination of non‑activated

alkenes to form substituted piperidines (Scheme 14A) [62]. The reaction is catalyzed by a
gold(I) complex and proceeds with the use of the iodine(III) oxidizing agent. The method
is designed for the difunctionalization of a double bond with the simultaneous formation
of anN‑heterocycle and the introduction of anO‑substituent. Liu et al. developed an enan‑
tioselective approach to this reaction using a palladium catalyst (previously unknown for
that type of amination) with a novel pyridine‑oxazoline ligand (Scheme 14B) [63]. The
authors found that a sterically bulky substituent at the C6 position of the ligand enables the
palladium activation of olefins by weakening the PyN−Pd(II) bond, therefore enhancing elec‑
trophilicity. This ligand type was also effective in the azidation reaction (Scheme 14C) [64].
Moreover, Li et al. developed the ligand‑controlled regioselective diamination of alkenes
(Scheme 14D) [65]. In this case, a more sterically hindered ligand led to pyrrolidone forma‑
tion. According to the authors, the unusual regioselectivity of the reaction arose because of
a significant steric effect of the nucleophilic reagent—N‑Fluorobenzenesulfonimide (NFSI).
Shibata et al. applied palladium catalysis for the intramolecular aminotrifluoromethane‑
sulfinyloxylation of alkenes (Scheme 14E) [66]. An intricate complex provided 6‑endo‑
cyclized‑type piperidines with moderate yields and diastereoselective ratios. Zawisza et al.
represented palladium‑catalyzed ligand‑free diastereoselective intramolecular allylic ami‑
nation (Scheme 14F) [67]. The protection group with defined stereochemistry played a cru‑
cial role in the product selectivity. Thus, the protecting group acts as a chiral ligand. Engle
et al. used 8‑aminoquinoline as a guide group for the palladium‑catalyzed intramolecular
hydroamination (Scheme 14G) [68]. The reaction is suitable for the synthesis of five and six‑
membered heterocycles and proceeds via syn‑addition, a proto‑depalladation mechanism.
Donohoe et al. presented the stereoselective carboamination of alkenes (Scheme 14H) [69].
Cyclization is initiated by the carbocation generated in situ from alcohol. As a result, two
new bonds are formed at the same time: C‑C (alkylation) and C‑N (carboamination).
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strategies for constructing plenty of enantiomerically enriched N-heterocycles through 
double bond activation [8,70,71]. Recently, Pozo et al. proposed a general protocol for di- 

Scheme 14. Intramolecular aminations of N‑tethered alkenes: gold(I)‑catalyzed oxidative aminoes‑
terification (A), palladium(II)‑catalyzed oxidative 6‑endo aminoacetoxylation (B), palladium(II)‑
catalyzed azidation (C), palladium(II)‑catalyzed 6‑endo diamination (D), palladium(II)‑catalyzed
aminotrifluoromethanesulfinyloxylation (E), palladium(0)‑catalyzed allylic amination (F),
palladium(II)‑catalyzed hydrofunctionalization (G), cation‑induced alkylation/amination (H).

Intramolecular aza‑Michael reactions (IMAMR)are among themost straightforward strate‑
gies for constructing plenty of enantiomerically enrichedN‑heterocycles through double bond
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activation [8,70,71]. Recently, Pozo et al. proposedageneral protocol fordi‑ and tri‑substituted
piperidines synthesis by IMAMR using organocatalysis (Scheme 15A,B) [72,73].
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Scheme 15. Intramolecular aza‑Michael reactions of N‑tethered alkenes: organocatalytic enantios‑
elective synthesis of protected 2,5‑ (A) and 2,5,5‑substituted piperidines (B), base‑induced diastere‑
oselective large‑scale synthesis of 2,6‑trans‑piperidine (C), carbene‑catalyzed diastereoselective cy‑
clization (D).

The combination of a quinoline organocatalyst and trifluoroacetic acid as a cocata‑
lyst afforded a series of enantiomerically enriched 2,5‑ and 2,6‑disubstituted protected
piperidines (Scheme 15A) and 2,5,5‑trisubstituted protected piperidines (Scheme 15B) in
good yields. Moreover, the authors found that the ratio of catalysts used plays a key role
in the final product isomerization [72]. Bhattacharjee et al. developed the large‑scale syn‑
thesis of 2,6‑trans‑piperidines through IMAMR, with TBAF as a base (Scheme 15C) [74].
For this reaction, cesium carbonate also showed good results (85% yields, trans/cis = 90/10).
However, its use was difficult when scaling up due to its poor solubility. Ye et al. car‑
ried out carbene‑catalyzed IMAMR (Scheme 15D) [75]. The addition of an NHC‑catalyst
made it possible to achieve good enantioselectivity and higher yields compared with base‑
only reaction.

Sutherland et al. performed a novel acid‑mediated stereoselective intramolecular 6‑
endo‑trig cyclization of enones [76] (Scheme 16). When studying the reaction mechanism,
it was found that, during a long process (>2 h), the initially formed trans‑isomer converts
into a more stable cis‑form. Therefore, a two‑hour reaction was optimal for obtaining trans‑
piperidinones with a diastereomeric ratio up to 3:1.
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Scheme 16. Stereoselective 6‑endo‑trig cyclisation.

Yamazaki et al. carried out the intramolecular cyclization of alkene group‑bearing
amides by hydride transfer [77] (Scheme 17). The formation of pipiridines with tret‑amino
groups proceeds efficiently in polar solvents such as DMSO, DMF, etc. However, the reac‑
tion is water‑sensitive. The presence of water can lead to the loss of tertiary amino groups
and the formation of a by‑product with an alcohol residue.
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Scheme 17. Intramolecular cyclization of alkene via hydride transfer/cyclization cascade.

Bower et al. showed the enantioselective intramolecular 6‑exo aza‑Heck cyclization of
alkenylcarbamates [78] (Scheme 18). The main feature of the reaction is redox neutral con‑
ditions. Therefore, it can be used for the synthesis of a wide range of substrates vulnerable
to oxidation. The chiral P‑O ligand provides a high selectivity of the reaction. Moreover,
flexible conditions and the absence of an oxidizing agent allow for the use of a palladium
catalyst for further one‑pot cross‑coupling.
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Scheme 18. Palladium‑catalyzed enantioselective 6‑exo aza‑heck cyclization.

Sadanandan and Gupta found an atypical intramolecular cyclization of β‑lactams with
an alkene residue [79] (Scheme 19). The reaction pathway changes from 5‑exocyclization to
6‑endo cyclization to form piperidine rings, contrary to Baldwin’s rule. This is due to the
restraint of the double bond and the dichloromethyl radical group by the lactam ring from
the formation of a convenient intermediate for 5‑exo cyclization in the transition state.
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Shi et al. established a novel method of light‑mediated intramolecular radical carbocy‑
clization [80] (Scheme 20). The process was developed to obtain fluorine derivatives of hete‑
rocyclic compounds from vinylidenecyclopropanes under the action of visible light radiation.
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Scheme 20. Light‑mediated iridium(III)‑catalyzed cyclization.

