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Abstract: Cellular senescence—the irreversible cell cycle arrest driven by a variety of mechanisms
and, more specifically, the senescence-associated secretory phenotype (SASP)—is an important area
of research in the context of different age-related diseases, such as cardiovascular disease and cancer.
SASP factors play both beneficial and detrimental roles in age-related disease progression depending
on the source of the SASPs, the target cells, and the microenvironment. The impact of senescence
and the SASP on different cell types, the immune system, and the vascular system has been widely
discussed. However, the impact of replicative or stress-induced senescence on lymphatic biology
and pathological lymphangiogenesis remains underexplored. The lymphatic system plays a crucial
role in the maintenance of body fluid homeostasis and immune surveillance. The perturbation of
lymphatic function can hamper normal physiological function. Natural aging or stress-induced
premature aging influences the lymphatic vessel structure and function, which significantly affect
the role of lymphatics in tumor dissemination and metastasis. In this review, we focus on the role of
senescence on lymphatic pathobiology, its impact on cancer, and potential therapeutic interventions
to manipulate the aged or senescent lymphatic system for disease management.

Keywords: senescence; senescence-associated secretory phenotype (SASP); lymphatics;
lymphangiogenesis cancer

1. Introduction

In the 21st century, with the advancement of science, improvement in quality of life,
and scholars winning the battle against many diseases, people now have much longer life
spans. According to World Population Prospects 2019 (United Nations, 2019), in 2019, 1 in
11 people in the world were >65 years old, and that number will become 1 in 6 people by
2050 (United Nations, Department of Economic and Social Affairs, Population Division
(2019) (World Population Ageing 2019: Highlights (ST/ESA/SER.A/430)). Aging and
age-related diseases such as malignant neoplasm, heart diseases, Alzheimer’s disease, and
diabetes mellitus are the leading cause of death in humans [1]. In the recent COVID-19
pandemic, advanced age (>65 years) emerged as one of the major risk factors for fatality [2].
Although natural aging is inevitable, it is necessary to delineate the molecular signatures
associated with aging and age-related diseases to manipulate premature aging and prevent
those diseases. Cellular senescence is one of the key factors of aging [3,4]. The role of cellular
senescence on cardiovascular diseases, cancer, vascular endothelial cells, and immune cells
has been broadly discussed [5–7], but the effects of senescence on the lymphatic system
and its impact on age-related diseases overall warrant further evaluation. In this review,
we will discuss cellular senescence in the context of aging or age-related diseases, and its
impact on the lymphatic vascular system.
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2. Senescence and Senescence-Associated Secretory Phenotype (SASP)
2.1. Senescence

Cellular senescence is defined as a stress-responsive stable cell cycle arrest [1,2], which
has been associated with shortened telomeres [3]. At senescence, cells are metabolically
active and viable but no longer divide. This was first characterized by Hayflick and Moor-
head [4]. Senescent cells are distinguished by their dynamic pathophysiology resulting
from their departure from the cell cycle and their morphological and metabolic reconfigura-
tion that enable them to differentially contribute to various pathological conditions, aging,
and tissue remodeling [5]. As telomeres intrinsically shorten and modify conformations
through the natural passage of time, replicative senescence (RS) culminates through the
DNA damage response (DDR) to exposed chromosomal ends. This occurrence is widely
thought to be a driving factor in aging, with the deleterious accumulation of senescent
cells in age-related pathologies remaining unchecked by evolutionary processes of selec-
tion [6]. In addition to RS, senescence can also be induced by internal and external stimuli
such as genotoxic agents, stress, mitochondrial dysfunction, oncogene activation, and
chemotherapy, and is referred to as stress-induced premature senescence (SIPS) [7].

Senescent cells secrete a cocktail of proinflammatory cytokines, chemokines, growth
factors, proangiogenic factors, reactive oxygen species (ROS), and proteases that represent
the senescence-associated secretory phenotype (SASP) [7]. Senescent cells further com-
municate with neighboring cells and the immune system via the SASP in an autocrine or
paracrine manner. The cytokines and chemokines secreted by senescent cells recruit T-cells,
macrophages, and natural killer cells that, in turn, aid the removal of the senescent cells [7]
to maintain tissue homeostasis. With the increase in age, the weakened immune system,
or manifestation of ‘immunosenescence’, fails to clear the senescent cells, which results in
their accumulation over time. In addition to the crosstalk with the surrounding immune
cells, senescent cells also further induce senescence in neighboring cells by the secretion of
SASP factors and extracellular vesicles (EVs).

Cellular Senescence: Double Edged Sword for Cancer

The role of the SASP on the surrounding cells in cancer progression or cancer pre-
vention is very much context dependent. The SASP results in the secretion of numerous
proinflammatory cytokines and chemokines promoting the dedifferentiation and prolif-
eration of neighboring metastatic cells. These chemokines and cytokines in turn attract
immune cells to the tumor site and help with the immune clearance of the malignant cells [8].
On the other hand, the SASP can serve as an inducer of tumorigenesis. In an in vitro model
of ovarian cancer, it has been shown that when non-neoplastic cells were treated with
the conditioned media (CM) from senescent fibroblasts, neoplastic transformation was
induced in those cells [9]. Interleukin-6 (IL-6) and Interleukin-8 (IL-8) are some of the
common SASP factors inducing tumorigenesis in breast, prostate, and lung cancers [10–13].
Further, senescent cells share some common characteristics of cancer-associated fibroblasts
(CAFs) [14–16]. Further, senescent cells also promote tumorigenesis via the production
of matrix metalloproteinases (MMPs) as SASP factors that enable the restructuring of the
extracellular matrix (ECM) and facilitate tumor growth [17–19]. Senescent cells, via SASP
factors, can induce the epithelial-to-mesenchymal transition (EMT) [8,20] and also promote
an immunosuppressive tumorigenic microenvironment. Senescent hepatocytes in hepato-
cellular carcinoma attract immunosuppressive Cd11b+Gr1 myeloid cells that inhibit T-cell
proliferation and contribute to tumor progression [21]. Additionally, the SASP can also
induce chemoresistance in cancer cells. When malignant pleural mesothelioma (MPM) cells
that show significant chemoresistance were treated with pemetrexed for 96 h in vitro, 60%
of the cells became senescent. The conditioned media (CM) from the pemetrexed-treated
senescent MPM cells induced EMT with an increased expression of vimentin, fibronectin,
slug, and snail in previously nonsenescent cells [20]. In the process of cancer progression
and metastasis, senescent cells also increased the angiogenesis by producing angiogenic
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factors, such as vascular endothelial growth factor (VEGF) and connective tissue growth
factor (CTGF) [22–24].

