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Abstract: Resistance to anoikis is a key characteristic of many cancer cells, promoting cell survival.
However, the mechanism of anoikis in hepatocellular carcinoma (HCC) remains unknown. In this
study, we applied differentially expressed overlapping anoikis-related genes to classify The Cancer
Genome Atlas (TCGA) samples using an unsupervised cluster algorithm. Then, we employed
weighted gene coexpression network analysis (WGCNA) to identify highly correlated genes and
constructed a prognostic risk model based on univariate Cox proportional hazards regression. This
model was validated using external datasets from the International Cancer Genome Consortium
(ICGC) and Gene Expression Omnibus (GEO). Finally, we used a CIBERSORT algorithm to investigate
the correlation between risk score and immune infiltration. Our results showed that the TCGA cohorts
could be divided into two subgroups, with subgroup A having a lower survival probability. Five genes
(BAK1, SPP1, BSG, PBK and DAP3) were identified as anoikis-related prognostic genes. Moreover,
the prognostic risk model effectively predicted overall survival, which was validated using ICGC
and GEO datasets. In addition, there was a strong correlation between infiltrating immune cells
and prognostic genes and risk score. In conclusion, we identified anoikis-related subgroups and
prognostic genes in HCC, which could be significant for understanding the molecular mechanisms
and treatment of HCC.

Keywords: anoikis; TCGA; ICGC; prognostic model; immune infiltration

1. Introduction

Hepatocellular carcinoma (HCC), the most common form of liver cancer [1], is the
fourth leading cause of mortality and the second most lethal malignant tumor world-
wide [2]. Despite the fact that the availability of diagnostic tools is limited, such as histology
and radiologic tests, there is still a great demand for swift, accurate and convenient meth-
ods for diagnosing HCC [3]. It is therefore critical to develop novel diagnostic methods
to monitor the progression of cancer. Although clinically correlative biomarkers such as
α-fetoprotein (AFP) are commonly used for HCC diagnosis, there is much controversy and
limitations associated with their application [4]. In addition, copy number alteration of
FGF19, CCDN1, CDKN2A and CDKN2B genes were found in 286 HCC patients, suggesting
that these molecules are specific to the development of HCC [5]. Overall, it is of great
significance to develop novel genes for the diagnosis and prognosis of HCC.

Anoikis is a form of programmed cell death that is triggered by the loss of interaction
between the cell and extracellular matrix (ECM) [6,7]. In normal cells, this interaction
is disrupted by anoikis-initiating molecules on the cell surface and glycosylated ECM
proteins, leading to apoptosis and cell death. In contrast, tumor cells are protected by a
“barrier” that prevents the activation of anoikis-initiating molecules and protects them
from cell death, resulting in resistance to anoikis and promoting cell survival [8,9]. Re-
cent research has uncovered molecular pathways and mechanisms that regulate anoikis
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resistance, including cell adhesion molecules, growth factors and signaling pathways in-
ducing epithelial–mesenchymal transitions [6]. Downstream molecules in these pathways,
such as the focal adhesion kinase [10], Src kinase [11], mitogen-activated protein kinase
(MAPK) [12], ERK1/2 [13], Bcl-2 family [14], PI3K/Akt [15,16] and insulin-like growth
factor receptors [17] have been shown to play an essential role in anti-apoptosis and pro-
survival. In addition, specific molecules have been found to be involved in various types of
cancer. For example, toll-like receptor (TLR), that recognizes damage-associated molecular
patterns released from tumorigenic cells, could activate T cells and remove tumorigenic
cells [18]. It was reported that the toll-like receptor 4 ligand, manganese superoxide dismu-
tase, collagen XIII, nuclear factor κB (IκB) Kinase-ε (IKKε) and deleted in breast cancer-1
(DBC1) were associated with anoikis resistance in triple-negative breast cancer [19]. Trk
kinase, the Hippo pathway and eEF-2 kinase were associated with glioma [20]. However,
the molecular mechanisms and pathways of anoikis in the progression and invasion of
HCC are still unknown. In the meantime, pharmacological compounds and molecular
inhibitors have been used to treat metastatic tumors resulting from anoikis resistance.
DZ-50, a novel quinazoline-based compound, induced anoikis to decrease the cell adhesion
between the tumor and ECM and prevented tumor growth and neovascularization [21].
Glo1 inhibitors exerted an antitumor role by accumulating intracellular methylglyoxal to
promote anoikis [22]. It is therefore crucial to uncover the cellular features and molecular
mechanisms of anoikis in HCC, which could benefit the development of therapy and
prognosis of HCC.