An interesting method of alkene cyclization through the SN2‑reaction was presented
by Kim et al. [81] (Scheme 21). The chirality of the substrate was almost completely pre‑
served. This effect is called memory of chirality (MOC). MOC was popularized by Fuji in
the early 1990s and has been widely adopted ever since [82–85], including for obtaining
heterocyclic compounds [86–89].
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Scheme 21. Asymmetric MOC cyclization via SN2‑reaction.

2.2.2. Diene Cyclization
The Zhou group presented a highly enantioselective method for the intramolecular hy‑

droalkenylationof 1,6‑ene‑dienesusing anickel catalyst anda chiral P‑O ligand (Scheme22) [90].
The reaction provides a regioselective mild method for the preparation of six‑memberedN‑
and O‑heterocycles with an aromatic substituent and an off‑cycle double bond. According
to the authors’ assumptions, the nickel catalyst is coordinated on diene and then incorpo‑
rated into the double bond closer to the aromatic substituent, forming a more stable allylic
intermediate, which undergoes cyclization.
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Scheme 22. Highly enantioselective nickel‑catalyzed intramolecular hydroalkenylation of 1,6‑ene‑dienes.

Mori et al. proposed a method for the double C‑H functionalization/cyclization of 1,3‑
ene‑dienes with electron‑withdrawing groups via a hydride shift (Scheme 23) [91]. The pro‑
cess is initiated by chiral magnesium biphosphate, triggering two successive 1,5‑H shifts to
form two cycles. The stereoselectivity of the process can be increased by using an achiral
ytterbium catalyst for the second cyclization. With this approach, the diastereoselectivity
increases fourfold, while high yields are maintained. The method is suitable for obtaining
substituted tricyclic systems.
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Scheme 23. Double highly diastereoselective intramolecular cyclization of 1,3‑ene‑dienes via a hy‑
dride transfer/cyclization cascade.

TheYugroupdiscovered theunexpectedcycloisomerizationof1,7‑ene‑dienes (Scheme24) [92].
After a series of experiments, the authors concluded that the length of the substrate for this reac‑
tion plays a critical role. Thus, 1,6‑diens give a [4 + 2] cycloaddition product under the described
conditions. The approach is excellent for obtaining a wide range of trans‑divinylpiperidines.
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nones from dienes via [2 + 2] intramolecular cycloaddition [94] (Scheme 26). The resulting 
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Feng et al. described a new intramolecular Alder‑ene reaction of 1,7‑dienes using a
nickel catalyst (Scheme 25) [93]. The reaction is a convenientway toobtainnot onlypiperidines
but also hydroquinoline, chromane, and thiochromane derivatives with high diastereo‑ and
enantioselectivities. Magnesium and copper complexes are also suitable for the abovemen‑
tioned method. However, nickel afforded much higher enantioselectivity values.
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Mykhailiuk et al. proposed a photochemical method for obtaining bicyclic piperidi‑
nones from dienes via [2 + 2] intramolecular cycloaddition [94] (Scheme 26). The resulting
moieties can be easily converted into piperidines by reduction. Moreover, the reaction is
scalable and proved to be useful for the synthesis of a key component analog of the antis‑
chizophrenia agent Belaperidone.
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2.2.3. Alkyne Cyclization
Saikia et al. proposed a carbenium ion‑induced cyclization of alkynes by the action of

ferric chloride, which played a dual role as Lewis acid as well as nucleophile (Scheme 27) [95].
The method is suitable for obtainingN‑heterocycles with alkylidene moieties. Of particular
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note, the reaction was E‑selective for piperidines and Z‑selective for pyrrolidines. The
authors suggest that stereoselectivity depends on the attack of the chloride ion.
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Scheme 27. Carbenium ion‑induced intramolecular cyclization.

Takahashi et al. developed the radical cyclization of haloalkynes to produce five‑ and
six‑membered N‑containing heterocycles [96] (Scheme 28). A halogen at the triple bond
affects the reactivity of the substrate and the stereoselectivity. Thus, an E/Z ratio of 5:1
was observed when using a phenyl substituent instead of a halogen.
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Scheme 28. Samarium‑catalyzed intramolecular radical cyclization of haloalkynals.

You et al. achieved a gold‑catalyzed intramolecular cyclization/dearomatization of
β‑naphthol derivativeswith a terminal alkyne group [97] (Scheme 29). An in situ‑generated
gold(I) complex activates the triple bond with further 6‑exo‑dig cyclization and protodemet‑
alation to afford the spironaphthalenone product. It is interesting to note that the authors
did not observe the expected competitive process—O‑cyclization.
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Scheme 29. Gold(I)‑catalyzed intramolecular dearomatization/cyclization.

Kamimura et al. developed a new method for the synthesis of polysubstituted alkyli‑
dene piperidines from 1,6‑enynes via intramolecular radical cyclization (Scheme 30A) [98].
Triethylborane served as a radical initiator. The authors suggest the presence of a com‑
plex radical cascade, including two successive cyclizations (5‑exo‑dig and 3‑exo‑trig), cy‑
clopropane cleavage to form a six‑membered ring, and cis‑selective hydrogen abstraction.
Wang et al. used a similar approach to acquire iodo‑homoallylic alcohols bearing piperi‑
dine rings (Scheme 30B) [99]. The cyclization followed the 6‑endo‑trig pathway using ace‑
tonitrile as the solvent and the 5‑exo‑trig using methanol to afford the piperidine and azo‑
bicyclic (pyrrolidone/cyclopropane) derivatives, respectively. Therefore, the reaction is
regioselective. However, all the resulting products are obtained as racemates.
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Gharpure et al. described piperidine synthesis through the intramolecular 6‑endo‑dig
reductive hydroamination/cyclization cascade of alkynes (Scheme 31) [100]. The reaction
proceeds via acid‑mediated alkyne functionalization with enamine formation, which gen‑
erates iminium ion. Subsequent reduction leads to piperidine formation. However, strong
electron‑releasing substituents (such as 4‑OMe) at the aryl ring gave hydrolyzed deriva‑
tives instead of desired piperidines, while an electron withdrawing NO2 did not partici‑
pate in the reaction at all.
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Zeni et al. outline more information about the synthesis of six‑memberedN‑heterocycles
from alkynes in a big review [10].

2.2.4. Radical‑Mediated Amine Cyclization
Bruin et al. developedanewradical intramolecular cyclizationof linear amino‑aldehydes

using a cobalt(II) catalyst [101] (Scheme 32). The reaction proceeds in good yields and is
effective for the production of various piperidines and pyrrolidones. However, during the
synthesis of piperidines, the appearance of a by‑product in the form of the corresponding
linear alkene is observed. The authors suggest the presence of a competitive process between
the radical rebound and 1,5‑H‑transfer, which results in the formation of a by‑product.
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Scheme 32. Cobalt‑catalyzed cyclization.