Interestingly, senescent cells also acquire a higher potential of invasiveness and lym-
phangiogenesis. In several metastatic cancers, lymph node metastasis and increased lym-
phangiogenesis are one of the prognostic factors [25–27]. Kim et al. showed that there was
an accumulation of senescent cells in the front region of a collective invasion of papillary
thyroid carcinoma (PTC), and also within the lymphatic vessels and the metastatic lymph
node, which indicate their role in tumor progression and LN metastasis [28]. Further, it also
lends credence to the hypothesis that metastatic tumor cells within the lymph nodes acquire
vulnerabilities that help to evade traditional therapies and become more aggressive. Impor-
tantly, a new role for senescent cells in tumorigenesis has recently emerged, demonstrating
that therapy-induced senescent cells can acquire stemness (SAS: senescence-associated
stemness) [2,29], and that acquired stemness assists senescent cells in escaping from cell
cycle arrest and harnessing an aggressive growth potential (Figure 1).
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Figure 1. Stress-induced senescence, SASP, and cancer progression. Anticancer therapy including
chemotherapy, radiation therapy, and immune therapy induced premature senescence in cancer
cells and the cells in the tumor microenvironment (TME). Senescent cancer cells secrete plethora of
proinflammatory cytokines, chemokines, matrix metalloproteinases, angiogenic factors, and reactive
oxygen species, which are collectively known as senescence-associated secretory phenotype (SASP).
SASP factors induce senescence in the cells in the TME, which in turn evade the immune response.
Factors secreted by senescent cells promote angiogenesis and lymphangiogenesis by its effects on
neighboring endothelial cells and hence enhances cancer cell metastasis. SASP-induced cancer
stemness increases the proliferation and self-renewal properties of the cancer cells.

2.2. Anticancer Treatment: A Potential Trigger to Cellular Senescence

The role of conventional anticancer therapies in the induction of cellular senescence in
cancerous or noncancerous tissues is an important area of research. The use of chemothera-
pies, radiation therapy, and also immunotherapy significantly induce senescence.

A. Chemotherapy and senescence

The general mode of action of chemotherapy is to impair the mitosis in cancer cells
and disrupt the DDR [30]. Doxorubicin, Etoposide, and Camptothecin are common topoi-
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somerase inhibitors that inhibit the progression of replication and are used as chemothera-
peutic agents for colon cancers, breast cancer, hepatocellular carcinoma, lung cancers, and
acute lymphocytic leukemia [30–33]. A recent study by Karabicici et al. showed that Dox-
orubicin treatment induced senescence in both liver cancer stem cells (EpCAM+/CD133+)
as well as in a non-stem-cell population (EpCAM-/CD133-nonstem) in the Huh7 cell line
with a concomitant increase in the reprogramming genes (SOX2, KLF4, c-MYC), liver
stemness-related genes, (EpCAM, CK19), and ANXA3 in those cell populations [34]. The
conditioned media from the Doxorubicin-treated cells contained high levels of inflamma-
tory cytokines, IL8, and Interferon Gamma Induced Protein-10 (IP10) [34]. Doxorubicin
treatment also caused cardiotoxicity in cancer survivors by inducing cardiomyocyte senes-
cence [35]. Along with the topoisomerase inhibitors, alkylating agents are another group
of chemotherapies used for several cancers as they inhibit DNA replication [35]. Two
commonly used alkylating agents for cancer treatment are Cisplatin and Temozolomide.
Temozolomide is the first-line therapeutic for high-grade glioblastoma. A recent study
showed that temozolomide induced cellular senescence in the glioblastoma cells at a four-
fold higher level than cellular apoptosis. Interestingly, compared to the primary tumors,
the population of senescent cells was significantly higher in the recurrent cancer tissues.
The high population of senescent cells upon temozolomide treatment contained elevated
levels of proinflammatory cytokines including IL-1α, IL-1β, IL-6, and IL-8, as well as
CCL2, CCL8, and CXCL1. The proinflammatory cytokine cocktail present in the tumor
microenvironment of temozolomide glioblastoma potentially accelerated tumor growth
and relapse [36]. Cisplatin-induced cellular senescence in cancer has been well reported in
several articles [37–40]. Microtubule inhibitors such as Paclitaxel arrest the cells at mitosis
by interfering with microtubule dynamics [41]; however, like other chemotherapeutic
agents, microtubule inhibitors have been reported to induce cellular senescence in cancer
as well as noncancer cells [42]. Table 1 summarizes the role of chemotherapies on the
induction of cellular senescence in cancer patients.

Table 1. List of anticancer therapies that induce senescence.

