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Abstract: Despite advances in supportive care and antimicrobial treatment, bacterial meningitis
remains the most serious infection of the central nervous system (CNS) that poses a serious risk to
life. This clinical dilemma is largely due to our insufficient knowledge of the pathology behind this
disease. By controlling the entry of molecules into the CNS microenvironment, the blood–brain barrier
(BBB), a highly selective cellular monolayer that is specific to the CNS’s microvasculature, regulates
communication between the CNS and the rest of the body. A defining feature of the pathogenesis of
bacterial meningitis is the increase in BBB permeability. So far, several contributing factors for BBB
disruption have been reported, including direct cellular damage brought on by bacterial virulence
factors, as well as host-specific proteins or inflammatory pathways being activated. Recent studies
have demonstrated that targeting pathological factors contributing to enhanced BBB permeability
is an effective therapeutic complement to antimicrobial therapy for treating bacterial meningitis.
Hence, understanding how these meningitis-causing pathogens affect the BBB permeability will
provide novel perspectives for investigating bacterial meningitis’s pathogenesis, prevention, and
therapies. Here, we summarized the recent research progress on meningitis-causing pathogens
disrupting the barrier function of BBB. This review provides handy information on BBB disruption
by meningitis-causing pathogens, and helps design future research as well as develop potential
combination therapies.

Keywords: bacterial meningitis; blood–brain barrier; brain microvascular endothelial cells; permeability;
tight junction proteins

1. Introduction

Bacterial meningitis is an inflammation of the meninges, including the dura mater,
arachnoid mater, and pia mater, in response to bacterial infection [1]. It remains an important
cause of the high mortality rate and incidence of neurological sequelae [2]. Case mortality
rates have ranged between 5% and 40%, while between 25% and 50% of survivors have
neurological conditions such as cerebral palsy, mental retardation, blindness, deafness, and
seizures [3,4]. The most frequent causes of meningitis in infants and adults worldwide are
Escherichia coli (E. coli), Group B Streptococcus (GBS), Listeria monocytogenes (L. monocytogenes),
Mycobacterium tuberculosis (M. tuberculosis), Streptococcus pneumoniae (S. pneumoniae), Neisseria
meningitidis (N. meningitidis), and Haemophilus influenzae type b (Hib) [5,6]. A significant new
zoonotic pathogen that can also cause meningitis in humans is Streptococcus suis (S. suis) [7].
Generally, the pathological process of bacterial meningitis includes the following stages,
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namely mucosal colonization, microbial translocation of mucous membrane and invasion
into the intravascular space, followed by intravascular survival and multiplication, reaching
a high degree of bacteremia, translocation over the blood–brain barrier (BBB), and invasion
of the meninges and central nervous system (CNS) [8]. In addition to the BBB, there are
also a blood–cerebrospinal fluid barrier at the choroid plexus and a meningeal barrier at
the subarachnoidal space between the CNS and the rest of the body. Bacteria can also enter
the CNS by crossing these barriers [9]. Bacteria can then increase the BBB permeability
and induce pleocytosis, which causes edema, an increase in intracranial pressure, and the
release of inflammatory factors from white blood cells and other host cells that have been
infiltrated [10].

The CNS is a shielded environment protected by the meninges, the vertebral column,
and the skull [11]. The meninges are a membranous envelope in connective tissue whose
primary function is to protect the spinal cord and brain from trauma [12]. The BBB provides
a selective filter tightly regulating the exchange of water, ions, oxygen, nutrients, and
other compounds between the CNS and the bloodstream [13]. In addition, it protects
the CNS from invasive pathogens [14]. The basement membrane, astrocytes, microglial
cells, pericytes, and the microvasculature support the brain microvascular endothelial
cells (BMECs), which create the wall of the blood capillaries [15–17]. BMECs form many
tight junctions (TJs) and some adherens junctions with adjacent cells, resulting in poorer
paracellular permeability [18]. TJs, which are composed of Zonula Occludens proteins
(especially ZO-1, -2, and -3), Occludins, Claudins (especially Claudin-5 and -12), and
junction adhesion molecules, help to create high trans-endothelial electrical resistance
(TEER) and control polarity to the BBB endothelium (Figure 1) [19–21]. Therefore, any
deterioration or separation of these proteins from their counterparts may lead to an increase
in barrier permeability [22]. In addition, astrocytes and pericytes maintain the barrier
property of BMECs, but their effects on microbial entry into the CNS across the BBB appear
to be limited [23].
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BBB integrity.