Muñiz et al. developed twovariants of the intramolecular radical CH‑amination/cyclization
of linear amines with electrophilic (aromatic) groups: anodic C‑H bond activation through
electrolysis (Scheme 33A) [102] and both N‑F and C‑H bond activation through copper
catalysis (Scheme 33B) [103]. In the first variant, due to the single electron transfer, a radical
cation is formed, which subsequently transforms into a benzyl radical after deprotonation.
Further electron transfer results in a benzyl cation that reacts rapidly with tosylamide to
give a heterocycle. The second method includes substrate coordination on a copper catalyst
and further N‑F bond cleavage via a single electron transfer withN‑radical formation (N‑F
activation). Then, C‑H activation occurs via fluorine‑assisted hydrogen atom transfer, ben‑
zylic radical formation, etc. Wang et al. performed a similar approach [104] (Scheme 33C).
The developed method of radical cyclization makes it possible to obtain piperidines via
1,6‑hydrogen atom transfer.
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Another example of the N‑radical approach to piperidines was represented by Nagib
et al. (Scheme 34) [105]. First, the enantioselective cyanidation of fluorosubstitued amines
was carried out using a chiral copper(II) catalyst. The resulting aminonitriles underwent
cyclization to chiral piperidines in the presence of DIBAL‑H. The further optimization of
the conditions made it possible to carry out the first asymmetric synthesis of an anticancer
drug, Niraparib.
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2.2.5. Other Cyclizations
Line accomplished the enantioselective multistage synthesis of (3S, 4R)‑3‑hydroxypiperidine‑4‑

carboxylic acid, including the key one‑pot azide reductive cyclization of aldehyde (Scheme 35) [106].
The resulting intermediate can be used for further modification and for obtaining various
analogs of the final product.
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Anderson et al. carried out the diastereoselective reductive cyclization of amino ac‑
etals prepared by the nitro‑Mannich reaction (Scheme 36) [107]. The diastereoselective
Mannich reaction (first step) between functionalized acetals and imines is used to con‑
trol the stereochemistry of piperidines, which is retained during reductive cyclization (sec‑
ond step).
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Zu et al. developed a desymmetrization approach for piperidine synthesis through
the selective lactam formation (Scheme 37) [108]. The authors extended the scope of this
method for the synthesis of the γ‑secretase modulator.
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Song et al. developed a one‑pot cyclization/reduction cascade of halogenated amides
(Scheme 38) [109]. Trifluoromethanesulfonic anhydride was used for amide substrate acti‑
vation. Then, sodium tetrahydroborate was applied for imide ion reduction, followed by
intramolecular nucleophilic substitution/cyclization. The reaction scope covers piperidines
as well as pyrrolidines.
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Scheme 38. Intramolecular cyclization/reduction cascade.

Darcel et al. developed the iron‑catalyzed reductive amination ofϖ‑amino fatty acids
(Scheme 39) [110]. Phenylsilane plays a key role in the reaction: it promotes the formation
and reduction of imine, initiates cyclization, and reduces the piperidinone intermediate
with iron complex as a catalyst. The method is efficient for the preparation of pyrrolidines,
piperidines, and azepanes.
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Scheme 39. Iron‑catalyzed reductive amination.

Morken et al. constructed piperidines by the intramolecular amination of methoxyamine‑
containing boronic esters (Scheme 40) [111]. The reaction proceeds via N‑B bond formation
and the 1,2‑metalate shift within the boron‑intermediate. Precursors can be easily obtained
through the Mitsunobu reaction. Moreover, this method was optimized for boronate‑
containing azacycles synthesis.
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Scheme 40. Intramolecular amination of organoboronates.

2.3. Intermolecular Cyclization (Annulation)
The intermolecular annulation process consists in the formation of a cycle of two or

more components. Therefore, it can be divided into two‑component reactions and multi‑
component reactions, which will be discussed further.

2.3.1. Two‑Component Reactions
In the two‑component intermolecular preparation of piperidines, the formation of two

new bonds’ combination is mainly observed: C‑N and C‑C or two C‑N. The condensation
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of amines with either aldehydes or ketones and with the further reduction of the imine
group, also known as reductive amination, is one of the commonly used methods of C‑N
bond formation. This approach was applied mostly in [5 + 1] annulations.

A hydrogen borrowing the [5 + 1] annulation method was reported by Donohoe et al.
(Scheme 41) [112]. The mechanism includes two iridium(III)‑catalyzed sequential cascades
of hydroxyl oxidation, amination, and imine reduction by hydrogen transfer via a metal
catalyst. The first amination is intermolecular (hydroxyamine intermediate formation),
and the second is intramolecular. Thus, two new C‑N bonds are formed. This approach
enables the stereoselective synthesis of substituted piperidines. Moreover, the use of water
as a solvent prevents the racemization of enantioenriched substrates, providing a route to
highly enantioselective C4‑substituted piperidines (Scheme 41B).
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Sather et al. proposed a new approach to piperidines through a combination of reduc‑
tive amination and IMAMR (see Section 2.2.1) [113]. The reaction possesses predictable
diastereoselectivity. Whenever ketone is used as a substrate, trans‑selectivity is observed,
and for aldehyde, the process is cis‑selective, with a dr up to 20:1 and 1:12, respectively
(Scheme 42).
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Griggs et al. further explored a stereoselective route to non‑symmetrical spiropiperidi‑
nons via a similar condensation/intramolecular cyclization cascade (Scheme 43) [114]. The
C‑Hacid center acted as an active cyclization site. The enantioselective synthesis of piperidines
via the 1,2‑diamination of aldehydes was reported by Ramapanicker et al. (Scheme 44) [115].
The initial alpha‑amination of aldehyde with dibenzyl azodicarboxylate (DBAD) was fol‑
lowed by reductive amination/cyclization. This method is designed for the stereoselective
synthesis of amine‑substituted piperidines.
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Double reductive aminations are an effective route to piperidines. Thus, Jiang et al. pro‑
posed thehighly selective ruthenium(II)‑catalyzeddouble reductive amination/hydrosylilation
of glutaric dialdehyde and aniline derivatives (Scheme 45A) [116]. It is worth noting that
the method is suitable only for amine substrates with the p‑π conjugation effect. Rao et al.
achieved a similar process throughamicrowave‑mediatedLeuckart reaction (Scheme45B) [117].
Piperidines were afforded from diketone and aryl ammonium formate, which played a
double role as a nitrogen source and reductant. Kiss et al. developed the stereocontrolled
synthesis of fluorine‑containing piperidines from racemic cyclic diols (Scheme 45C) [118].
The chain of reactions proceeded through an oxidative ring opening to form an unstable
dialdehyde, which immediately underwent double reductive amination/ring closure with
a fluorine‑containing quaternary ammonium salt. Sodium cyanoborohydride was used as
a reducing agent.
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The aza‑Prins reaction is another efficient way to accomplish piperidine synthesis [119].
Thus, Li et al. proposed the aza‑Prins cyclization of homoallylic amines with aldehydes
promoted by the NHC‑Cu(I) complex and ZrCl4 (Scheme 46A) [120]. After the aldehyde
group activation by zirconium chloride, an iminium intermediate was obtained; it further
underwent 6‑endo‑trig cyclization with the formation of a carbocation in the 4‑position.
The trans‑selectivity of the reaction is explained by steric hindrance. Thus, a nucleophilic
attack of the chloride ion from the axial side is less favored. Rajasekhar et al. carried out
a similar route with epoxides (Scheme 46B) [121]. There, niobium pentachloride served as
Lewis acid and a chlorine source.
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Martin et al. developed [5 + 1] aza‑Sakurai cyclization for spiropiperidines (Scheme 47A) [122]
and piperidines (Scheme 47B) [123] synthesis using amines with cyclic ketones and alde‑
hydes, respectively. The process includes an intermolecular reaction of imine formation
through condensation, followed by intramolecular cyclization. The resulting piperidines
carry three functional centers (NH, olefin, aromatic groups) suitable for further derivatization.
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Xu et al. displayed a [5 + 1] acid‑mediated annulation through the aza‑Pummerer
approach (Scheme 48) [124]. The acid complex used promotes the formation of the carbe‑
nium ion from dimethyl sulfoxide via Pummerer fragmentation. Moreover, hydrochloric
acid acts as a chlorine source. Thus, three new bonds were formed: C‑N, C‑C and C‑Cl.
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Kimet al. proposed the metal‑freeN‑heterocyclization of arylamineswith cyclic ethers
(Scheme 49) [125]. The reaction took place with the use of phosphoryl chloride, which ini‑
tiated the ether ring‑opening and the subsequent piperidine ring‑closure, with two new
C‑N bond formations overall.
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Scheme 49. Synthesis of N‑aryl‑substituted azacycles from cyclic ethers.