Class Name of the Drug Cancer Types Reference

Chemotherapy

Doxorubicin
Cervical cancer (HeLa cells),

hepatocellular carcinoma (HuH7),
colorectal carcinoma, breast cancer

[34,43]

Etoposide
Adrenocortical H295R cells, epithelial

carcinoma (A549), adrenocortical
tumor cells

[44,45]

Bleomycin Pulmonary fibrosis, alveolar
epithelial cells [46]

Cisplatin Ovarian cancer, nasopharyngeal
carcinoma cells, lung cancer [40,47]

Mitoxantrone Dermal fibroblasts, prostate cancer [48,49]

Temozolomide Glioma, melanoma [50,51]

Paclitaxel Non-small-cell lung cancer cells,
breast cancer [52,53]

Methotrexate Breast cancer, colon cancer,
adenocarcinoma [53,54]

Camptothecin Colorectal cancer [55]

Radiation therapy Breast cancer, glioblastoma,
non-small-cell lung cancer [56,57]

Immune therapy Rituximab B-cell lymphoma [58,59]
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B. Radiation-induced senescence

Radiation therapy (RT) is used to kill the cancer cells by inducing irreparable DNA
damages in a nonspecific manner. Ionizing radiation (IR) is one of the potent RTs for cancer
patients with a wide range of cancers, including lymphoma, soft tissue sarcoma, head–neck
cancer, breast cancer, and lung cancer [60]. Depending on the dose and fraction of the IR
regimen, cancer cells exposed to IR are arrested at different stages of the cell cycle, i.e., in the
G1, G2, or S phase [61]. The dose of IR also determines the induction of cellular senescence
or apoptosis. Studies have shown that a high dose of IR (>10 Gy) to endothelial cells
(ECs) induced apoptosis while a moderate dose (>0.5 Gy) of IR induced senescence [62].
As listed in Table 1, IR can induce senescence with the overexpression of p16, p21, and
beta-galactosidase activity in the exposed cells.

C. Immunotherapy-induced senescence

Immunotherapy is currently a promising anticancer therapy for several cancers. For
antitumor immunity, both the Th1 and Th2 CD4+-T-helper cells play a crucial role by
inducing cellular and humoral immunity, respectively [63,64]. A study of the carcinogenesis
in pancreatic islets showed that T-antigen-specific CD4+ Th cells induced growth arrest
of proliferating tumor cells without any significant cytotoxic effects [65]. That study
also highlighted the possibility of a noncytotoxic way to induce cellular growth arrest or
cellular senescence mediated by Th1, Th2 cytokine immunotherapy [65]. In invasive β-cell
cancers, Interferon-gamma (IFN-υ)- and Tumor Necrosis Factor (TNF)-producing CD4+

Th1 cells induce senescence in β-cells via the STAT1- and TNFR1-dependent stabilization
of the p16INK4a–Rb [66]. In triple negative and HER2+ breast cancer cells, treatment with
either CD4+ Th1 cells or Th1 cytokines TNF-α and IFN-γ induced apoptosis and tumor
senescence [67]. In B cell lymphoma, CD20-targeted immunotherapy induced senescence
in the cancer cells by enhancing the levels of cellular reactive oxygen species (ROS), which
is an important SASP factor and also sensitizes the cells to the DDR [58]. The senescent
cancer cells can attract the other immune cells in the primary tumor site and help with the
immune-mediated clearance of cancer cells via the SASP (Figure 1).

2.3. The Cellular and Molecular Mechanism of SIPS
2.3.1. Mitochondrial Dysfunction and SIPS

Mitochondrial dysfunction contributes to premature senescence [68]. One of the po-
tential mechanisms of dysfunctional mitochondria-induced senescence is excessive ROS
production. Excessive ROS can lead to DNA damage and induce senescence [69]. A recent
study by Kotla et al. showed that cancer treatment with IR or Doxorubicin (i) increased
mitochondrial ROS (mtROS) production and (ii) caused mitochondrial stunning (the re-
versible mt dysfunction), (iii) which then activated the p90RSK/ERK5-S496 complex and
decreased the nuclear factor erythroid 2-related factor 2 (NRF2) transcriptional activity,
and (iv) the reduced NRF2 transcriptional activity reduced the expression of antioxidant
genes (HO1 and Trx1). ROS further cause telomeric DNA damages in the nucleus via poly
(ADP-ribose) polymerase (PARP) activation and consequently deplete the NAD+ level
and lead to further mtROS production. Altogether, a positive feedback loop is established
between the nucleus and mitochondria, which reprograms the neighboring myeloid cells
to induce a sustained SASP state [70].

2.3.2. Molecular Pathways

A. Cyclic GMP–AMP synthase (cGAS)–stimulator of interferon genes (STING)
(cGAS-STING) pathway

SASP factors can be expressed by various mechanism depending on the cell types [71].
The nuclei of the primary senescent cells released fragmented genomic DNA into the cyto-
plasm. The cyclic guanosine monophosphate (GMP)–adenosine monophosphate (AMP)
synthase (cGAS) senses the cytoplasmic DNA in the form of cyclic dinucleotides. The
cyclic GMP-AMP (cGAMP) complex then activates a stimulator of interferon genes (STING)
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located in the endoplasmic reticulum. The activated STING combines with TANK-binding
kinase 1 (TBK1) and phosphorylates the transcription factors interferon regulatory fac-
tor 3 (IRF3) and nuclear factor ‘kappa-light-chain-enhancer’ (NFκB), causing its nuclear
translocation and the further activation of the SASP gene expression (Figure 2) [71].
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Figure 2. cGAS-STING-mediated cellular senescence. In response to oxidative stress, DNA fragments
are released from the nuclei to the cytoplasm which are recognized by the cGAS, activating STING.
The activated STING complex with TBK1 phosphorylates the transcription factor IRF3 and NFκβ.
Activated NFκβ induces the transcription of proinflammatory SASP genes. cGAS: cyclic guanosine
monophosphate (GMP)-adenosine monophosphate (AMP) synthase; STING: stimulator of interferon
genes; TBK1: TANK-binding kinase 1; NFκβ: nuclear factor ‘kappa-light-chain-enhancer.