Meningeal pathogens can penetrate the BBB and damage the BBB integrity, but such
ability is lacking for non-meningitis-causing microorganisms [24]. With the availability
of in vitro monolayer BMECs and in vivo mouse models, tremendous progress has been
achieved up to this point in understanding the molecular interactions between meningeal
infections and the BBB [25]. Meningeal pathogens have been shown to penetrate the host
BBB by transcytosis (intracellular trafficking through the endothelial cells), paracytosis
(through the intercellular junctional spaces), or Trojan horse mechanism (utilizing infected
phagocytes as vehicles) [26]. Apart from these strategies, severe CNS inflammatory re-
sponses following microbial invasion and replication in the brain and the cytotoxicity
of microbial toxins lead to the enhancement of BBB permeability, which also facilitates
pathogens crossing the BBB [12]. Our limited knowledge of their etiology, particularly
how pathogenic microorganisms increase BBB permeability, is a crucial factor contributing
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to such high mortality and morbidity. This paper provides an overview of the processes
through which meningitis-causing bacteria increase BBB permeability. In order to maintain
BBB integrity in CNS infectious disorders, it will be important to understand the molec-
ular causes of increased BBB permeability. This will help create safer and more efficient
therapeutic strategies.

2. Enhancement of BBB Permeability by Bacterial Virulence Factors
2.1. Bacterial Surface Structure

Lipopolysaccharide (LPS) is located on the outer leaflet of the outer membrane. It
serves as the main surface component of the cell envelope of Gram-negative bacteria,
responsible for activating the host’s innate immune system [27]. It was reported that LPS
treatment reduced expression of TJs in BMECs and altered BBB structural integrity in vitro.
Exposure to LPS decreased the expression of hydroxycarboxylic acid receptor 1 (HCAR1)
and monocarboxylate transporters-1 in BMECs, and meanwhile induced interleukin (IL)-1β
overproduction and a dose-dependent increase in lactate concentrations in the extracellular
space, which led to the increase of BBB permeability [28]. Moreover, E. coli LPS affects
the BBB via the crosstalk between protein kinase C (PKC) and RhoA signals, independent
of the phosphatidylinositol 3-kinase (PI3K) and tyrosine kinase pathways [29]. Most
recently, sulfasalazine was reported to improve the maintenance of BBB integrity and
relieve E. coli LPS-induced inflammatory apoptosis [30]. In a rat model of Hib meningitis,
intracisternal inoculation of Hib LPS (2 pg to 20 ng) resulted in dose-dependent increases in
BBB permeability [31]. Outer membrane vesicles (OMV) are nano-sized spherical vesicles
released by many Gram-negative bacteria, with a lipid bilayer structure that ranges in size
from 20 to 250 nm. These vesicles include elements resembling those seen in bacteria, such
as phospholipids, deoxyribonucleic acid, β-barrel proteins, lipoproteins, LPS, etc., because
they are formed by the cell envelop of bacteria [32]. According to previous study, OMV
may include a significant amount of Hib LPS, which could alter its activity. Intracisternal
inoculation of Hib OMV in adult rats led to dose- and time-dependent increases in BBB
permeability, much like inoculation of purified Hib LPS [33]. In addition, the capsule and
peptidoglycan of Hib are also critical virulence factors to destroy host BBB integrity [34,35].

Bacillus anthracis (B. anthracis) is a sporulating Gram-positive rod that enters the human
body mostly through the skin, and hemorrhagic meningitis is one of the deadly consequences
of anthrax [36]. It has been recently shown that proteolytic breakdown of the monolayer
hBMECs by B. anthracis is associated with the degradation of ZO-1. This procedure necessitates
bacterial attachment to BMECs via the S-layer adhesin BslA [37].

The S. suis surface structure, including muramidase-released protein (MRP), factor
H-binding protein (Fhb), and S. suis protein endopeptidase O (SsPepO), has been widely
reported to destroy the integrity of BBB. MRP is a vital virulence marker of S. suis serotype
2 (SS2), which can bind to human fibrinogen [38]. It was discovered that the human
fibrinogen-mediated adhesion and traversal ability of SS2 across BMECs are both consider-
ably impaired by SS2 deletion of MRP. Meanwhile, measurement of the permeability to
Evans blue extravasation in vivo and Lucifer yellow in vitro show that the MRP-human
fibrinogen interaction dramatically enhances the BBB permeability via destroying the cell
adherens junction protein p120-catenin of BMECs [39]. Another study showed that the Fhb
contributed to S. suis-induced meningitis by interaction with globotriaosylceramide (Gb3).
Gb3, also known as CD77, is restricted in expression to certain cell types, including some
epithelial and endothelial cells [40]. Through Rho/Rho-associated protein kinase (ROCK)
signaling, Gb3 may have an impact on the activation of myosin light chain 2 brought on by
S. suis infection in hBMECs. Gb3 deficiency protected mice from severe brain inflammation
or damage [41]. Furthermore, SsPepO also contributed to the pathogenesis of S. suis menin-
gitis, which was identified as a predicted metalloendopeptidase that shares homology
with the M13 peptidase family [42]. SsPepO was found to bind to human fibronectin to
promote adherence and traversal ability of S. suis across monolayer hBMECs. Meanwhile,
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the SsPepO-human fibronectin-integrin interaction significantly increased the permeability
of the BBB [43].