In addition to [5 + 1] annulation, [4 + 2] and [3 + 3] reactions have also been applied in
piperidine synthesis.

Wu et al. represented another variant of radical‑mediated cyclization (Scheme 50A) [126].
As in the abovementioned works (see chapter 2.2.4), the copper catalyst initiates N‑radical
formation, and afterwards, the 1,5‑HAT carbon radical is captured byCO and Cu(II) species
to form the proposed intermediate, followed by an intramolecular ligand exchange and re‑
ductive elimination/cyclization. It is worth noting that the intermediate could undergo an
intermolecular exchange with alcohols giving esters. Atobe et al. introduced a flow mi‑
croreactor for the radical electroreductive cyclization of imines with terminal dihaloalka‑
nes (Scheme 50B) [127]. The reaction goes through radical anion formation, which is in‑
volved in the intermolecular nucleophilic attack on the terminal dihaloalkane. Then, the
earlier‑formedN‑radical undergoes one‑electron reduction and intramolecular cyclization.
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Balakumar et al. presented a methodology for the synthesis of 2‑substituted carboxyp‑
iperidines from amino acids with a known stereochemistry (Scheme 51) [128]. The cycle
was formed in the alkylation stage of the amine with dihaloalkane in high yields.
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Scheme 51. Enantiospecific synthesis of 2‑substituted piperidine‑4‑carboxylic acids.

Gulías et al. developed a palladium that promoted the formal [4 + 2] oxidative an‑
nulation of alkyl amides and dienes (Scheme 52A) [129]. A feature of this reaction is the
activation of C(sp3)‑H bond, which is atypical for cycloadditions. The authors proposed
that the activation and cleavage of C(sp3)‑H bond were processed through migratory in‑
sertion/reductive elimination mechanisms. The diene substrate is essential to directing the
process towards reductive elimination. Guo et al. showed the organocatalytic [4 + 2] annu‑
lation ofN‑tethered enones and dicyanoalkenes (Scheme 52B) [130]. The reaction tolerated
a broad scope of substrates and possessed high yields and great diastereoselectivity.
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Scheme 52. Piperidine synthesis through palladium(II)‑catalyzed (A) and organocatalytic (B) [4 + 2]
cycloaddition.

The [3 + 3] cycloaddition method has increasingly attracted the attention of the sci‑
entific community for the synthesis of heterocyclic compounds in recent years [131,132].
Thus, Yang et al. described the regioselective [3 + 3] annulation of enones withα‑substituted
cinnamic acids (Scheme 53) [133]. The reaction proceeded through intermolecular Michael
addition, decarboxylation, and intramolecular lactamization/cyclization.
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2.3.2. Multicomponent Reactions
By definition, multicomponent reactions (MCRs) include one‑pot processes in which

three or more components interact to form a target compound containing, in its structure,
the majority of atoms of all starting substances (Scheme 54) [134,135]. Reactants are mixed
in one reaction vessel, without the introduction of additional reagents during the reaction
process. MCRs have a number of significant advantages compared to two‑component reac‑
tions: the simplicity and availability of reagents, the reduction in the number of synthesis
stages, the simplification of the process of isolating final compounds, the reduction in sol‑
vent consumption, and, as a result, their environmental friendliness and higher efficiency.
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Multicomponent synthesis is firmly rooted in organic chemistry as the main way to
obtain various classes of compounds. MCRs are often used in the complete synthesis of
complex natural compounds, require a minimum set of starting materials, and make it
possible to obtain extensive libraries of compounds that have a structure similar to that of
biologically active drug components.

Reactions of this type make a great contribution to the convergent synthesis of com‑
plex organic molecules, which are of great importance for the pharmaceutical industry,
biochemistry, and research in the field of medicine [136].

MCRs include a variety of methods such as the Strecker synthesis, the Hanch synthe‑
sis of dihydropyridins and pyrroles, the Biginelli reaction, the Mannich reaction, the Ugi
reaction, the preparation of imidazoles according to Radziszewski, the Passerini reaction,
and many others [137–141]. MCRs have an indisputable importance in modern organic
chemistry.

One of the first examples of the multicomponent synthesis of compounds containing
a piperidine fragment is shown in the work of Guareschi in 1897 (Scheme 55) [142]. The
synthesis was carried out by an MCR between butanone, ethyl cyanoacetate, and an alcohol
solution of ammonia to obtain a cyclic imide. The yield of the final imide was not reported
in the work.
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This work was followed by a series of publications devoted to the preparation of
Guaresi imides in a multicomponent variant using an alcoholic solution of ammonia, ethyl
cyanoacetate, aldehydes and ketones of various structures [143,144].

In recent years, the number of publications devoted to the multicomponent synthe‑
sis of piperidine‑containing compounds is relatively small in comparison with multistage
methods. However, the scientific world community still offers new approaches to solving
the problems of multistage syntheses using MCRs. Further, we highlighted some of the
last year’s works related to the multicomponent synthesis of various substituted piperidine
cycles. It is worth noting that MCRs are more often used for obtaining piperidine cycles
with double bonds (tetrahydropyridines). However, this is beyond the scope of this review.
You can find more examples of this method in recently cited publications [3,145–154].