B. p53 pathway

p53 plays an important role in the onset of cellular senescence. The telomeric erosion
and the DNA damage response pathway leads to the activation of p53 [72,73]. In response
to the DDR, the stress sensors’ telangiectasia-muted (ATM) or ataxia telangiectasia and
Rad3-related (ATR) kinases are activated, which in turn activate the p53/p21cip1 with
p53 stabilization [72]. The p21cip1 is one of the founding members of the mammalian
CDK inhibitor family and, upon activation, p21cip1 binds with many apoptotic genes,
including caspases; as a result, it inhibits apoptosis and induces senescence [74]. p53 also
plays as a molecular switch in the insulin-like growth factor-1 (IGF-1)-induced cellular
premature senescence. Increased IGF-1 levels are associated with cancer progression [75].
Tran et al. have shown that long-term IGF-1 exposure increased p53 acetylation, leading to
p53 stabilization which ultimately induced premature senescence (Figure 3) [76].
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Figure 3. p53 mediated cellular senescence. In response to DNA damage caused by DNA damaging
factors, the DDR pathway is activated with the concomitant activation of ATR or ATM which in
turn stabilize p53. Prolonged exposure of the cancer cells to IGF-1 also causes the stabilization and
activation of p53 pathway. Consequently, the downstream p53/p21cip1 are activated, which can then
inhibit the apoptosis by binding with apoptotic genes including caspases and induce senescence.
Activated p21cip1, which is a member of the CDK inhibitor, inhibits the cellular proliferation. DDR:
DNA damage response, ATM: ataxia telangiectasia mutated, ATR: ataxia telangiectasia and Rad3-
related kinase, IGF-1: insulin-like growth factor-1, CDK: cyclin-dependent kinases.

C. NFκβ pathway

In solid tumors, the noncanonical NFκβ pathway activation leads to senescence via
the regulation of the enhancer of Zeste homologue 2 (EZH2) [77]. EZH2 is significantly
increased in hematopoietic and solid tumors [78]. The overexpression of EZH2 suppresses
the senescence by inhibiting p21Cip1 (CDKN1A) in a p53-independent manner [79]. Another
important regulator of the canonical NFκβ pathway that induced premature senescence
in cancer is the DNA damage which activates the NFκβ pathway with NFκβ essential
modulator (NEMO) protein. NEMO, the regulatory subunit of the Iκβ Kinase Complex
(IKK) complex protein, regulates NFκβ signaling via the regulation of the IKK complex [80].
The genotoxic stress-induced SUMOylation of the NFκβ essential modulator (NEMO)
can also be promoted by p53-induced protein with a death domain (PIDD) and receptor-
interacting protein kinase 1 (RIP1). The SUMOylation of NEMO induces its nuclear export.
Additionally, the stress-induced double-stranded break (DSB) of DNA activates the ATM,
which in turn phosphorylates NEMO, inducing its monoubiquitination and nuclear export.
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As a consequence, the IKK complex is activated, and the activated IKK phosphorylates
Iκβα and its proteasomal degradation. Finally, the p65/p50 heterodimer is released and
translocated to the nucleus to activate the NFκβ signaling cascade [81,82]. A study by
Dong et al. reported that radiation-induced endothelial cell senescence is caused by the
activation of the DSB/NEMO/NFκβ signal pathway (Figure 4) [83].
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Figure 4. NFκβ-mediated cellular senescence. Extracellular stress or DNA damage caused by extra- or
intracellular factors activate the NEMO, which is the regulatory subunit of IKK complex. In response
to genotoxic stress, the p53-induced protein with death domain (PIDD) and receptor-interacting
protein kinase 1 (RIP1) SUMOylate NEMO, and SUMOylated NEMO is exported to the cytoplasm.
The DNA-damage-induced activation of ATM also phosphorylates the NEMO and causes its nuclear
export. In the cytoplasm, NEMO activates IKK complex, phosphorylates the Iκβα, and induces
its proteasomal degradation. p65/p50 heterodimer is released and transported to the nucleus to
activate the NFκβ signaling, and as the downstream effect, SASP genes are expressed. NEMO: NFκβ
essential modulator; IKK: Iκβ kinase; PIDD: p53-induced protein with death domain; RIP1: receptor
interacting protein kinase 1.

An essential regulator of the TNF-induced NFkβ pathway is ataxia-telangiectasia
mutated (ATM), a master regulator of the DNA double-strand break (DSB) repair pathway
after genotoxic stress [84]. The downstream target of damage ATM for the cell cycle
checkpoint is p53, which is regulated by ATM-dependent phosphorylation [85]. Cells
defective in ATM function have defective telomere metabolism [86–88] as well as a higher
frequency of SA-β-gal [89], which are both phenotypes associated with senescence. The
agents causing DSBs lead to p16INK4a enrichment and the premature senescence of normal
fibroblasts [90]. A transient increase in p21 is followed by a delayed induction of p16INK4a,
which also happens with the permanent arrest that is observed with cellular senescence.
These observations have indicated that damage-induced cells are very similar to senescent
cells and have additional factor(s) beside p21 and p53 that maintain cell cycle arrest [90].