In this study, we applied comprehensive and multiscale bioinformatics analysis to
identify the key regulators and essential prognostic genes in HCC. We applied an unsu-
pervised cluster algorithm to cluster The Cancer Genome Atlas (TCGA) dataset based on
differentially expressed overlapping anoikis-related genes. Then, we used weighted gene
coexpression network analysis (WGCNA) to identify the most highly correlated genes and
performed enrichment analysis in the Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways to find potential biological pathways. We also
utilized univariate Cox regression, Least absolute shrinkage and selection operator (LASSO)
regression and multivariate Cox regression analyses to screen prognostic genes and con-
structed a prognostic risk model. Furthermore, we explored the correlation of infiltrating
immune cells with prognostic genes and a risk score. In summary, our work identified
novel regulator genes related to the tumor microenvironment of HCC, which could be
significant in the development of prognostic genes for the diagnosis and treatment of HCC.

2. Results
2.1. Identification of Differentially Expressed Overlapping Anoikis-Related Genes

To identify differentially expressed overlapping anoikis-related genes, we first identified
the differentially expressed genes (DEGs) in TCGA liver hepatocellular carcinoma (LIHC).
The results showed that 6311 genes were differentially expressed (Figure 1A). Then, we found
448 anoikis-related genes from GeneCards database and finally screened 168 differentially
expressed overlapping anoikis-related genes for further analysis (Figure 1B).

2.2. Identification of Anoikis-Related Subgroups

To identify anoikis-related subgroups, we performed unsupervised clustering using a
consensus clustering algorithm to explore the possible clusters within TCGA-LIHC datasets,
based on the expression of overlapping anoikis-related genes. The results showed that k = 2
was the best parameter for dividing LIHC datasets into the subgroups A and B (Figure 2A).
Principal Component Analysis (PCA) indicated a clear classification between subgroup A
and subgroup B (Figure 2B). The results were also verified using t-distributed stochastic
neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP)
analysis (Supplementary Figure S1A,B). Furthermore, subgroup A had a lower survival
probability than subgroup B (Figure 2C). The heatmap of expression of overlapping anoikis-
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related genes showed a difference between the two subgroups (Figure 2D). These results
indicated that TCGA-LIHC can be classified based on anoikis-related genes.
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represents the logarithm of fold change of differentially expressed genes and the y-axis represents 
the adjusted p-value based on the FDR correction method. (B) Venn diagram of overlapping genes 
in TCGA and anoikis-related genes. 
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Figure 1. Identification of differentially expressed overlapping anoikis-related genes. (A) Volcano
plot of differentially expressed genes in the TCGA dataset. Blue dots indicate statistically significant
downregulated genes and red dots indicate statistically significant upregulated genes. The x-axis
represents the logarithm of fold change of differentially expressed genes and the y-axis represents the
adjusted p-value based on the FDR correction method. (B) Venn diagram of overlapping genes in
TCGA and anoikis-related genes.

2.3. Different Characteristics of Biological Behavior between Two Subgroups

To explore the different biological processes between the two subgroups, we per-
formed Gene Set Variation Analysis (GSVA) to identify the different KEGG pathways
and the Reactome pathway within the two subgroups. The results showed that subgroup
A was highly enriched in Golgi cisternae pericentriolar stack reorganization, activation
of NIMA kinases NEK9, NEK6 and NEK7 and condensation of prophase chromosomes.
Subgroup A was also enriched in the dorsoventral axis formation, inositol phosphate
metabolism and notch signaling pathway (Figure 2E). Moreover, we applied the ssGSEA
(single-sample gene set enrichment analysis) algorithm to explore the level of immune
infiltration between the two subgroups. The results indicated that subgroup A had a
distinct pattern of immune infiltration compared to subgroup B (Figure 2F). Furthermore,
subgroup A had a significantly higher abundance of immune cells—including activated
CD4, IDC, MDSC, memory B cells, NK cells and TGD—than subgroup B, while subgroup
B had a significant abundance of immune cells—including activated CD8, macrophages,
mast cells, monocytes and PDC—than subgroup A (Figure 2G). These results showed
that the two subgroups had different characteristics in the KEGG pathway, Reactome
pathway and immune infiltration levels.
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Figure 2. Identification of anoikis-related subgroups. (A) Consensus matrix heatmap defining two
subgroups. TCGA-LIHC cohorts were divided into two subgroups based on gene expression profiles.
The variable k is a parameter used to determine the number of clusters and k = 2 indicates that two
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subgroups are clustered. Light blue represents “1”, which indicates one of the subgroups, and
dark blue represents “2”, which indicates the other subgroup. (B) Principal component analysis
of the two subgroups. The x-axis represents the principal component 1 and the y-axis represents
the principal component 2. (C) The overall survival of the two subgroups. Blue represents patients
in subgroup A and red represents patients in subgroup B. The p-value is 0.00012. (D) Complex
heatmap of expression levels of anoikis-related genes in the two subgroups. Blue represents the
expression of genes in subgroup A and green represents the expression of genes in subgroup B.
Clinicopathologic characteristics, including the tumor stage, status and pathology stage of T, M and
N are presented above the complex heatmap. (E) Reactome and KEGG pathway analyses of GSVA in
the two subgroups. The upper panel shows the enriched Reactome pathway and the lower panel
shows the enriched KEGG pathway. Yellow represents subgroup A and blue represents subgroup B.
(F) The ssGSEA analysis of the immune cell infiltration level in the two subgroups. Yellow represents
subgroup A and blue represents subgroup B. (G) Boxplot of the abundance of immune cells in the
two subgroups. The x-axis represents the type of immune cells and the y-axis represents the level
of immune infiltration. Blue represents subgroup A and orange represents subgroup B. ** p < 0.01,
*** p < 0.001, **** p < 0.0001, ns, not significant.