SS2 enolase was initially identified as a key glycolytic enzyme. Subsequently, enolase
was identified to be expressed on the surface of S. suis [44]. Enolase can help pathogens
infect host cells by interacting with the plasminogen receptor on the surfaces of various cell
types [45]. The SS2 enolase has been shown to be important in disrupting BBB integrity by
causing the release of IL-8 [46]. The extracellular adenosine of SS2 was also a contributor
to promoting BBB permeability. The adenosine could activate the A1 adenosine receptor
signaling pathway in BMECs and attendant cytoskeleton remodeling to damage BBB
integrity. The study also found that adenosine orthologs from other bacterial species
promote their translocation across BBB [47].

In addition, Streptococcus equi subsp. zooepidemicus (SEZ), which belongs to Group C
streptococcal species, is another important animal pathogen and can cause meningitis in
humans [48]. BifA is a recently identified virulence factor that facilitates SEZ adhesion to
host tissue and immune evasion. BifA encodes a protein with an N-terminal RhuM domain
and a C-terminal Fic domain. Fic (filamentation induced by cyclic AMP) domain-containing
proteins are found in many animal and plant pathogens. It was reported that SEZ BifA’s
Fic domain enables its binding and activation of cytoskeletal regulatory protein moesin.
The phosphorylation of moesin could activate the downstream RhoA signaling pathway
and thus destroy the integrity of BBB [49]. In summary, the surface structure of bacteria
is considered the most critical factor in mediating the increase in permeability of the BBB
(Figure 2).
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2.2. Hemolysins

Hemolysin is an extracellular toxic protein produced by many Gram-negative and
Gram-positive bacteria. Meningitis-causing pathogens such as E. coli, L. monocytogenes,
S. pneumoniae, GBS, and S. suis can produce hemolysin [50]. As its name suggests, hemolysin
is cytolytic. It binds to the host cell membrane, causing a pre-pore to form, then pierces the
cell membrane and causes conformational changes within the host cell to form a mature
ply pore. The mature ply pore in host cells drives protein influx and imbalances in signal
transduction [51].
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E. coli α-hemolysin is the best-studied repeat-in-toxin protein (repeat-in-toxin proteins
are widespread among Gram-negative bacteria) released by the type I secretion system. It
is an important virulence factor due to its cytolytic and cytotoxic activity against a diverse
range of mammalian cell types (e.g., erythrocytes, monocytes, granulocytes, and endothelial
cells) [52]. The α-hemolysin in meningitic E. coli K1 strain has been shown to reduce the
TGFβ1 receptor TGFBRII and the critical transcription factor Gli2 of hedgehog signaling in
BMECs, eventually leading to the BBB breakdown [53].

Another hemolysin, “suilysin”, is involved in modulating S. suis interactions with
host cells [54]. Suilysin was discovered to cause a significant release of IL-6 and IL-8 by
swine BMECs, destroying the integrity of the BBB [55]. In another study, suilysin was
demonstrated to increase the paracellular permeability of BBB via the activation of group
III secretory phospholipase A2 (PLA2G3) in vivo and in vitro [56].

Listeriolysin O, a pore-forming toxin generated by L. monocytogenes, is a particularly
important virulence factor that performs many roles in guaranteeing the pathogen’s intra-
cellular survival in hosts [57]. A result of L. monocytogenes infection in the CNS showed that
listeriolysin O-mediated cytotoxicity against BMECs enables L. monocytogenes to effectively
penetrate the BBB [58].

Pneumolysin is another widely studied hemolysin and a major virulence factor pro-
duced by S. pneumoniae [59]. When hBMECs were infected with S. pneumoniae, the cells
rounded and detached, and the TEER of the monolayer hBMECs decreased significantly.
An S. pneumoniae mutant deficient in pneumolysin did not affect the integrity of the hB-
MECs monolayer. However, purified pneumolysin-caused hBMECs monolayer damage
was comparable to that caused by S. pneumoniae [60]. In another study, it was shown that
pneumolysin causes a high expression of CREB-binding protein, which can result in the
release of tumor necrosis factor-α (TNF-α) and then accelerate apoptosis of cells, which is a
crucial factor contributing to BBB permeabilization [61]. In addition, pneumolysin-induced
pore formation affects glial cells, altering astrocyte structure and increasing overall BBB
permeability [62].