Islam et al. invented a novel polystyrene ferric‑based azo‑catalyst for the highly effec‑
tive synthesis of spiropiperidine derivatives (Scheme 56) [155]. Primary aromatic amine
was used as a nitrogen source (Figure 3). The described catalyst worked much better than
raw FeCl3*6H2O, allowing for high yields, the full conversion of reactants without any
heating, and the recyclability of the catalyst.
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In the work of Ahmad et al., the obtainment of the same compounds was achieved
with a chitosan‑supported ytterbium heterogeneous nano‑catalyst (Scheme 57) [156]. The
Yb/chitosan catalyst was active with acyclic methylene compounds and dimedons in the
same conditions. Thus, the method used is also suitable for the preparation of piperidines
without spirocyclic substituents.
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In the described methods, piperidine cycle formation was reached through a domino
process of different mechanisms including Knoevenagel condensation, Michael addition,
and two consecutive Mannich reactions. Such cascade is common for most of the multicom‑
ponent synthesis of piperidines (Scheme 58). More information about MCRs combinations
of «name reactions» can be found here [157].
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For example, Vereshchagin’ group developed a stereoselective variant of the above‑
mentioned approach for the synthesis of poly‑substituted piperidines using ammonium
acetate both as a nitrogen origin and catalyst for CH‑acid deprotonation [158–163]. Am‑
monium acetate plays a key role in the synthesis of various compounds in organic chemistry,
including its use in MCRs. Reactions with ammonium acetate are widely adopted [164]. There‑
fore, the preparation of γ‑lactams [165], furo [3,2‑c]chromen‑4‑ones [166], imidazoles [167–171],
triarylpyridines [172], substituted 3‑cyanopyridines [173], dihydropyridines [174,175] of
various structures, and many other compounds through multicomponent processes is car‑
ried out using ammonium acetate. The ease of its use and its commercial availability make
ammonium acetate one of the most common reagents utilized to introduce one or more
nitrogen atoms into the structure, which is essential in multicomponent processes [176].
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First, the authors obtained a series of piperidinediastereomerswith aromatic substituents
from benzaldehydes, malononitrile and ammonium acetate in pseudo six‑component synthe‑
sis (Scheme 59A) [158]. The reaction showed high yields and great stereoselectivity. Then,
the authors added formaldehyde to the MCR system in order to achieve a product with‑
out the third aromatic ring (Scheme 59B) [159]. The researchers proposed that formalde‑
hyde undergoes Knoevenagel condensation instead of benzaldehyde, which, in the origi‑
nal method, participates only in the Mannich reaction.
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Scheme 59. Stereoselective one‑pot pseudo six‑component synthesis of poly‑substituted piperidines
with three (A) and two (B) aromatic substituents.

The same approach was applied when the product of Knoevenagel condensation was
obtained separately (Scheme 60) [160,161]. In this case, the reaction goes through a Michael/
Mannich cascade with four new bonds formed. However, this approach has several limi‑
tations. When trying to obtain piperidines with different substituents in the benzene frag‑
ments, a mixture of a two‑to‑one ratio is observed using ammonium acetate, and one of
a three‑to‑one ratio is observed using aqueous ammonia (Scheme 60C) [161]. The authors
suggest that the by‑product is formed due to competitive mechanisms. In parallel with the
Michael/Mannich cascade, retro‑Knoevenagel condensation occurs with the formation of
benzaldehyde, which then participates in the further transformation.
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The scope of the described reaction includes the synthesis of piperidinols (Scheme 61) [162,163].
The use of esters of 3‑oxocarboxylic acid instead of aldehyde resulted in a product con‑
taining four stereocenters. Moreover, the resulting piperidinol undergoes dehydration in
an acidic environment to form 1,4,5,6‑tetrahydropyridine. The process passes through a
previously unknown isomer of 3,4,5,6‑tetrahydropyridine. You can read more about the
mechanism and kinetics of the reaction here [162].
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Rashinkar and colleagues developed a newgreen approach to the synthesis of piperidi‑
nols [177]. The authors used previously discovered unexpected cyclization in an amine ex‑
change reaction between primary amines and Mannich bases. Thus, they obtained a broad
range of substituted piperidinols by means of water‑mediated intramolecular cyclization
that occurs after bis‑aza Michael addition (Scheme 62). The products were afforded in
slightly better yields when the Mannich base contained electron‑withdrawing substituents.
In addition, the resulting compounds showed modest anthelmintic activity.
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Scheme 62. Water‑mediated pseudo three‑component synthesis of piperidinols.

An interesting approach to piperidines was proposed by Tehrani et al. (Scheme 63) [178].
The authors used calcium carbide as an acetylene source and drying agent promoting the
formation of cyclic ketimine from chlorinated ketone and amine. The researchers also
proposed that the formed acetylene could react with a catalyst—cuprum(I) iodide. The
addition of the resulting cuprum carbide to ketimine and protonation leads to product for‑
mation and catalyst regeneration. Piperidine with terminal alkyne can further be used in
different cross‑coupling reactions.
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Vereshchagin et al. also developed a series of poly‑substituted piperidinons by means
of pseudo four‑component synthesis (Scheme 64) [179,180]. All of the studied MCRs lead to
one diastereomer with modest to high yields. Piperidinons, like piperidines, can be synthe‑
sized by the Michael/Mannich cascade (Scheme 64A) and Knoevenagel/Michael/Mannich
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cascade (Scheme 64B). Thus, the used approach proved to be useful for a broad variety of
piperidine scaffolds.
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thesis of piperidons from 2-cyanoacetamides and ketones (Scheme 66) [183]. The scope of 
the reaction covers piperidons (Scheme 66A) as well as spiropiperidinones (Scheme 66B) 
derivatives. It is worth noting that the reaction leads to 2-oxo-1,2,3,4-tetrahydropyridine 
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Savithiri et al. used a similar MCR with ammonium acetate to synthesize naphthyl‑
substituted piperidons (Scheme 65A) [181]. The picrates derived from the obtained piperi‑
dons possessed relatively good antibacterial and antiviral properties. Ilangeswaran and
colleagues designed a greener MCR for acquiring piperidinons using a glucose‑urea deep
eutectic solvent (Scheme 65B) [182].
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Scheme 65. Pseudo four‑component synthesis of poly‑substituted piperidinons with naphthalene
(A) and benzene (B) substituents.

Lin and Yan et al. represented a view on the solvent‑free piperidine‑promoted syn‑
thesis of piperidons from 2‑cyanoacetamides and ketones (Scheme 66) [183]. The scope of
the reaction covers piperidons (Scheme 66A) as well as spiropiperidinones (Scheme 66B)
derivatives. It is worth noting that the reaction leads to 2‑oxo‑1,2,3,4‑tetrahydropyridine if
the amide group in 2‑cyanoacetamides possesses either an alkyl or hydrogen substituent
instead of aryl. Therefore, the described MCR is regioselective.
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3. Pharmacological Applications of Piperidine Derivatives
The piperidine cycle is utterly common in pharmaceuticals. Its derivatives are used in

over twentydrug classes [184], includinganticancer agents [18,185–189], drugs forAlzheimer’s
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tioxidants [15,194], etc. (Figure 3).

Moreover, piperidines are also a part of many alkaloids showing biological activity
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iting, nausea, and bradycardia [195]; an effective agent for slowing the development of
myopia [196]) and morphine (analgesic for severe pain relief [197]; used as a third‑line
therapy in the treatment of neuropathic pain [198]) contain a fused piperidine ring.
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Piperine, a derivative of piperidine and the main active chemical component of black
pepper, is attracting more and more attention from researchers, despite the fact that it
was discovered more than 200 years ago. It is believed that piperine has a broad scope
of beneficial biological properties, from antibacterial to anticancer [199–203]. Aloperine
and Matrine—an alkaloid of the Sophora containing two fused piperidine rings at once—
and their derivatives showed antiviral, anti‑inflammatory, and antitumor properties [204,205].
Febrifugine and its synthetic analog halofuginone are efficiently used as antiparasitic drugs [20].