2.4. Identification of Highly Correlated Gene Module in TCGA-LIHC

To explore the highly correlated genes among the overlapping anoikis-related genes,
we performed WCGNA to identify the highly correlated gene modules. First, we identified
two samples as outliers based on a sample clustering tree and excluded them (Supplemen-
tary Figure S2A). We then set the soft thresholding power to 5 (Figure 3A) and identified
three gene modules based on the gene dendrogram: the turquoise module, brown module
and blue module (Figure 3C). A heatmap of the correlation between the different modules is
also shown (Figure 3B). Among these gene modules, there was a strong correlation between
tumor occurrence and the turquoise module (the coefficient was 0.62 and p-value was
8 × 10−47, Figure 3D). In addition, the gene significance (GS, i.e., the correlation between
the genes and clinical traits) and module membership (MM, i.e., the correlation between
the genes and modules) were highly correlated in the turquoise module, indicating that the
genes in this module were most significantly associated with tumors (Figure 3E). Genes
in the brown module were also significantly associated with tumors, while genes in the
blue module were not associated with tumors (Supplementary Figure S2B,C). Finally, we
extracted 75 genes from the turquoise module for further analysis.

To explore the role of genes in the turquoise module, we performed GO and KEGG
pathway enrichment analyses. The results showed that these genes were highly enriched
in GO–Biological Process (BP) terms related to the apoptotic process, as well as to the pos-
itive and negative regulation of the apoptotic process. Additionally, these genes were also
highly enriched in positive regulation anoikis GO–BP terms (Figure 3F). In terms of GO–Cell
Component (CC) terms, these genes were highly enriched in nucleus, cytosol and cytoplasm,
and in GO–Molecular Function (MF) terms, they were enriched in protein binding, identical
protein binding and protein kinase binding (Supplementary Figure S3A,B). KEGG pathway
enrichment analysis showed that these genes were enriched in human immunodeficiency
virus 1 infection, hepatitis B and hepatitis C, which was consistent with the development and
progression of liver cancer (Figure 3G). Overall, the genes in the turquoise module were highly
correlated with the occurrence, metastasis and development of liver hepatocellular carcinoma.

2.5. Identification of Anoikis-Related Gene Clusters

Next, we identified anoikis-related gene clusters based on the highly correlated genes
in the turquoise module in the WGCNA analysis. Similarly to the anoikis-related subgroups,
the LIHC dataset was divided into 3 clusters (Figure 4A), which was verified using PCA
analysis (Figure 4B). Moreover, cluster A had a lower survival probability than clusters B
and C (Figure 4C). A heatmap of gene expression shows the differences between the three
clusters (Figure 4D).
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Figure 3. Identification of the highly correlated gene modules in WGCNA. (A) Determination of the
soft thresholding power. The y-axis of the left panel represents the scale-free fit index and the y-axis
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of the right panel represents the mean connectivity. The x-axis represents power value. (B) Heatmap of
Eigengene adjacency. The colors in the heatmap represent the Pearson correlation coefficient between
the four gene modules (white, blue, brown and turquoise). The values range from 0 (not correlated) to
1 (highly correlated), marked with blue to dark red. (C) Dendrogram of differentially expressed genes
clustered based on a dissimilarity measure (1-TOM). The colors represent the identified gene modules.
(D) Correlations of gene modules with clinical traits. Boolean variables denote the phenotypes of
the clinical traits, where 0 represents “Normal” and 1 represents “Tumor”. (E) Gene correlation
scatter plot of the turquoise module. The x-axis represents module membership (MM), which is the
correlation between the genes and modules. The y-axis represents gene significance (GS), which is
the correlation between the genes and clinical traits. The correlation coefficient is 0.6, indicating that
the genes significantly associated with tumor are also the central elements of the turquoise modules
associated with tumor. The p-value is <0.0001. (F) GO–Biological Process (BP) term enrichment of
genes in the turquoise module. The x-axis represents the number of genes in the GO–BP terms and
the y-axis represents the enriched GO–BP terms. The p-value is <0.05. (G) KEGG pathway enrichment
of genes in the turquoise module. The x-axis represents the number of genes in the KEGG pathway
and the y-axis represents the enriched KEGG pathway. The p-value is <0.05.