The hemolysin encoded by GBS was called β-hemolysin. It has been reported that GBS
can repress the transcription of β-hemolysin under the regulation of the two-component
system CovR/CovS. Moreover, the serine/threonine kinase Stk1 can phosphorylate CovR
at threonine 65 to relieve the repression of β-hemolysin. Due to more β-hemolysin pro-
duced, CovR deficient GBS were more proficient in the induction of permeability and
pro-inflammatory signaling pathways in BMECs [63]. In conclusion, hemolysin is one cru-
cial virulence factor for meningitis-causing pathogens that damage the host BBB (Figure 2).

2.3. Enzymes

Bacteria produce a wide variety of secreted enzymes, including streptokinase, esterase,
DNases, hyaluronidases, superoxide dismutase, and immunoglobulin degrading enzymes,
many of which are considered virulence factors. Accumulating studies have shown that
these enzymes are involved in the degradation of extracellular matrix between BMECs by
pathogenic bacteria.

GBS produces a specific exotic enzyme, hyaluronidase (HylB). It was recently de-
termined that HylB degrades hyaluronic acid into disaccharide fragments, which blocks
toll-like receptor 2 (TLR2) and TLR4, preventing GBS ligands from activating the pro-
inflammatory signaling pathway [64]. In GBS meningitis, it was found that the inactivation
of HylB resulted in significantly decreased BBB permeability and the intravenous adminis-
tration of purified HylB protein resulted in dose-dependent BBB opening [65]. In addition,
research showed that type II CRISPR RNA-guided endonuclease Cas9 (Cas9) plays a vital
role in GBS meningitis pathogenesis by repressing the regR regulator, further elevating
HylB secretion that results in BBB integrity damage [66].
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The metalloprotease immune inhibitor A (InhA), secreted by B. anthracis, can degrade
matrix proteins. Purified InhA treatment of hBMECs resulted in a time-dependent de-
crease in TEER followed by ZO-1 degradation. Meanwhile, mice given purified InhA
intravenously demonstrated a time-dependent Evans blue dye extravasation, leukocyte
infiltration, and InhA distribution in the brain parenchyma, indicating BBB leakage and
cerebral hemorrhage [22].

Eukaryotic-type serine/threonine kinases (STK) are expressed in many prokaryotes,
including GBS, M. tuberculosis, and S. pneumoniae. STK was reported to regulate bacteria
stress response, biofilm formation, cell wall biosynthesis, development, metabolism, an-
tibiotic resistance, and virulence [67]. According to a recent study, the SS2 wild-type strain
crossed the BBB model more easily than the STK mutant strain. STK may modulate the
expression of E3 ubiquitin ligase HECTD1, increasing the degradation of Claudin-5 and
allowing SS2 to cross the BBB [68]. Current studies have confirmed that bacterial enzymes
can directly or indirectly affect the integrity of BBB. However, more in-depth research is still
required to determine their specific contributions because of the diversity of mechanisms
and functions of enzymes (Figure 2).

3. Host Signaling Mediators That Regulate BBB Permeability
3.1. Cytokines

There have been several studies on cytokines and chemokines in patients with bacterial
meningitis, including the different stages of the infection process [69]. The most important
factor in triggering BBB dysfunction is the formation of the CNS cytokine storm, which is
caused by the excessive production of these pro-inflammatory molecules [70].

The production of various cytokines, including IL-1β, IL-6, TNF-α, and IL-8, is prin-
cipally responsible for BBB breakdown during neuroinflammation [71]. TJs function al-
teration and BBB permeability increase are closely related to the production of cytokines
(IL-1β, IL-6, and TNFα) in the brain [72]. For example, IL-6 and IL-1β were increased in the
hippocampus in GBS-infected neonate rats, which increased the paracellular permeability of
BMECs by decreasing TJs [73]. In addition, interferon-gamma (IFNγ), a pro-inflammatory
cytokine, has been demonstrated to be a key player in the pathogenesis of experimental
pneumococcal meningitis. The integrity of the BBB is impacted by IFN-modulated nitric
oxide synthase 2 (NOS2), one of the many factors leading to pneumococcal meningitis
pathogenesis [74]. In CNS infection with M. tuberculosis, it was shown that mycobacterium
can induce granuloma formation on the monolayer BMECs, which led to cluster-associated
destruction of the BMECs monolayer defined by mitochondrial stress, disruption of ZO-1
and Claudin-5, and enhanced transmigration of bacteria-infected cells across the BBB.