D. Mammalian target of rapamycin (mTOR) pathway

mTOR is the intracellular target of the pharmacological drug rapamycin, which is
widely used in many cancers. The mTOR pathway positively regulates the protein synthesis
pathway and inhibits autophagy, thereby playing an important role in senescence [91,92].
As discussed earlier, cellular senescence is associated with mitochondrial dysfunction,
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resulting in impaired ATP generation and increased reactive oxygen species (ROS). Mi-
tochondrial metabolism and biogenesis are regulated by the master regulators Peroxi-
some proliferator-activated receptor gamma (PPARγ) and its coactivator 1(Peroxisome
proliferator-activated receptor-γ coactivator, PGC1-α). Importantly, mTORC1, one of the
TOR complexes (mTROC1 and mTORC2), regulates the transcriptional activity of PGC1-
α [93]. Thus, rapamycin treatment to inhibit mTOR signaling reduces radiation-induced
ROS production, inhibits senescence, and increases cellular life span [94,95].

E. Transforming growth factor-β (TGFβ) pathway

The role of TGFβ in premature senescence has been reported in several studies in
multiple cell types, which include bronchial epithelial cells and hepatocellular carcinoma
cells [96–98]. TGFβ induced the cyclin-dependent kinase inhibitors p15Ink4b, p21, and
p27 and suppressed cellular proliferation [99,100]. TGFβ was also reported to induce ROS
production in mitochondria in different cell types [101,102], and ROS are one of the inducers
of premature senescence. Another TGFβ-targeted gene which is an important regulator
of senescence and age-related diseases is plasminogen activator inhibitor-1 (PAI-1) [103].
Interestingly, TGFβ is also considered an important SASP factor, and it causes senescence
in cells by autocrine and paracrine manners. In senescence, the polycomb protein Chro-
mobox 7, CBX7, affects the upregulation of integrin β3 (ITGB3), which in turn activates the
TGFβ signaling in an autocrine and paracrine manner in human fibroblast [104].

F. Mitogen-activated protein kinase (MAPK) pathway

Genotoxic stress in senescence activates the p38 MAPK pathway, which is independent
of the DDR [105]. In senescent cells, p38 MAPK regulates the NFκβ activity; the role of
NFκβ in senescence was discussed in a previous section [105]. In senescent T-cells, the
intracellular metabolic sensor AMPK activates p38 via its autophosphorylation via the
scaffold protein TAB1 [106]. The activation of this pathway leads to the inhibition of
telomerase activity, T-cell proliferation, and senescence [106].

2.4. Telomerase Activity Suppresses Senescence and Its Inhibition Enhances Senescence

Telomerase consists of an RNA component (hTR), which serves as a telomeric template
and a catalytic protein component (hTERT), which has a reverse transcriptase activity [107–109].
The ectopic expression of hTERT prevents replicative senescence in several cell types, in-
cluding fibroblasts and epithelial cells, by exerting antiapoptotic action in early stages of
the cell death prior to caspase activation and mitochondrial dysfunction [110,111]. Im-
mortalization in human cells has been achieved by the expression of hTERT [89], which
results in the loss of p16-dependent cell cycle control [112,113]. The inhibition of telomerase
activity via treatment with GRN163L (human telomerase RNA-targeted antisense agents)
inhibits cell growth [113], supporting the argument that telomerase regulates senescence.

3. Lymphatic System: A Critical Regulator of Fluid Homeostasis and Immune Response

The lymphatic vascular system is crucial for maintaining body fluid homeostasis;
the transportation of excess interstitial fluid, antigens, and activated immune cells during
inflammation; and facilitating macromolecule absorption [114–116]. The lymphatic system
is reported to play vital roles in almost all organs of the body [117].

3.1. Structural Components of Lymphatic System and Its Function

The lymphatic vascular system comprises blind-ended capillaries, precollecting and
collecting vessels and draining lymph nodes (LN) [118]. The internal wall of the lymphatic
vasculature is layered with lymphatic endothelial cells (LECs). The LECs have unique
features with a different transcriptional profile, which make them distinct from the blood
endothelial cells (BECs). LECs have a high level of expression for the transcription fac-
tor, Prospero homeobox protein 1, PROX1, and also the factors such as O-Glycoprotein
Podoplanin, Lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), vascular en-
dothelial growth factor receptor-3 (VEGFR3), and neuropilin-2 (Nrp-2) [119,120].
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The first entry of fluid into the lymphatics is driven by hydrostatic and osmotic
pressure gradients [121]. The blind-ended, highly permeable lymphatic capillaries have
discontinuous button-like junctions on the membrane structure, a single layer of LECs,
and lack the pericytes and smooth muscle cells (SMC) [121,122]. The lymphatic capil-
laries collect the interstitial fluid (IF) from the nearby blood capillaries and, through the
precollecting vessels, transport IF to the collecting vessels. Along with IF, immune cells
enter the lymphatics, although the entry is cell specific. In general, dendritic cells (DCs),
macrophages, and lymphocytes, but not the neutrophils and erythrocytes, enter the lym-
phatics [121]. The chemokines and cytokines from the LECs attract the leukocytes towards
the lymphatics [118,121]. In contrast with the initial lymphatic capillaries, the larger sec-
ondary collecting lymphatics are lined with LECs tightly connected with each other, and
these vessels are also covered with specialized contractile lymphatic muscle cells [118,122]
and contain valves that open and close depending on the sequential fluid pressure [118].
The lymphatic fluid then gets transported to the lymph node (LN) through the afferent
collecting vessels, and then through a sequence of nodes via efferent collecting vessels [118].
The LNs help with the expansion of the immune response and also serve as a barrier by
preventing the harmful stimuli from returning to the blood circulation [122].