2.6. Construction of Anoikis-Related Prognostic Risk Model

To construct an anoikis-related prognostic risk model, we randomly sampled
183 samples for the training dataset and 182 samples for the test dataset from the LIHC
dataset. Using univariate Cox proportional hazard regression analysis, we applied
a total of 75 genes to screen for candidate prognostic genes and identified 55 genes
based on a p-value < 0.05. The top 20 genes are shown in Figure 5C. We then applied
these genes to perform LASSO regression and identified five genes with the minimum
lambda value of 0.1153418 (Figure 5A,B). The risk score was calculated as follows:
Risk score = (expression of BAK1* 0.041298989) + (expression of BSG* 0.023046274)
+ (expression of SPP1* 0.018401788) + (expression of DAP3* 0.004892867) + (expression
of PBK* 0.067923316). Patients were divided into two groups based on the median value
of the risk score. In the test dataset, patients with a high risk score tended to have a
lower survival probability and die earlier than those with a low risk score (Figure 5D). In
addition, the gene expression profiles of the prognostic genes were significantly different
between the two risk groups (Figure 5E). Furthermore, the overall survival, survival time
and gene expression profiles of the prognostic genes in the test dataset were consistent
with those in the training dataset (Figure 5F,G).
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Figure 4. Identification of anoikis-related gene clusters. (A) Consensus matrix heatmap defining
three gene clusters. The expression k = 3 indicates that three clusters are classified. (B). Principal
component analysis of the three gene clusters. The x-axis represents the principal component 1
and the y-axis represents the principal component 2. (C) The overall survival of the three gene
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clusters. Blue represents Cluster A, red represents Cluster B and green represents Cluster C. The
p-value is <0.0001. (D) Complex heatmap of the expression levels of the anoikis-related genes in
the three gene clusters. Red represents Cluster A, green represents Cluster B and yellow represents
Cluster C. Clinicopathologic characteristics, including the tumor stage, status and pathology stage of
T, M and N are presented above the complex heatmap.Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 11 of 24 

 

 

 

Figure 5. Construction of an anoikis-related prognostic risk model. (A) Coefficient curve. Different
colors represent different genes. No zero values were selected as a penalty coefficient. (B) The minimum
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lambda of the lasso model was selected via 10 folds of cross-validation. Lambda was determined
when the partial likelihood deviance was smallest. (C) Forest plot of the top 20 candidate prognostic
genes. The 95% confidence interval of the Hazard ratio is displayed. Genes with a hazard ratio > 1
are detrimental prognostic genes. The p-value is <0.05. (D) The overall survival of the different risk
groups, risk score distributions and survival times in the test dataset. Upper panel: Blue represents
high-risk patients and red represents low-risk. The patients were divided according to their median
risk score. Middle panel: The x-axis represents the number of patients in the test dataset and the
y-axis represents the risk score. Red represents patients in the high level and blue represents patients
in the low level. Lower panel: The x-axis represents the number of patients and the y-axis represents
the survival time of the patients in the test dataset. (E) Heatmap expression of the prognostic genes
in the different risk groups in the test dataset. Blue represents the low-risk group and pink represents
the high-risk group. (F) The overall survival of the different risk groups, risk score distribution
and survival time in the training dataset. Upper panel: Blue represents high-risk patients and red
represents low-risk. The patients were divided according to their median risk score. Middle panel:
The x-axis represents the number of patients in the training dataset and the y-axis represents the risk
score. Red represents patients in the high level and blue represents patients in the low level. Lower
panel: The x-axis represents the number of patients and the y-axis represents the survival time of the
patients in the training dataset. Blue represents living patients and red represents deceased patients.
(G) Heatmap of the expression of the prognostic genes in the different risk groups in the training
dataset. Blue represents the low-risk group and pink represents the high-risk group.

Additionally, we predicted the overall survival in the training and test datasets. The
areas under the time-dependent ROC curves (AUCs) at 1, 3 and 5 years were 0.81, 0.763
and 0.696 in the test dataset (Figure 6A) and 0.796, 0.727 and 0.826 in the training dataset,
respectively (Supplementary Figure S4A). The expression of prognostic genes was signif-
icantly upregulated in patients with high risk compared to those with low risk in both
the training and test datasets (Figure 6B and Supplementary Figure S4B). All prognostic
genes were significantly associated with poor survival probability in the training dataset
(Supplementary Figure S4C–G), but only SPP1 and BSG were significantly associated with
poor survival probability in the test dataset (Figure 6D). The nomogram showed that risk
score played a critical role in predicting overall survival at 1, 2, 3, 4 and 5 years (Figure 6C).
Overall, the anoikis-related prognostic risk model was established successfully and had a
strong performance in predicting overall survival in liver cancer.