On the other hand, inhibition of TNF-α decreases the formation of clusters on BMECs
and lessens damage from clusters [75]. It was found that the increase in BBB permeability
induced by either meningitic E. coli or S. pneumoniae could be inhibited by anti-TNF-α
antibodies [76]. Moreover, our study has shown that macrophage migration inhibitory factor
(MIF) was significantly upregulated in meningitic E. coli infected-hBMECs. The recombinant
MIF decreased the TEER values of the hBMECs monolayer dose-dependently and led to
decreased expression of TJ proteins such as ZO-1 and Occludin [77].

L. monocytogenes cross the BBB in the form of “Trojan Horse”; therefore, macrophages’
migration and crossing the BBB is very important for L. monocytogenes to induce meningi-
tis [78]. Recently, RhoA was reported to increase macrophage migration and trigger the
production of IL-1β, IL-6, and TNF-α. In turn, the expression of IL-1β, IL-6, and TNF-α
may facilitate the macrophage migration and adhesion across the BBB [79]. Taken together,
it is clear that a variety of cytokines can increase BBB permeability by suppressing TJs, but
more molecular mechanisms need to be further analyzed (Figure 3).
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3.2. Vascularization Factors

The mammalian vascular endothelial growth factor (VEGF) family has five members:
VEGF-A, -B, -C, -D, and placental growth factor (PGF). Among them, VEGF-A has gotten
the most attention. VEGF-A can promote angiogenesis and neuroprotection, and induce
neurogenesis [80]. It has been known to be a potent activator of vascular permeability by
activating multiple signaling pathways downstream of VEGFR2 [81]. Moreover, VEGF-A
has been shown to alter the expression and distribution of TJs, resulting in BBB hyper-
permeability in E. coli meningitis [82]. Most recently, resveratrol treatment was found to
maintain BBB permeability by suppressing the activation of extracellular signal-regulated
protein kinases1/2 (ERK1/2)-VEGFA signaling cascade [83]. Astrocytes and pericytes seem
to be the primary sources of VEGF-A in pathological conditions in CNS diseases [84]. In a
Haemophilus influenzae type a (HiA) study, the infection activated adenosine receptors A2A
and A2B in hBMECs and pericytes, causing the pericytes to release large amount of VEGF-
A. The high level of VEGF-A may cause pericytes detachment and hBMECs proliferation,
thereby causing BBB damage [85]. In addition, VEGF-A also participates in the breakdown
of the BBB in M. tuberculosis meningitis, further exacerbating the disease [86,87].

Platelet-derived growth factor (PDGF)-BB possesses chemotactic, differentiating, mito-
genic, and angiogenic properties and is concerned with wound healing [88]. Furthermore, it
is understood that PDGF-BB regulates BBB homeostasis and is essential for preserving CNS
stability [89]. However, in addition to its neuroprotective effects, studies have shown that
cocaine-mediated PDGF-BB induction in hBMECs resulted in BBB damage by decreasing
ZO-1 expression [90]. In our work, we were the first to document how meningitic E. coli
caused human and mouse BMECs to experience a time-dependent elevation of PDGF-BB,
which led to TJ disarrangement [91].

Angiopoietin-like protein-4 (Angptl4) is a secreted glycoprotein with a physiological
role in lipid metabolism. Angptl4 was reported to involve vascular permeability, angiogen-
esis, and inflammatory responses in different tissues [92]. In the field of cancer research,
there are contradictory reports about the relevance of Angptl4 in regulating vascular per-
meability [93]. Our recent study has demonstrated that Angptl4 was markedly elevated
in meningitic E. coli infection of hBMECs as well as in a mice model, and the induction of
Angptl4 contributes to BBB disruption via ARHGAP5/RhoA/MYL5 signaling cascade [94].
Understanding the characterization of these vascularization targets involved in CNS infec-
tious diseases, such as VEGF-A, PDGF-BB, and ANGPTL4 will open new opportunities for
using these as potential therapeutic targets for bacterial meningitis (Figure 3).