3.2. Aging and Effects on Lymphatic Function and Pathophysiology
3.2.1. Lymphatic Inflammation and Lymphangiogenesis

The lymphatic vasculature, composed of endothelial cells interlinked by vascular
endothelial-cadherins on the ECM, is susceptible to hyperpermeability upon inflamma-
tion. Inducers of inflammation include histamine, thrombin, vascular endothelial growth
factor (VEGF), IL-1, IL-6, and TNF-α [123], and all are noted to increasingly circulate
with the progression of age [124]. These immune cells and proinflammatory cytokines
propagate intercellular signaling, promoting wider endothelial gaps and the loss of junc-
tion integrity. This pattern enables the broadened lymphatic uptake of infiltrating cancer
cells and promotes the establishment of a prometastatic niche and subsequent cancer dis-
semination. Lymphangitis additionally expresses VEGF-A and VEGF-C, consequently
activating VEGFR2, a known causal factor for lymphangiogenesis [125]. Amplifying the
lymphatic vasculature provides a vaster surface area for cancer cell uptake, often working
in conjugation with lymphangitis to permit metastasis.

The correlation to age denotes the prevalence of cellular senescence in both lym-
phangitis and lymphangiogenesis, with many of the same proinflammatory agents (IL-1β,
IL-6) being established SASP factors [126]. Lymph node metastasis is highly prognostic
to cancer development, with nodal status often determining subsequent treatment and
survivability [127,128]. Malignant cancers such as lymphoma, leukemia, and metastatic
cancers generate lymph node swelling—referred to as lymphadenopathy—that worsens the
condition of the present diagnosis as tumor cells flourish within the immunosuppressive
environment created [129]. The poor prognosis is exacerbated with age, attributed to the
minimized clearance of tumor cells at the primary and metastatic sites. More research
observing and treating lymph node infiltration and inflammation should be conducted to
better determine these mechanisms.

3.2.2. Lymphatic Contractility

The pumping mechanism of the lymphatic system is integral to maintaining fluid
homeostasis, cellular waste removal, lipid absorption, and lymphocyte production, and
the impairment of this function has significant pathophysiological implications [130]. A
pressure gradient governs the lymphatic contractions, with both intrinsic and extrinsic
pumps responding to lymph pressure changes and guiding the flow unidirectionally [131].
VEGF-C and VEGF-D, secreted by tumors, induce a greater contraction of proximal lym-
phatic vessels through lymphangiogenesis and are adept disseminators for nearby tumor
cells [132]. These routes expand and evade the growing tumors, allowing the cancer to
further metastasize throughout the extensive transit network generated.
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In contrast to the tumor-proximate lymphatics that increase the contraction rates of
lymph flow, an evident decrease in lymphatic contractility has been observed in aged
lymphatics [133]. A significant decrease in the lymphatic vessel contractile function, lymph
pump, and fractional flow are observed due to fundamental alterations to the lymph pump
function with progressive aging [134]. Further, prevalve and valve zones demonstrate
significant aging-associated decreases in muscle cells that could potentially have a direct
impact on the vessel biomechanics and limit the response of the lymphatic vessels to clear
inflammation in the elderly, perpetuating the progression of inflammatory damage [135].
Rather than contradicting the previous finding, however, it is likely the unison of the two
that bolsters cancer progression. The lowered contractility in elderly patients culminates
from decreasingly efficient lymph pumps [136] and the depletion of contractile proteins
such as troponins, myosin, and other cytoskeleton-associated proteins [133]. This degenera-
tion of the pumping mechanism reduces the antigen movement and cancer cell clearance
that would mitigate the problem, granting lymph nodes invaded by tumor cells the chance
to proliferate to malignance. The combination of increased lymph flow proximal to the
primary tumor sites and lack of clearance of the sentinel and regional lymph nodes overall
benefits metastasis, an occurrence bolstered through age and lymphatic modifications,
which was explained in previous sections.

3.2.3. Immunosuppression of Lymph Nodes in Tumor Microenvironment

Significant alterations in mast cell function have been shown to be associated with
increased inflammatory microenvironment as well as the impaired function of lymphatic
vessels with the onset of aging [137]. Lymph nodes are the sites for the activation and
maturation of lymphocytes, where they encounter the free form of antigens, or the antigens
presented by the antigen-presenting cells such as DCs. The naïve T-cells enter the LN
through either the high endothelial venules (HEVs) or afferent lymphatic vessels [138,139]
and then are compartmentalized into different subcompartments in response to the gradient
of chemokines, e.g., CCL19 and CCL21, and contact with the antigen-presenting DCs.
Upon introduction to the specific antigens, T-cells get activated, which is crucial for the
adaptive T-cell-mediated immune response [140]. Activated T-cells express the C-X-C
chemokine receptor type 5 (CXCR5), which acts as the predominant helper cells for B
cell activation. The CXCR5+CD8+ cells interact with CXCL13 expressing B cells in the
follicle [141]. Those CXCR5+CD8+ cells have a low level of expression of immune evasion
molecules, such as PD-1 and TIM-3, and a high level of proinflammatory cytokines such as
TNF-α and IFN-γ [142]. In senescent conditions, the number of naïve T-cells diminish and
the population of memory T-cells increase, which inhibits the immune cell response to new
antigens [139]. A recent study by Ramello et al. reported that in breast cancer patients, there
was an infiltration of senescent T-cells in the tumor-draining lymph nodes, and the further
characterization of those senescent T-cells revealed a high enrichment of T-cell exhaustion
markers [143]. Not only the T-cells, but also the B-cell populations, maturation, and proper
compartmentalization are disrupted with age. A study on nonhuman primates showed
that, with aging, the number of proliferating (Ki67hi) B cells in the germinal center of the
lymph node decreased with a concomitant increase in the suppressor FoxP3hi Lag3hi CD4
T-cells [144].