2.7. Validation of Anoikis-Related Prognostic Risk Model

ICGC and GEO datasets were applied to validate the performance of the anoikis-
related prognostic risk model. The results showed that patients with a high risk score had
lower survival probability and were more likely to die than those with a low risk score.
Additionally, the prognostic genes in the high-risk group were significantly upregulated
compared to those in the low-risk group, with the exception of DAP3 (Figure 7A–D).
Moreover, the AUCs for the prognostic model were 0.777, 0.733 and 0.853 in the ICGC
dataset (Figure 7E), and BAK1, BSG and PBK were significantly correlated with poor
survival probability (Supplementary Figure S5A–E). The different pattern of prognostic
gene expression was also consistent with the TCGA dataset (Supplementary Figure S5F).
These results were similar to those in the TCGA dataset, indicating that the anoikis-related
prognostic risk model had a strong performance for predicting overall survival.
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Figure 6. The performance of the prognostic risk model in the test dataset. (A) The time-dependent
ROC curve of the performance of the prognostic model at 1, 3 and 5 years in the test dataset. The
x-axis represents the false positive rate and the y-axis represents the true positive rate. The AUC
value represents the area under the curve. (B) Boxplot of the expression of prognostic genes in the
different risk groups in the test dataset. The x-axis represents the five prognostic genes and the y-axis
represents the expression level of the prognostic genes. Blue represents the high-risk group and
orange represents the low-risk group. (C) The nomogram for the prediction of overall survival in
LIHC based on the risk score. ”Points” is a scoring scale for individual factors. “Total Points” is
the sum of the scoring scale for each factor, such as risk score, age, gender and stage. The overall
survival rate of 1–5 years was inferred according to “Total Points”. (D). The overall survival of the
different risk groups of a single gene, including BAK1, SPP1, BSG, PBK and DAP3 in the test dataset.
Blue represents patients in the high-risk group and red represents patients in the low-risk group.
**** p < 0.0001.
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represents patients in the low-risk group. (B) Boxplot of expression of the prognostic genes in the
different risk groups in the ICGC dataset. The x-axis represents the five prognostic genes and the
y-axis represents the expression level of the prognostic genes. Blue represents the high-risk group
and orange represents the low-risk group. (C) The distribution of the risk score in the ICGC dataset.
The x-axis represents the number of patients in the ICGC dataset and the y-axis represents the risk
score. Red represents patients in the high level and blue represents patients in the low level. (D) The
distribution of the survival time in the ICGC dataset. The x-axis represents the number of patients
and the y-axis represents the survival time of the patients in the ICGC dataset. Blue represents
living patients and orange represents deceased patients. (E) The time-dependent ROC curve of the
performance of the prognostic model at 1, 3 and 5 years in the ICGC dataset. The x-axis represents the
false positive rate and the y-axis represents the true positive rate. The AUC value represents the area
under the curve. (F,G) Boxplot of the expression of prognostic genes in the different risk groups in
GSE84402 and GSE101685. The x-axis represents the five prognostic genes and the y-axis represents
the relative expression level of the prognostic genes. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001,
ns, not significant.

Additionally, the relative expression of prognostic genes was significantly upregulated
in the tumor samples compared to the normal samples in GSE84402, with the exception
of SPP1 (Figure 7F). The same was true for GSE101685, with the exception of BAK1 and
BSG (Figure 7G). The protein levels of prognostic genes were also verified using the
Human Protein Atlas (HPA) database, which showed that the protein expression of all
prognostic genes was upregulated in the tumor samples compared to the normal samples
(Supplementary Figure S6).

2.8. Different Characteristics of Immune Cell Infiltration between Two Risk Groups

According to the results above, we found the distribution and relationship of two
subgroups, three gene clusters, two risk groups and two clinical outcomes (Figure 8A).
Moreover, we found a significant difference between two subgroups and three gene clus-
ters in risk score (Figure 8B,C). Next, we performed the CIBERSORT algorithm to explore
the correlation between infiltrating immune cells and risk group. The results showed
that risk score had a significantly positive correlation with the monocyte (cor = 0.26,
p ≤ 0.00001), macrophage M0 (cor = 0.15, p = 0.00363), M1 (cor = 0.22, p = 0.00002), M2
(cor = 0.15, p = 0.00527), resting NK cells (cor = 0.22, p = 0.00003), resting dendritic cells
(cor = 0.21, p = 0.00006), activated mast cells (cor = 0.19, p = 0.00021), gamma delta T
cells (cor = 0.18, p = 0.00064), plasma cells (cor = 0.17, p = 0.00135) and follicular helper
T cells (cor = 0.13, p = 0.01375), and it had a significantly negative correlation with the
eosinophils (cor = −0.22, p = 0.00003) and resting mast cells (cor = −0.16, p = 0.00212)
(Figure 8D–G and Supplementary Figure S7A–H). The prognostic genes were also found
to be highly correlated with most of the immune cells, with the exception of DAP3
(Figure 8H).
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Figure 8. Different characteristics of immune cell infiltration between the two risk groups.
(A) Sankey diagram of the two subgroups, three gene clusters, two risk groups and two clinical outcomes.
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Subgroups A and B were subjected to gene clustering, classification according to the two risk levels
(high-risk or low-risk) and two clinical outcomes (living or deceased). (B) Differences in the risk scores
between the two subgroups. The x-axis represents the type of subgroup and the y-axis represents
the risk score. Statistical analysis was performed using Student’s t-test. (C) Differences in the risk
scores between the three gene clusters. The x-axis represents the type of subgroup and the y-axis
represents the risk score. Statistical analysis was performed using one-way analysis of variance.
(D–G) Correlation of the risk score with the immune cells, including (D) monocytes, (E) macrophage
M1, (F) eosinophils and (G) resting NK cells. (H) Correlation of the immune cell infiltration with the
prognostic genes. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