Int. J. Mol. Sci. 2023, 24, 2852 8 of 17

3.3. Apoptosis Related Factors

A key cellular response called apoptosis is crucial for development and stability.
Genetic studies have shown that the loss of pro-apoptotic genes leads to abnormalities in
the CNS. In addition, the removal of dysfunctional cells is vital to the stability of the internal
tissues and organs environment. However, when improperly controlled, apoptosis can
potentially advance or even exacerbate disease processes [95]. By activating the extrinsic
route, pro-inflammatory cytokines such as TNF-α, CD40/CD40 ligand, CD47, and its ligand
thrombospondin-1 cause the apoptosis of BMECs [96]. Meningitis-causing pathogens,
including S. pneumoniae, Haemophilus parasuis (H. parasuis), and S. suis, can induce BMECs
apoptosis via several mechanisms. For instance, two different mitochondrial pathways are
activated by S. pneumoniae to initiate apoptosis: a caspase-3-dependent pathway that is
triggered by the physical contact between the bacteria and the BMECs, and a caspase-3-
independent pathway that is triggered by pro-inflammatory components of the bacterial
cell wall, or by the release of toxins like pneumolysin and H2O2 [97]. BMECs apoptosis
was also detected during H. parasuis infection. In a time- and dose-dependent manner, H.
parasuis induces caspase-3-mediated apoptosis of porcine BMECs [98].

It has been determined that the virulence factor SS2 Enolase affects BBB integrity.
According to a recent study, SS2 Enolase binds to the 40S ribosomal protein SA on the
surface of porcine BMECs. This causes the intracellular p38/ERK-eIF4E signaling path-
way to be activated, which encourages the expression of the heat-shock protein family D
member 1 (HSPD1) and starts the apoptosis process in the BMECs. This increases the BBB
permeability and, in turn, facilitates bacterial invasion [99].

In addition, the type VI secretion system (T6SS) has recently been identified and
characterized in several Gram-negative pathogens. It represents a complex secretion
machinery that contributes to pathogenicity in many bacteria [100]. The Hcp1 was secreted
in a T6SS-dependent manner in meningitic E. coli [101]. It was reported that Hcp1 could
induce cytokines release, cytoskeleton rearrangement, and apoptosis in BMECs to damage
BBB integrity [102]. BMECs apoptosis is a complex process involving distinct intracellular
signaling pathways. At present, there are few studies on the apoptosis of BMECs in the
field of bacterial meningitis, and further investigation is still needed (Figure 3).

3.4. Transcription Factors

HIF-1, a transcriptional factor, is linked to a variety of cerebral vascular pathological
disorders. HIF-1 is a heterodimeric complex, which is mainly comprised of O2-sensitive
α subunits (HIF-1α) and shared β subunits (HIF-1β), the latter being constitutively ex-
pressed under hypoxia [103]. HIF-1 could regulate transcriptional activation of several
genes responsive to the lack of oxygen, such as glucose transporters, VEGF, glycolytic
enzymes, and erythropoietin [104]. One of the most popular HIF-1 target genes in vascular
biology is VEGF. It was reported that the upregulation of HIF-1α/VEGF pathway during
S. pneumoniae infection is associated with BBB opening. In S. pneumoniae-infected mice,
therapeutic rescue with the HIF-1 inhibitor echinomycin increased survival and enhanced
BBB performance [105].

A zinc-finger transcription inhibitor known as Snail family transcriptional repressor 1
(SNAI1) is involved in a wide range of physiological and pathological processes, such as
healthy embryonic development, epithelial injury healing, and cancer spread [106]. A grow-
ing number of studies have confirmed the role of SNAI1 in cell junctions. Overexpression of
SNAI1 has been shown to destroy the top complex of vascular endothelial cells [107]. More-
over, SNAI1 can negatively regulate the expression of Claudin-5 and Occludin [108,109].
Most recently, GBS-infected hBMECs were found to increase the expression of SNAI1 that
mediated the degradation of ZO-1, Occludin, and Claudin-5, and disrupted endothelial
barrier integrity in cultured hBMECs [110]. In our investigation, we similarly showed
that meningitic E. coli induces SNAI1 and that SNAI1 negatively regulates the junctional
proteins ZO-1, Occludin, Claudin-5, and β-catenin. Although Snail-1 knocking-down did
not fully restore the decreased expression of TJs, this reflected a negative effect of Snail-1
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on the TJs to a certain degree [82]. The studies mentioned above show that transcription
factors are important endogenous regulators in charge of controlling BBB permeability.
However, the precise regulatory mechanisms involving other essential transcription factors
in BBB damage still require more experimental endeavors (Figure 3).