As tumor cells continue to invade lymph nodes, an immunosuppressive environment
is induced that further promotes tumor growth. Senescent cells accumulate proximal to the
tumor, and SASP signal pathways and transcription networks likely play an important role.
While prosenescence treatments beneficially terminate the replication of cancerous cells,
these now senescent cells withhold autocrine and paracrine signaling with the potential
to again propagate tumor relapse in the future [145]. Common SASP factors, such as IL-6
stromal cells, have displayed immunosuppressive qualities through paracrine signaling. In
this study, senescent cells in the stroma limited the T-cell immune response to MK16-Ras
and PDSC5 tumor cells and promoted growth [146]. CCL2, another established SASP factor,
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has additionally showcased a recruiting capability of immunosuppressive myeloid cells
and encourage the growth of hepatocellular carcinomas [21].

In a protumorigenic location such as the LN, the decreased ability to recruit immune
cells because of senescence directly correlates with increased tumor development. Senes-
cent cells are shown to actively secrete immunosuppressive cargoes that further increase
the senescence of recipient immune cells such as M2 macrophages, myeloid-derived sup-
pressor cells, and regulatory T-cells that further contribute to the inflammatory cascade
and accelerate senescence and tissue aging [147]. It has additionally been demonstrated
that dendritic cell recruitment in mouse lungs was decreased by the age-related increase in
prostaglandin-2, diminishing the T-cell response [148]. Altogether, these findings showcase
the competence of senescent cells for clearing way to tumor cells within the constructed
immunosuppressive environment (Figure 5).
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Figure 5. Immunosenescence in cancer microenvironment and immune evasion in lymph node
Senescence-induced immunosuppression causes the immune evasion of cancer cells in lymphatic
system, especially in tumor-draining lymph node (LN). In healthy, young lymph nodes, naïve T-cells
enter the LN, compartmentalize, and mature. Upon interaction with the antigen-presenting cells, DCs,
the T-cells get activated and help with the B-cell mediated immune response and help with tumor-cell
killing. In the aged LN, or prematurely senescent LN, the T-cells become senescent and express the
immune evasion markers including PD-1 and TIM3 and the compartmentalization and maturation of
B-cells are disrupted. Consequently, the T-mediated tumor-cells killing is disrupted. The senescent
lymphatic system is presented with impaired contractility and enhanced inflammation, which also
increased the lymphangiogenesis in the tumor-bearing beds. LN: lymph nodes, DC: dendritic cells.

4. Prosenescence Mechanisms in Different Cancer Treatments

Many cancer treatments are intentionally imbued with prosenescence functionality to
mitigate cancerous cell replication; however, the SASP-associated pathways can become
detrimental and must be considered before the induction of senescence. The chemothera-
peutic drug cyclophosphamide, for example, invokes senescence through the upregulation
of the p53 and p16 genes most often when apoptotic blockers deem it the sole route for cell
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cycle arrest [149]. These senescent cells, which offer the intended suppression of malignant
cells early in treatment, continue to promote tumorigenesis in aged organisms, a finding
showcased in malignant epithelial cells of mice xenografts [150]. Termed “antagonistic
pleiotropy,” this juxtaposition encapsulates the senescent contradiction of the early gain
and later cost to cancer patients undergoing prosenescence therapy.

The therapeutic promotion of senescence seen particularly in chemotherapies con-
sequently enables the SASP alteration of tissue environments into protumorigenic sites.
Inflammation induced by secreted SASP factors IL-6 and IL-8 contribute to this devel-
opment, with chemotherapies such as such as Abemaciclib, Palbociclib, and Ribociclib
supporting the senescent tumor cell proliferation and inflammatory environment that
permits further invasion and metastasis [151]. Additional SASP factors derived from the
senescent cells (i.e., IL-1α, CCL2, CXCL 1, and MMPs) further promote tumor growth
through immunosuppression, greater cell aggressiveness, and expansion of vasculature
proximal to tumorigenic sites. Of course, there is another side in which chemotherapies
induce senescent cells with antitumor properties. Topetecan, for instance, was shown to re-
cruit a favorable SASP for tumor regression when used on MYCN Proto-Oncogene (MYCN)
neuroblastomas [152]. However, the same study denoted other prosenescent treatments
such as bromo-deoxy-uridine as protumorigenic, exemplifying another instance of the high
variability of senescent cells and the SASP when confronted with a cancerous environment.

5. Potential Senotherapies

The consequences inherent to senescent cell accumulation bolster the necessity for
treatments that can mitigate their proliferation; hence, senotherapy is required. Depending
on the mode of action, senotherapeutics are grouped into two classes, namely, senolytics
and senomorphic drugs [153,154]. Senolytic compounds induce the senolysis of senescent
cells, leading to the selective elimination of senescent cells. Senolytic drugs comprise
those that target antiapoptotic proteins such as CL-2/BCL-XL family members to induce
apoptosis, p53 inhibitors, or molecules targeting the NFκβ pathway, PI3K/AK pathways,
etc. Senomorphic drugs attenuate the SASPs without inducing the apoptosis of senescent
cells [153]. Senomorphic drugs include but are not limited to the inhibitors of Ikβ kinase
(IKK) and nuclear factor (NF)-kβ, free radical scavengers, and rapamycin (the mTOR
inhibitor), which have been discussed in several reviews [153–155]. The combination of two
drugs, Dasatinib (D) and Quercetin (Q), were the first senolytic drugs reported, and later
on, many other senolytic and senomorphic drugs were tested in vitro and in vivo (Table 2).
It is important to mention that although the D+Q combination acts as senolytic, the Q has
both senolytic and senomorphic properties because it can affect the pathways including
p53/p21/serpines, PI3K/Akt/mTOR, and NF-κβ signaling [156–158]. The quercetin-
related flavonoid Fisetin also showed both senolytic and senomorphic potential [153]. Since
senolytic drugs target senescent cells, which are accumulated over the time, senolytic
drugs are administered on a short-term basis. On the other hand, senomorphic drugs are
given chronically for the sustained suppression of SASPs, thereby reducing the slowly
growing population of senescent cells [153,154]. Many factors demand consideration when
determining senolytic drug usage, with the crucial one being how to safely target senescent
cells in a controlled manner. Inducing senescence, as seen in many cancer therapies,
embodies benefits in the pursuit of inhibiting metastasis. Therefore, the conjugation
of prosenescent cancer therapies and senolytic drugs offers the best outcome [159–161].
One method entails encapsulating senolytics in nanomaterials capable of identifying and
inhibiting senescent cells, consequently reversing senescence induced on cancer patients
from previous chemotherapeutic drugs or radiation. Conducting senescent mitigation this
way can occur by either directly destroying the cells or opting to temper the senescent
secretion signaling pathways inflicting the damage [162].