3. Discussion

In this study, we identified the role of anoikis-related genes in the development
and progression of HCC and constructed a prognostic risk model. We also explored the
correlation between infiltrating immune cells and prognostic genes and risk score. TCGA
samples were divided into two subgroups, with subgroup A having a lower survival
probability. We used GSVA and ssGSEA to analyze the biological processes and infiltrating
immune cells in these subgroups and found that subgroup A was enriched in Golgi cisternae
pericentriolar stack reorganization, NIMA kinase activation and prophase chromosome
condensation. We also found that subgroup A was enriched in dorsoventral axis formation,
inositol phosphate metabolism and the notch signaling pathway. Using WGCNA, we
screened for genes highly correlated with HCC and constructed a prognostic risk model.
Finally, we analyzed the correlation between infiltrating immune cells and prognostic genes
and the risk score. We found that the risk score had a significantly positive or negative
correlation with most immune cells and the prognostic genes were highly correlated with
most immune cells, with the exception of DAP3. In conclusion, our findings suggest that
anoikis-related genes can be used to assess the prognostic significance and potential for
immunotherapy of HCC.

The results of GSVA showed that subgroup A was enriched in the Reactome pathway
related to Golgi cisternae pericentriolar stack reorganization, activation of the NIMA
kinases NEK9, NEK6 and NEK7 and condensation of prophase chromosomes, which are
all essential for mitosis. The NEK family of serine/threonine kinases was also identified
as a potential biomarker for cancer [23]. Additionally, subgroup A was enriched in the
anchoring of the basal body to the plasma membrane and release of apoptotic factors from
the mitochondria, which were associated with anoikis. Subgroup A was also enriched in
the KEGG pathway related to dorsoventral axis formation, inositol phosphate metabolism
and the notch signaling pathway. Inositol phosphate had been linked to apoptosis and
cancer [24], and the notch signaling pathway was known to regulate tumor development
and the microenvironment [25]. However, there was little research on the relationship
between dorsoventral axis formation and liver cancer, suggesting that anoikis-related genes
may play a role in tissue and organ development, in addition to their involvement in HCC.

Immune cells can alter the liver environment and trigger chronic inflammation, even-
tually leading to the development of hepatocellular carcinoma [26]. In our study, the risk
score had a significantly positive correlation with monocytes, macrophages, dendritic cells,
natural killer cells (NK cells), T cells and plasma cells and had a negative correlation with
eosinophils and mast cells, which was consistent with previous studies. It has been re-
ported that immune cells such as CD4+T cells, CD8+T cells, NK cells, NKT cells, monocytes
and macrophages were activated and participated in mediating liver inflammation during
chronic HBV infection, which eventually promoted the development of HCC [27]. Addi-
tionally, studies have shown that an elevated proportion of myeloid-derived suppressor
cells (MDSCs) in the liver promoted hepatocarcinogenesis in mice models [28]. Dendritic
cells (DCs) have also been found in high numbers in the peripheral blood and liver of
HCC patients [29]. The stimulation of T cells can reduce the secretion of IL-12 by DCs [30],
and high levels of chemokines and mast cells have been found in tumor regions [31]. The
two subgroups in our study showed different patterns of immune cell abundance, which
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may be due to differences in the tumor microenvironment. The development of HCC was
delayed by the depletion of CD8+ T cells in mice models, and these mice had an increased
incidence of HCC [32]. Additionally, the role of CD4+T cells and B lymphocytes in the
development of HCC remains controversial [33].