3.5. Metalloproteinases

A class of zinc-dependent endopeptidases known as matrix metalloproteinases (MMPs)
has been found to be an important regulator of the BBB integrity during bacterial meningi-
tis [111]. Studies on CNS infectious diseases have concentrated on MMP-8 (collagenase-2)
and MMP-9 (gelatinase B), as they both have the capacity to degrade basement membranes
due to their substrate specificity for type IV collagen, laminin, and fibronectin, the main com-
ponents of basal lamina surrounding cerebral vessels [112]. In vitro and in vivo, MMP-9
can break down Claudin-5, Occludin, and ZO-1, contributing to the breakdown of TJs [113].
Experimental evidence suggests that MMP-9, which is implicated in the breakdown of the
BBB, is primarily produced by BMECs and infiltrating neutrophils [114]. For example, M.
tuberculosis causes the breakdown of type IV collagen and decreases expression of TJs to
increase the BBB permeability [115], which is driven by M. tuberculosis-dependent secretion
of MMP-9 [116]. Except for causing direct degradation of the basement membrane and TJs,
MMP-9 affects expression of TJs by inhibiting the Sonic hedgehog (Shh) signaling pathway
in BMECs as well [117]. In addition, MMP-9 was found to contribute to brain damage
associated with N. meningitides meningitis significantly, and inhibition of MMP-9 reduced
intracranial complications in mice suffering from N. meningitides meningitis [118]. In an-
other study, the infection of BMECs with N. meningitides could enhance permeability, which
was accompanied by an increase in MMP-8 activity in supernatants taken from infected
cells. MMP-8 was involved in the proteolytic cleavage of the TJs Occludin, causing it to
vanish from the cell periphery. Moreover, MMP-8 affected cell adherence to the underlying
matrix [119]. In a study of S. suis meningitis, dexamethasone was reported to significantly
prevent S. suis-induced protein and morphological TJs alterations via attenuating MMP-3
expression [120].

In addition, a disintegrin and metalloprotease with thrombospondin type I repeats-13
(ADAMTS13) was reported to cleave a large polymeric adhesion protein von Willebrand
factor, which was synthesized in vascular endothelial cells, maintaining the CNS func-
tion [121]. In L. monocytogenes-infected lambs, significantly elevated levels of ADAMTS-13
may help to control and safeguard BBB integrity and CNS cells from listeric encephali-
tis. Furthermore, increased ADAMTS-13 expression may be essential for promoting the
survival of glia and neurons [122]. Together, these studies established that metallopro-
teinase activity is crucial in disassembling or maintaining cell junction components during
meningitis-causing bacteria infection (Figure 3).

3.6. Non-Coding RNA

It was previously thought that only proteins were responsible for controlling BBB
permeability, but non-coding RNA (ncRNA) has lately come to light as a crucial regulatory
component of this process [123,124]. Many species of ncRNAs, including microRNAs
(miRNAs), long ncRNAs (lncRNAs), and circular ncRNAs (circRNAs), can directly or
indirectly influence BBB integrity, which may hold therapeutic potential nucleic acid
targets in the context of bacterial meningitis [15]. For example, our team discovered that
circ_2858 was upregulated in BMECs after exposure to meningitic E. coli and showed
that this circ_2858 might promote VEGFA production by actively competing with miR-
93-5p, disrupting the TJs and impairing the BBB [125]. In another work, we revealed
that meningitic E. coli infection-induced lncRSPH9-4 exacerbated TJ disruption in BMECs,
most likely via the miR-17-5p/MMP3 axis [126]. Although miRNAs have been extensively
studied as potential therapeutic targets, at the time of writing, new regulatory ncRNAs such
as lncRNAs and circRNAs have received more attention and are still in the early phases of
research. A few investigations on the modulation of BBB permeability by lncRNAs and
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circRNAs described indirect pathways involving miRNAs. The lncRNAs and circRNAs
provide stable molecular targets that act as the magnet for the miRNAs, impairing the
regulatory functions of the specific miRNAs to which the lncRNAs or circRNAs bind [17].
As a result, more strategies for protecting BBB permeability through lncRNAs and circRNAs
need to be investigated (Figure 3).

3.7. Pattern-Recognition Receptors

Pattern-recognition receptors are believed to induce the expression of inflammatory
factors initiating the brain immune injury. One of the most significant immune defense
lines against infectious illnesses, TLRs are crucial for host defense [127]. TLR2 is involved
in cell activation by the cell wall and membrane components of Gram-positive bacteria,
such as lipoproteins, lipoteichoic acid, and peptidoglycan [128]. In the mouse S. pneumoniae
meningitis model, the bacterial infection caused the alteration of BBB permeability in both
wild-type and TLR2 deficient mice and the higher Evans blue concentration in the brains of
TLR2 deficient mice, compared with the control mice. This indicates that the activation of
TLR2 helps increase the permeability of the BBB [129].