A study deploying tannic acid-docetaxel self-assemblies (DSAs) following prostate
cancer chemotherapy with docetaxel is a prime example of nanotherapeutics used for
antisenescent targeting [163]. The DSA exposure enacted TGFβR1/Forkhead box protein
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O1 (FOXO1)/p21 signaling intervention in vitro on docetaxel-treated biological assays,
as well as the activation of apoptosis in senescent cells. An additional study observing
mice treated with the chemotherapeutic drug Palbociclib exemplifies the advantageous
nature of nanotherapy with galacto-oligosaccharide-encapsulating cytotoxic drugs that
target the drug-induced senescent cells [164]. The gal encapsulation enables the preferential
release of the internal cargo when exposed to high lysosomal β-galactosidase levels—a
key biomarker to senescent cells. What the specificity in treatments such as these offers
is lowered side effects upon the systemic dissemination of the senolytic drugs, as well
as diminished toxicity of the chemotherapeutics used. Overall, senotherapy amidst or
following chemotherapy or radiation presents tremendous value in helping reverse the
senescence-evoked contributions to cancer relapse. In Table 2, we listed the senotherapies
used in clinical trials or experimental settings.

Table 2. Senotherapeutic drugs targeting senescent cells or SASPs in different age-related diseases.

Senotherapeutic Drugs Class Targeted Diseases Status

Dasatinib+Quercetin Senolytic Alzheimer disease, aging Clinical trial: NCT04063124,
NCT05422885

Quercetin Senolytic, senomorphic Coronary artery disease Clinical trial: NCT04907253

Navitovlax
Senolytic

Clearing senescent bone marrow
hematopoietic stem cells (HSCs)
and senescent muscle stem cells
(MuSCs) from aged mice or mice

under irradiation

[165]

Clearing senescent osteoarthritic
chondrocytes in osteoarthritis [166]

Cardiac Glycosides
(Ouabain, Digoxin, and

Proscillaridin A)
Senolytic Lung fibrosis, elimination of

apoptotic cells [167]

Fisetin Senolytic, senomorphic Aging, progeroid mice model [168]

UBX0101 Senolytic Osteoarthritis, knee, treating
degenerative joint disease

Clinical trial: NCT03513016
[169,170]

UBX1967 Senolytic Pathological
neovascularization (NV)

https://iovs.arvojournals.org/
article.aspx?articleid=2774894
(accessed on 28 January 2023)

UBX1325 Senolytic Neovascular age-related
macular degeneration NCT04537884, NCT05275205

Curcumin Senolytic Cardiovascular risk factor,
vascular aging, aging

NCT04119752, NCT01968564
[171]

Curcumin Analog EF24 Senolytic
Senolytic elimination of senescent

endothelial cells,
senescent fibroblast

[172]

A1331852 Senolytic Eliminate senescent cells
(HUVEC) and IMR90 [173]

A1155463 Senolytic Eliminate senescent cells
(HUVEC) and IMR90 [173]

Hsp90 inhibitors
(Geldanamycin,
Tanespimycin,
Alvespimycin)

Senolytic Elimination of senescent cells
in vitro [174]

https://iovs.arvojournals.org/article.aspx?articleid=2774894
https://iovs.arvojournals.org/article.aspx?articleid=2774894
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6. Conclusions

The widespread lymphatic remodeling enacted by the SASP of senescent cells exacer-
bates cancer metastasis and should be studied and used in treatment to prevent relapse in
patients. The prosenescent mechanisms inherent throughout most of the cancer treatments
may initially obstruct tumor cell proliferation; however, the ensuing inflammation and
enhanced lymphangiogenesis as a result of SASP factors such as IL-6, IL-8, VEGFs, and
more threatens a broadened invasion through higher cancer cell uptake. Consequently, the
pairing of these treatments with additional senolytic drugs equipped to modulate senescent
cell accumulation offers a solution for the duality senescence posed to a tumor environment.
The present research displays the active role that senescent cells acquire to restructure
the tumorigenic microenvironments proximal to lymphatic vasculatures into skilled net-
works for cancer cell permittance and transport, all of which sustain the emergence of the
lymphatic system as a notable contributor to cancer metastasis. However, the detailed
mechanisms are grossly understudied. Further research studying senotherapy used in
conjugation with prosenescent chemotherapy or radiation should be conducted with a
focus on lymphatic pathophysiology. This allows for the specific monitoring of lymphatic
remodeling associated with senescence—a phenomenon still not widely studied—as well
as insight into how senolytic drugs could potentially regulate this occurrence. With these
future efforts, understanding the dichotomy of prosenescent benefits and consequences on
the overall lymphatic augmentation of metastasis can aid in improving the treatment plans
for cancer patients, and thus demands to be explored.
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