Astrocyte elevated gene-1 (AEG-1) has been identified as an important oncogene
that promotes anoikis resistance in HCC cells. AEG-1 promotes anoikis resistance by
activating the PI3K/Akt pathway and upregulating the apoptosis protein BCL-2 and the
phosphorylation of Bad [34]. In our study, we found that five novel prognostic genes
(BAK1, SPP1, BSG, PBK and DAP3) were risk factors for anoikis resistance in HCC. BAK1
is a multi-domain proapoptotic effector belonging to the Bcl-2 family, which controls cell
homeostasis via apoptosis [35]. The activation of BAK1 permeabilizes the mitochondrial
outer membrane to regulate apoptosis [36]. This suggests that anoikis may be related
to mitochondrial outer membrane permeabilization. Interestingly, BAK expression was
decreased in colorectal tumors and remained unchanged in most conditions [37], but
increased BAK expression was strongly associated with a poor prognosis in patients with
non-small cell lung cancer [38], which indicates that the role of BAK is unclear in different
types of cancers. Consistent with our results, BAK1 has been identified as a prognostic
gene in pyroptosis-related HCC and is associated with persistent hepatitis B virus infection-
related HCC [39,40]. In this study, we found that the expression of BAK1 was upregulated
in the high-risk group compared to the low-risk group. Furthermore, the results of the
validation cohorts showed that the expression of BAK1 was upregulated in the tumor
samples compared to the normal samples.

Death-associated protein 3 (DAP3) is a classical anoikis marker and is necessary for the
induction of anoikis [41]. It has been reported that interferon-beta promoter stimulator 1
(IPS-1) binds to DAP3 and induces anoikis by activating caspase-8 [42]. DAP3 was overex-
pressed in invasive glioblastoma cells [43]. However, the role of DAP3 in the development
and progression of other tumors is not well understood. Other prognostic genes in our study
have been found to be involved in several types of cancers. For example, the expression of
BSG has been found to change significantly in many tumors, including cholangiocarcinoma,
colon adenocarcinoma and rectum adenocarcinoma. It has also been associated with the
prognosis of eight cancers, including invasive breast carcinoma [44]. Intriguingly, BSG
has been identified as a potential target of non-coding RNA in hepatocellular carcinoma
tumorigenesis [45,46]. SPP1 is involved in the tumor microenvironment of pancreatic and
prostate cancer [47,48]. It has also been identified as a novel biomarker in nonalcoholic
steatohepatitis-related HCC [49]. The expression of PBK has been associated with the prog-
noses of lung cancer [50], colorectal cancer [51] and gastric cancer [52]. In the progression
of HCC, the overexpression of PBK has been found to promote HCC cell migration and
invasion by activating the ETV4/urokinase-type plasminogen activator receptor signaling
pathway [53]. Yang et al. showed that PBK enhanced the metastasis of HCC by activating
β-catenin signaling [54]. However, further research is needed to fully understand the
molecular mechanisms involved.

Although our study identifiy anoikis-related subgroups and prognostic genes in HCC
for the first time, there are several limitations. First, the overall number of cohorts and
sequencing data is limited. Second, the clinicopathologic characteristics of patients are
limited, so more practical and valuable factors are needed to predict the survival rate at
1–5 years. Finally, the study lacks basic experiments to prove the expression of prognostic
genes in liver cancer cell lines, which needs further investigation.

In summary, this study identified anoikis-related subgroups and constructed a prog-
nostic risk model of HCC. The results showed that five prognostic genes were identified
and were highly correlated with the occurrence of tumor and immune cell infiltration. The
prognostic risk model had a strong and effective performance in predicting the overall sur-
vival of HCC. Overall, our findings have great significance for investigating the molecular
pathways and mechanisms involved in HCC and for developing treatments and prognoses
of HCC.
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4. Materials and Methods
4.1. Data Collection

The gene expression profiles for TCGA liver hepatocellular carcinoma (LIHC), includ-
ing 50 normal and 371 tumor samples, were downloaded using the R package “TCGAbi-
olinks”. The phenotype and survival data of the LIHC cohorts were downloaded from
UCSC Xena (https://xenabrowser.net/datapages/, (accessed on 21 September 2022)). The
DEGs were analyzed using the R package “TCGAbiolinks”. The p-values were adjusted
based on the false discovery rate (FDR) correction method, and the DEG cutoff was set as
|log2FC| > 1 and adjusted to a p-value < 0.05.

The gene expression profiles of the GSE84402 and GSE101685 datasets, including
22 normal and 38 tumor samples, were used as validation cohorts for the prognostic model.
The gene expression profiles and clinical data for the ICGC Liver Cancer-RIKEN, JP (LIRI-
JP) cohorts, including 232 tumor samples, were also used as validation cohorts for the
prognostic model.

A total of 794 anoikis-related genes was acquired from GeneCards (https://www.
genecards.org/ (accessed on 22 September 2022)), and 448 of these genes were selected
based on a score > 0.4. The overlap of DEGs for LIHC and anoikis-related genes was
visualized using the R package “VennDiagram”.