The nucleotide-binding and oligomerization domain 2 protein (NOD2) belongs to the
NOD-like receptor (NLR) family [130]. Studies have found that S. pneumoniae enhancement
of the BBB permeability is closely related to the upregulated expression of NOD2 [131].
Since pattern-recognition receptors play crucial roles in stimulating the secretion of pro-
inflammatory cytokines and subsequently the development of pro-inflammatory responses,
inhibiting the activation of such pattern-recognition receptors, like TLR2 and NOD2, can
effectively reduce the neuroinflammatory response and maintain the stability of BBB
(Figure 3).

3.8. Others

Reactive oxygen species (ROS) are chemically reactive molecules containing oxygen
that are typical byproducts of aerobic metabolism [132]. ROS are produced by immune
cells and are essential for innate host defense as effectors due to their toxic action against
pathogens. However, unmanaged ROS regulation during infection may result in per-
sistent inflammatory conditions and diseases [133]. Staphylococcus aureus (S. aureus) is a
common opportunistic pathogen that can cause CNS infection and elevated paracellular
permeability. S. aureus infection of hBMECs resulted in the dose-dependent release of
cytokines/chemokines (TNF-α, IL-6, macrophage cationic peptide 1 (MCP-1), C-X-C motif
chemokine ligand 10 (CXCL10), and thrombomodulin), as well as the reduction of expres-
sion of TJs (Claudin-5 and ZO-1). These events were linked to the induction of ROS within
hBMECs by S. aureus [134].

A heme-containing peroxidase known as myeloperoxidase (MPO) is largely expressed
in neutrophils and to a lesser extent in monocytes. In several inflammatory illnesses,
MPO has been shown to act as a local mediator of tissue injury and the inflammation,
and plays a vital role in microbial killing by neutrophils [135]. Patients with bacterial
meningitis showed elevated systemic and local MPO, which was accentuated during the
feverish episodes. Reacting with cell-matrix metalloproteinase, MPO may contribute to
BBB dysfunction [136].

Members of the tripartite motif (TRIM) protein family have a role in a number of bi-
ological functions, such as apoptosis, oncogenesis, development, differentiation, and cell
proliferation [137]. Because of its wide-ranging role in triggering innate immune responses,
TRIM32, a member of the TRIM protein family, is a potential candidate for causing broad
and unbalanced cytokine production [138]. Following S. suis infection, TRIM32 deficiency
markedly decreased bacteremia and the production of pro-inflammatory cytokines, shielding
the infected mice from the streptococcal toxic shock-like syndrome. Additionally, it was
discovered that during the early stages of S. suis infection, TRIM32 loss increased the BBB’s
permeability and the recruitment of inflammatory monocytes [139]. This indicates that TRIM32
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both positively and negatively regulates S. suis meningitis. Therefore, the function of TRIM32
in S. suis infection still needs further study to answer (Figure 3).

4. Conclusions

In the past few decades, the treatment of bacterial meningitis has mainly focused on
killing invasive bacteria by using antibiotics and reducing the CNS inflammatory response
by using corticosteroids [140]. However, the mortality and morbidity due to bacterial
meningitis remains unacceptably high. Importantly, because of the immature development
of the host defense system and BBB in neonates, the complications caused by both factors
released by multiplying bacteria and as a result of the inflammatory host response to
bacterial components are severe [141]. Because of the traditional treatment’s shortcomings
in terms of efficacy, some new treatment strategies for bacterial meningitis have been
proposed in recent years. A multimodal treatment concept that targets different steps of the
pathophysiologic cascade, such as using non-bacteriolytic but bactericidal antibiotics (e.g.,
rifampicin and daptomycin) to limit bacterial component release, decreasing neutrophil
life-span to reduce leukocyte accumulation, blocking a central proinflammatory factor
(e.g., IL-1β, TNF-α, and MCP-1), and maintaining BBB permeability (e.g., vascularization
factors and MMPs), represents a promising approach in the successful bacterial meningitis
treatment [142]. Despite the existence of above novel treatment strategies, future work on
novel therapeutic targets is still required.

In order to maintain brain homeostasis under varied circumstances, BBB permeability
is highly dynamic and responsive to many internal and external cues. Changes in BBB
permeability are typically caused by blood-borne substances, such as bacterial metabolites,
hormones, or cytokines, which either directly affect the brain endothelium or induce an
inflammatory response that leads to BMECs dysfunction [143]. Damage to the integrity of
the BBB accelerates the CNS infectious diseases because this dysfunction can promote the
infiltration of the leukocyte and pathogens into the CNS and accelerate the development
of the disease. Therefore, the pathological analysis of BBB disruption and exploring the
potential molecular targets to maintain BBB permeability are indispensable and may be
a potential strategy for managing bacterial meningitis. The emphasis on possible BBB
alterations in pathological and pathogenic scenarios could help design novel therapeutic
strategies and optimize clinical drug administration practices.
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