Along with already known drugs, the scientific community constantly proposes new
biologically active piperidine scaffolds. Further, we will discuss recent discoveries in the
biological evaluation of synthetic potential drugs containing the piperidine moiety. Partic‑
ular attention was paid to four pharmaceutical groups: cancer (pro‑tumorigenic receptor
inhibitors, apoptosis initiators), infectious and parasitic diseases (biocides), Alzheimer’s
disease (anticholinergics), and neuropathic pain (analgesics). The choice of drug groups
was based on current trends and relevance in the medical community.

3.1. Cancer Therapy
Cancer is one of the biggest health problems worldwide, with nearly 10 million deaths

reported in 2020 according to WHO. A lot of resources are spent on the development of
new drugs for fighting cancer, but despite all efforts, innate and acquired resistance mech‑
anisms are often observed [206]. Therefore, screening for new developments and break‑
throughs in this area is very important and relevant.

Piperidine moieties are often used in anticancer drug construction [185,189]. Herein,
the recent proposals and developments of scientists on this subject will be briefly discussed.

Arumugam et al. synthesized spirooxindolopyrrolidine‑embedded piperidinone 1
with potential anticancer activity through three‑component 1,3‑dipolar cycloaddition and
subsequent enamine reaction [207]. The resulting product showed slightly better cytotoxi‑
city and apoptosis induction in the FaDu hypopharyngeal tumor cells model than the ref‑
erence drug bleomycin. The authors followed the “escape from flatland” approach, which
was popularized throughout recent years [208–210] and was successfully used in the de‑
velopment of anti‑cancer agents [211–213]. This approach suggests that more saturated
and three‑dimensional structures will interact better with binding sites of proteins. There‑
fore, the authors reasoned that the spirocyclic structure played a key role in the biological
activity of compound 1.

Li et al. developed IκB kinase (IKKb) inhibitor 2 as an EF24 analog [214]. EF24 is a
piperidinone derivative with potential activity against lung, breast, ovarian, and cervical
cancer [215,216]. The activation of IKKb is one of the major factors of NF‑κB transcription,
which induces chronic inflammation in carcinomas, leading to desmoplasia and neoplastic
progression [217]. The new analog 2 possessed better IKKb inhibitory properties than the
reference drug. The active component with the piperidine moiety developed a stable hy‑
drophobic interaction with the IKKb catalytic pocket. The structure–activity relationship
shows that the presence of a nitrogen atom in the cycle is optimal, and any substitution in
the ketone bridge is not favorable for IKKb inhibition.

A series of 2‑amino‑4‑(1‑piperidine) pyridine derivatives 3, as the clinically Crizotinib‑
resistant anaplastic lymphoma kinase (ALK) and c‑ros oncogene 1 kinase (ROS1) dual in‑
hibitor, was designed by Zhang et al. [218]. ALK was originally discovered in anaplastic
large cell lymphoma as a transmembrane receptor tyrosine kinase [219]. It was found that
ALK is involved in the development of non‑small cell lung cancer, neuroblastoma, diffuse
large B‑cell lymphoma, anaplastic thyroid cancer, rhabdomyosarcoma, ovarian cancer,
esophageal squamous cell, colorectal, and breast carcinomas, etc. [220,221]. ROS1 was dis‑
covered more recently as a similar enzyme to ALK. ROS1 rearrangements were identified
in glioblastoma, cholangiocarcinoma, gastric cancer, ovarian cancer, soft‑tissue sarcomas,
breast cancer etc. [222]. Crizotinib—the first approved ALK/ROS1 dual inhibitor—also in‑
cludes the piperidine moiety [223]. Despite the fact that the piperidine fragment did not
form any bonds with the active site of the receptor, its introduction was the most optimal
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for the desired pharmacological properties compared to other substituents. In the case of
substance 3, piperidine derivatives (namely, (S or R)‑ethyl piperidine‑3‑carboxylate) were
used as the starting components for chiral optimization [218]. The piperidine ring was es‑
sential for chiral optimization. Piwnica‑Worms et al. obtained radiolabeled fluoro‑analogs
of the commercial ALK inhibitors crizotinib 4, alectinib 5, and ceritinib 6 [224]. The prod‑
ucts have a potential for brain metastases treatment due to their enhanced CNS pharma‑
cokinetic properties. It is worth noting that the introduction of fluoroethyl groups did
not affect the inhibitory properties of parent drugs, while it enhanced their ability to pass
through blood–brain barrier.

Onnis et al. conducteda synthesis of benzenesulfonamidewith apiperidinyl‑hydrazidoureido
linker as potent carbonic anhydrase (CA) II (7), IX (8), and XII (9) inhibitors [225]. CAs
are metalloenzymes localized in the cytosol, mitochondria, membranes, and secreted sub‑
stances of living organisms. CAs are involved in the catalysis of chemical processes (the
hydration of carbon dioxide to bicarbonate, the conversion of cyanate to carbamic acid,
etc.) and esterase activity [226]. Two out of the sixteen known types of CA (CA IX and
CA XII) are found in vertebrate tumor cells. Their inhibition is an effective way to control
the growth, progression, and metastasis of cancerous tumors [227]. Currently, the leading
compound among CA IX and XII inhibitors is SLC‑0111, which is in phase I/II of clini‑
cal trials for the management of hypoxic tumors [228,229]. The authors used SLC‑0111 as
the parent drug, incorporating a piperidinyl‑hydrazidoureido linker in its structure to im‑
prove binding selectivity with CA. The piperidine residue was also introduced to assess
rigidity [225].

Benzoylpiperidine scaffold 10 with antitumor activity via monoacylglycerol lipase
(MAGL) inhibition was constructed by Granchi et al. [230,231]. Fluorine atoms and the
meta‑substitution of the benzene ring enhanced the inhibition properties. MAGL is respon‑
sible for the inactivation of the brain’s endocannabinoid 2‑arachidonoylglycerol. More‑
over, MAGL indirectly controls the levels of free fatty acids, as well as other lipids with
pro‑inflammatory or pro‑oncogenic effects, therefore causing pain and cancer progres‑
sion [232]. Sekhar et al. developed spirochromanone analog 11 with significant activity
against the breast cancer cell line and Murine melanoma, as well as the ability to induce
apoptosis [233]. The authors combined known pharmacophore structures to achieve the
best anti‑proliferative and anti‑cancer effects.

Jeong et al. synthesized piperidine‑embedded anticancer agents with particularly
good activity on androgen‑refractory cancer cell lines (ARPC) [234]. The authors showed
that compound 12 was a ligand to the M3 muscarinic acetylcholine receptor (M3R), which
is presented in ARPC (Figure 5). M3R activation stimulates cell proliferation, resistance
to apoptosis, and metastasis and is responsible for the early progression and invasion of
colorectal cancer tumors [235–237].