4.2. Weighted Gene Coexpression Network Analysis (WGCNA)

WGCNA was performed to identify highly correlated gene modules in TCGA-LIHC [55].
Overlapping genes of DEG for LIHC and anoikis-related genes in TCGA were subjected to
WGCNA using the R package “WGCNA”. A total of 422 samples with 168 overlapping
differentially expressed anoikis-related genes was used as an expression matrix for further
analysis. The soft thresholding power was chosen as 5 to construct a gene network and
calculate coexpression similarity and adjacency, which was transformed into a topological
overlap matrix (TOM). Hierarchical clustering based on TOM was used to cluster the
modules. Finally, the modules that were strongly associated with clinical traits were
identified. For intramodular analysis, critical genes were identified in modules with a
high gene significance (GS) and module membership (MM), where the correlation between
the genes and clinical traits was termed as GS, and the correlation between the module
eigengene and the gene expression profiles was termed as MM.

4.3. Consensus Clustering Analysis of Anoikis-Related Genes

Unsupervised subgroups and clusters of TCGA-LIHC datasets were identified using
the R package “ConsensusClusterPlus” [56], based on overlapping anoikis-related genes
and highly correlated module genes from WGCNA. Clusters were verified by Principal
Component Analysis (PCA), t-distributed Stochastic Neighbor Embedding (t-SNE) and
Uniform Manifold Approximation and Projection (UMAP) using the R packages “broom”,
“Rtsne” and “umap”, respectively. The Kaplan–Meier survival curves of the different
subgroups and clusters were analyzed and plotted using the R packages “survival” and
“survminer”. The gene expression of different subgroups and clusters was visualized using
the R package “ComplexHeatmap”.

4.4. GSVA of Anoikis-Related Genes

The KEGG pathway and Reactome pathway were analyzed to explore the differ-
ences in the biological processes between the different subgroups using the R packages
“GSVA” [57] and “msigdbr”. An ssGSEA algorithm was used to investigate the immune cell
infiltration relationships between the different subgroups. The infiltration of the immune
cells in the different subgroups was visualized using the R package “ggplot2”.

4.5. Functional Enrichment Analysis

Biological functional enrichment was analyzed using GO analysis and the KEGG
pathway based on The Database for Annotation, Visualization and Integrated Discovery

https://xenabrowser.net/datapages/
https://www.genecards.org/
https://www.genecards.org/
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(DAVID) database (https://david.ncifcrf.gov/ (accessed on 29 September 2022)). The cutoff
criterion was defined as p < 0.05.

4.6. Construction of Anoikis-Related Prognostic Risk Model

The gene expression profiles and survival data were merged for further analysis.
Finally, a training dataset (n = 183) and a test dataset (n = 182) were randomly sampled
from 365 patients at a 1:1 ratio. Univariate Cox proportional hazards regression analysis
was performed to screen the candidate prognostic genes and visualize them using the R
packages “survival” and “forest plot”. Genes with p < 0.05 were included and analyzed
with LASSO regression analysis to avoid overfitting using the R package “glmnet” [58].
The risk score was constructed as a prediction factor equal to the summation of coefficients
and related genes:

Risk score = ∑n
i=1 Coe fi×Xi

Coef i is the correlation coefficient of the prognostic genes and Xi is the expression of
the prognostic genes. Finally, multivariate Cox proportional hazards regression analysis
was performed to identify the critical clinical phenotypes.

4.7. Survival Analysis

According to the median risk score, patients in the training and test datasets were
divided into high- and low-risk groups. The prognostic gene expression was plotted as
a heatmap using the R package “ComplexHeatmap” for the training and test datasets.
The predictive effect of the model was illustrated using Kaplan–Meier survival curves
with the R package “survminer”. Different endpoints (1, 3 and 5 years) were set, and
the performance of the model was evaluated using time-dependent receiver operating
characteristic (ROC) curves using R package “timeROC”. A nomogram was applied to
predict the overall survival according to the risk score and clinicopathologic characteristics,
such as age, gender and stage, using the R package “rms”. A Sankey diagram was applied
to show the cluster distribution of the risk groups and survival outcomes using the R
packages “highcharter”, “ggplot2” and “ggalluvial”.

4.8. Tumor Immune Analysis

A CIBERSORT algorithm was applied to analyze the correlation between the prognos-
tic genes and the risk score and tumor-infiltrating immune cells.

4.9. Validation of Prognostic Risk Model

The prognostic risk model was validated using ICGC-LIRI-JP cohorts, and the gene
expression of the prognostic genes was validated using the GSE84402 and GSE101685
datasets. Finally, the protein expression of the prognostic genes in the normal and tumor
samples was validated using the Human Protein Atlas (HPA) database (https://www.
proteinatlas.org/ (accessed on 3 October 2022)).

4.10. Statistical Analysis

All statistical analyses were performed in R software (version 4.2.1) and a p-value < 0.05
was considered statistically significant.
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