3.2. Alzheimer Disease Therapy
Alzheimer disease is one of the most lethal and burdening illnesses of the last cen‑

tury. It has no definite treatment other than symptomatic treatment and results in death
6 years after diagnosis, on average [238]. The oldest theory of Alzheimer’s disease is the
cholinergic hypothesis, which suggests that the illness is caused by the loss of cholinergic
innervation [239].

The neurotransmitter acetylcholine is one of many vital components for normal brain
function. Deficiency of the cholinergic system has been observed in the brains of Alzheimer’s
disease patients, leading to the pathophysiology of learning and memory impairment [240].
The main goal of modern therapy is to maintain the level of acetylcholine through the inhibi‑
tion of cholinesterases: acetylcholinesterase (ACHe) and butyrylcholinesterase (BuCHe) [241].
Currently, the leading drug among acetylcholinesterase inhibitors is Donepezil, a piperi‑
dine derivative.
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Martinez et al. proposed indolylpiperidine analog 13 of Donepezil [242]. The active
agentwas capable of inhibiting both acetylcholinesterase (AChE) andbutyrylcholinesterase
(BuChE) enzymes. Moreover, the authors discovered unusual conformational changes in
the molecule depending on the binding site. Thus, compound 13 was extended in AChE
interaction and flopped in BuChE interaction. Liu et al. expanded this field with 4‑N‑
phenylaminoquinoline derivative 14 [243] via piperidine moiety introduction to a previ‑
ously reported lead compound [244]. Piperidine incorporation improved the brain expo‑
sure of the resulting dual inhibitor. In addition, the compound showed antioxidant and
metal chelating properties.

In 2018, Gobec et al. designed selective BuChe inhibitor 15 [245]. Two cationic ni‑
trogen atoms were essential for selectivity and good inhibition properties. Further, the
authors conducted a detailed structure–activity relationship study of N‑alkylpiperidine
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carbamates [246]. Structures with an N‑benzyl moiety were superior in cholinesterase in‑
hibition, and a terminal alkyne group was essential for efficient monoamine oxidase B in‑
hibition. Thus, compounds 16–18were selected as the best in the series. Moreover, a study
by Malawska and Gobec outlined a multi‑targeted approach to Alzheimer’s disease treat‑
ment. Novel 1‑Benzylpyrrolidine‑3‑amine derivatives with piperidine groups 19 and 20 ex‑
pressed both antiaggregatory and antioxidant effects [247]. Along with dual cholinesterase
inhibition, compounds 19–20 also targeted the beta secretase enzyme.

Beta secretase is also known as beta‑site amyloid precursor protein cleaving enzyme‑1
(BACE‑1). It has been established that the inhibition of BACE‑1 prevents the accumulation
of amyloid beta [248,249]. According to the current concept of Alzheimer’s disease based
on the amyloid hypothesis, deposits of amyloid beta and tau proteins cause neurodegen‑
eration and cognitive impairment [250].

The benzyl‑piperidine group (Donepezil‑like) is often a necessary part for the success‑
ful inhibition of cholinesterase receptors. The AChE enzyme includes two active anionic
binding sites: catalytic and peripheral. The benzyl‑piperidine group provides good bind‑
ing to the catalytic site, interacting with Trp84, Trp279, Phe330, and Phe331 [251]. There‑
fore, the selection of various substituents on top of the benzyl‑piperidine residue is a well‑
established approach in the synthesis of new active agents for combatting Alzheimer’s
disease. Thus, pyrrolizine 21 [252], fluorine 22 [253], thiazole 23 [254], indoline 24 [255],
benzofuran 25 [256], thiophene 26 [257], and chromene 27 [258] groups have been effec‑
tively incorporated and biologically evaluated by various authors. The structure–activity
relationship is shown in Figure 6.
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It is worth noting that research on multifunctional active agents is prevalent compared
to compounds that affect only one target. Therefore, along with inhibitors of cholinesterase
receptors, attention is also paid to inhibitors of monoamine oxidase 16–17, 26 [246,257],
amyloid beta and tau protein aggregation 19–20, 22, 25–26 [247,253,256,257], BACE‑1 19–20,
22, 24, 27 [247,253,255,258], as well as the presence of anti‑inflammatory 26 [257], anti‑
radical 19–20 [247], and antioxidant properties 19–20, 22, 26 [247,253,257].

Drawing conclusions from the analyzed data, it can be said that the piperidine group
affects the inhibition of cholinesterase receptors and serves as a constructing (linker) part.

3.3. Biocides
Biocides are chemical compounds designed to neutralize, suppress, or prevent the ac‑

tion of harmful organisms, namely, pathogenic bacteria, fungi, viruses, parasites, etc. [259].
As noted earlier, piperidine derivatives find use in this class of pharmaceuticals.

In recent years, a number of works on the topic can be noted. However, due to the
wide variety of human pathogens, it is not possible to point out one template structure for
all types of activities.

Thus, piperidine moieties were represented in structures with antifungal properties
28–30. Compounds containing tartaric acid fragment 28–29 inhibited chitin synthase, there‑
fore suppressing a growth of five fungi strains (C. albicansATCC76615,A. fumigatusGIMCC
3.19, C. albicans ATCC 90023, C. neofonmans ATCC 32719, A. flavus ATCC 16870) [260].
The resulting compounds combined two pharmacophores: 2,8‑Diazaspiro [4.5]decane‑1‑
one and a tartaric acid residue with a substituted aminobenzene. When designing the
structure, the authors were guided by the “escape from flatness” theory (which was men‑
tioned earlier) and the enzyme inhibition potential of the chosen moieties. Long‑tailed
4‑aminopiperidines 30 have proven to be effective against fungi of the genus Aspergillus
and Candida via fungal ergosterol biosynthesis inhibition [261]. Ergosterol is one of the
most abundant fungal cell membrane sterols. It is responsible for membrane permeability
and fluidity [262].

Piperidine‑containing fluoroquinolones analogs, namely, bafloxacins 31, were pro‑
posed by Liu et al. [263]. Along with the good inhibition values on MRSA,P. aeruginosa, and
E. coli, the new compounds showed good biocompatibility and potential two‑targeted ac‑
tion via cell walls destruction and interaction with IV‑DNA and DNA gyrase. Piperidinyl
“tails” structures 32possessed inhibition properties against streptomycin‑starvedMycobac‑
terium tuberculosis 18b (SS18b) and H37Rv strains [264]. Compound 32 consists of various
known tubercular pharmacofores with piperidine as a linker.

The benzyl‑piperidines activity against different viruses was shown. Thus, 4,4‑disubstituted
N‑benzyl piperidines 33 inhibited the H1N1 influenza virus through specific hemagglu‑
tinin fusion peptide interaction [265]. Nayagam et al. discovered the potential inhibitor
of SARS‑CoV2 with piperidine core 34 [266]. Compound 34 possessed a better binding
affinity with the SARS‑CoV2 main protease than Remdesivir, with five binding pockets
interaction compared to two.

Compounds with a piperidine backbone structure have shown antiparasitic proper‑
ties on T. brucei (the main cause of African trypanosomiasis) 35 [267] and P. falciparum (the
cause of the deadliest type of malaria) 36–37 [268,269] (Figure 7).

3.4. Neuropathic Pain Therapy
Neuropathic pain occurs as a result of the pathological excitation of neurons in the

peripheral or central nervous system, which is caused by neurological diseases with dam‑
age to peripheral fibers and central neurons [270]. The modern approach to the treatment of
neuropathic pain includes three lines of pharmacotherapy. Most of the piperidine derivatives
are part of opioids, which are the second and, in some cases, the third line of treatment [198].
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Opioid receptors are divided into four similar types: µ‑opioid (MOR), δ‑opioid (DOR),
κ‑opioid (KOR), and nociceptin/orphanin FQ peptide receptor (NOP) [271,272]. MOR and
DOR are the main targets of opioid agonists. MOR agonists cause euphoria and help with
coping with stress; however, their use causes serious side effects and physical dependence,
leading to overdose [273]. One of the main synthetic piperidine‑containing opioids is fentanyl.

Most often, opioid derivatives serve as the starting point for the discovery of new
types of analgesics. Thus, derivatives of norsufentanil with amino acids 38 were devel‑
oped [274], the synthesis of the main metabolites of carfentanil 39 was reproduced [275],
and new analogs of tramadol 40 were proposed [276]. All compounds showed a strong
affinity for MOR.

In order to achieve a dual effect ligand, Lee et al. created a hybrid based on Pethidine,
also known as meperidine, and a transient receptor potential cation channel subfamily V
member 1 (TrpV1) antagonist 41 [277]. TrpV1 functions are widely linked to the genera‑
tion of pain [278]. This combination potentially increases the anti‑inflammatory effect and
treatment efficiency.

Navarrete‑Vázquez et al. developed a haloperidol analog 42 as a σ1 receptor antag‑
onist [279]. The σ1 receptor plays a role in various regulatory processes, including pain
reduction [280]. Therefore, Chen et al. proposed novel piperidine propionamide deriva‑
tives 43–44 as dual agonists of µ‑opioid and σ1 receptors [281,282].
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Lastly, CA inhibition is another prominent therapeutic target in neuropathic pain
treatment. Thus, Supuran et al. synthetized piperidine‑embedded 4‑oxo‑spirochromanes
45 with high activity against CA II and CA VII (Figure 8) [283].
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4. Conclusions
Piperidines play an important role in both chemistry and medicine. In this review,

attention has been paid to both of these applications of piperidines.
We can safely say that approaches to the piperidine synthesis have improved signif‑

icantly in recent years. There is a shift towards shortening the synthesis steps number.
Thus, methodologies are used for the simultaneous functionalization/hydrogenation of
pyridines, the functionalization/cyclization of unsaturated amines, as well as multicompo‑
nent cascade reactions with the formation of several new C‑N and C‑C bonds at once. Scien‑
tists are successfully applying new routes for the stereoselective synthesis of piperidines,
using catalysis with transition metal cores such as palladium, rhodium, ruthenium, nickel,
chromium, platinum, cobalt, etc. complexes, as well as organocatalysts (amino‑hydroquinine,
chiral NHC‑catalyst, boron complexes). Moreover, new green reactions have also been
proposed: non‑toxic iron catalysis, water‑initiated processes, environmentally benign elec‑
trolytic methods, solvent‑free reactions, etc.

In the medical part, examples of the pharmacological use of synthetic piperidines and
natural piperidine derivatives in the composition of alkaloids are given. We have shed light
on some of the latest scientific achievements in the synthesis of biologically active agents
based on piperidines against socially significant diseases. Overall, piperidines can act both
as a part of the pharmacophore, interacting directly with the active site of enzymes, and as
a convenient building block to achieve the desired conformation and physical properties
of pharmaceuticals.

The current review was designed to highlight the wide range of synthesis and medical
applications of piperidines, as one of the most important groups of chemicals.
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Abbreviations

Substituents
Ac Acetyl
Ar Aromatics
Bn Benzyl
Boc tert‑Butyloxycarbonyl
Bu Butyl
Cbz Benzyloxycarbonyl
COD Cyclooctadiene
coe Cyclooctene
Cp Cyclopentadienyl
dba Dibenzylideneacetone
Et Ethyl
Hbpin Pinacolborane
hex Hexyl
IMes 1,3‑bis(2,4,6‑trimethylphenyl)imidazol‑2‑ylidene
L Ligand
Me Methyl
Ms Methanesulfonyl
Napht Naphtyl
nbd Norbornadiene
Ns Nosyl
Ph Phenyl
Phen Phenanthroline
Pent Pentyl
Piv Pivaloyl
PMP p‑Methoxyphenyl
ppy Phenylpyridine
Pr Propyl
PS Polystyrene
Py Pyridine
Tf Triflate
TPP Tetraphenylporphine
Ts Toluenesulfonyl
Reagents/Solvents
DBAD Dibenzyl azodicarboxylate
DBU 1,8‑Diazabicyclo [5.4.0]undec‑7‑ene
DIBAL‑H Diisobutylaluminium hydride
DCE Dichloroethane
DCM Dichloromethane
DMA Dimethylacetamide
DMF Dimethylformamide
DMPU N,N′‑Dimethylpropyleneurea
DMSO Dimethyl sulfoxide
HATU 2‑(7‑aza‑1H‑benzotriazole‑1‑yl)‑1,1,3,3‑tetramethyluronium hexafluorophosphate
HFIP Hexafluoroisopropanol
KHDMS Potassium bis(trimethylsilyl)amide
LiHDMS Lithium bis(trimethylsilyl)amide
PEG Polyethylene glycol
PIDA Phenyliodine(III) diacetate
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STAB Sodium triacetoxyborohydride
TBAF Tetra‑n‑butylammonium fluoride
TBHP tert‑Butyl hydroperoxide
TFA Trifluoroacetic acid
TFE Trifluoroethanol
THF Tetrahydrofuran
TIPS Triisopropyl silane
TMEDA Tetramethylethylenediamine
TMS Tetramethylsilane
Term:
dr Diastereomeric Ratio
ee Enantiomeric Excess
er Enantiomeric Ratio
HAT Hydrogen Atom Transfer
IMAMR Intramolecular Aza‑Michael Reactions
MCR Multicomponent Reaction
MOC Memory of Chirality
Medical:
11β‑HSD1 11β‑Hydroxysteroid Dehydrogenase Type 1
Ache Acetylcholinesterase
ALK Anaplastic Lymphoma Kinase
ARPC Androgen‑Refractory Cancer Cell Lines
BACE‑1 Beta‑secretase 1
Buche Butyrylcholinesterase
CA Carbonic Anhydrase
CGRP Calcitonin Gene‑Related Peptide Receptor
CNS Central Nervous System
DNA Deoxyribonucleic Acid
Ikkb Iκb Kinase
M3R M3 Muscarinic Acetylcholine Receptor
MAGL Monoacylglycerol Lipase
MAO‑B Monoamine Oxidase B
MRSA Methicillin‑Resistant Staphylococcus Aureus
NF‑κB Nuclear factor kappa‑light‑chain‑enhancer of activated B cells
ROS1 C‑Ros Oncogene 1
Trpv1 Transient Receptor Potential Cation Channel Subfamily V Member 1
WHO World Health Organization
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