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Abstract: Ornamental kale (Brassica oleracea L. var. acephala) is a popular decorative plant in late
autumn and winter. However, only during low-temperature color-changed periods below rough
15 ◦C can the plant accumulate anthocyanins and exhibit a diverse array of foliar color patterns.
In this study, we probed into the potential mechanism of inner leaf reddening in a red-leaf pure
line of ornamental kale by physiological, metabolic, and transcriptomic analyses. Determination of
anthocyanin contents in the uncolored new white leaves (S0), the light red leaves (S1) in the reddening
period and the red leaves (S2) completing color change, and analysis of anthocyanin metabolites
at stage S2, revealed that the coloring of red leaves was mainly attributed to the accumulation of
cyanidins. We further used transcriptomic sequencing between the pairwise S0, S1, and S2 stages
to identify 21 differentially expressed genes (DEGs) involved in anthocyanin biosynthesis, among
which the expression level of 14 DEGs was positively correlated with anthocyanin accumulation, and
6 DEGs were negatively correlated with anthocyanin accumulation. A total of 89 co-expressed genes
were screened out, from which three DEGs (BoCHI, Bo4CL3, and BoF3H) were identified as hub genes
in co-expression DEGs network. BoDFR and BoCHI were the DEGs with the highest expressions at S2.
Moreover, two co-expressed DEGs related to stress response (BoBBX17 and BoCOR47) also exhibited
upregulated expressions and positive correlations with anthocyanin accumulation. A deep dive into
the underlying regulatory network of anthocyanin accumulation comprising these six upregulated
DEGs from S0 to S2 was performed via trend, correlation, and differentially co-expression analysis.
This study uncovered the DEGs expression profiles associated with anthocyanin accumulation during
ornamental kale inner leaf reddening, which provided a basis for further dissecting the molecular
mechanisms of leaf color characteristic change in ornamental kale at low temperatures.
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1. Introduction

Leaf color is of important commercial value for many ornamental plant species.
Colored-leaf plants exhibit distinct color variations that result from the changes in pigment
type and proportion. Among numerous leaf color variations, the formation of red leaves
has received widespread attention, from which the vivid colorations could set off each
other with the green part and embellish the leaves [1]. Plant red or pink leaves contain
anthocyanin, chlorophyll, and carotenoid pigments. The reddening of leaves usually occurs
after undergoing a period of low temperature, accompanied by decreases in chlorophyll
and carotenoids contents and increases in anthocyanins [2].

Ornamental kale is a popular ornamental plant, with bright leaf colors, diverse pat-
terns, strong cold resistance, and a long ornamental period [3]. Above all, ornamental kale
requires low temperatures for developing its remarkable leaf color characteristic. Red-leaf
ornamental kale is one of the most popular varieties, which is widely used to decorate in
flower beds, flower borders, raised beds, and pots [4]. For ornamental kale, the synthesis
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and accumulation of anthocyanins principally cause the appearance of a red coloration
when encountering low temperatures at the color turning stage during late autumn and
winter [5,6].

Anthocyanins are water-soluble compounds that are naturally present in various
plants with a wide range of biological functions. Anthocyanins furnish plant tissues and
organs, such as petals, fruits, and seeds, with red, pink, purple, or blue colorations, and
also render plants resistant to biotic and abiotic stresses [7,8]. In addition, anthocyanins
possess strong antioxidant properties which are beneficial to human health [9]. The antho-
cyanin biosynthesis pathway has been intensively characterized, and most of the antho-
cyanin biosynthesis genes, including phenylalanine ammonia lyase (PAL), chalcone acety-
lase (CHS), chalcone isomerase (CHI) [10,11], flavanone 3-hydroxylase (F3H), flavonoid
3′-hydroxylase (F3′H), dihydroflavonol 4-reductase (DFR), anthocyanin synthase (ANS),
and UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT), as well as transcription factor
(TF) genes MYB, basic helix-loop-helix protein, WD40 protein, WRKY, and NAC TF, have
been identified in higher plants [12,13].

Furthermore, the biosynthesis and accumulation anthocyanins are closely associated
with environmental factors [14]. Temperature is a crucial external signal for regulating
anthocyanin metabolism. In general, low temperatures can induce and activate the expres-
sion of genes related to anthocyanin synthesis, so as to lead to an increase in the content
of anthocyanin in plants, while high temperatures could accelerate the degradation of
anthocyanins, thereby leading to plant color fading. In addition, the accumulation of
anthocyanins in some plants has been proved to be a strategy to adapt to low temperatures
and other stresses [15–19].

Advances in comprehension of anthocyanin metabolism and molecular genetic mech-
anisms in colored leaves have been produced in recent years. More than 600 naturally
occurring anthocyanins have been identified and isolated, most of which belong to six
well-known anthocyanins: pelargonidin, cyanidin, delphinidin, peonidin, petunidin, and
malvidin [20]. Red leaves mainly contain cyanidin and a small amount of malvidin,
pelargonidin, and delphinidin [21–25]. Pink leaves mainly contain cyanidin-3-(erucic acid)
(feruloyl)-diglucoside-5-glucoside [26]. It has been reported that purple leaves are dominant
or incompletely dominant to pink or white leaves, red leaves are dominant or incompletely
dominant to white or pink leaves, and the red leaf trait is controlled by genes with one or
two alleles [27–29]. The trait for pink leaves is controlled by one incompletely dominant
alleles and other alleles [30,31]. In ornamental kale, several genes that controlled some
leaf colors have been mapped. We previously found dihydroflavonol reductase (DFR) on
C09 controlled the red leaf trait [5,6]. Liu et al. (2017) and Feng et al. (2021) also found
that DFR is a candidate gene for the control of purple and pink leaves in ornamental
kale [32,33]. Yan et al. (2019) found that BoMYB2 controls purple leaves in ornamental
kale [34]. Jin et al. (2018) found that BoC4H2, BoUGT9, BoGST21, BoHEMA, BoCRD1,
BoPORC1, BoPORC2, BoCAO, and BoCLH1 play important roles in bicolor leaf formation
in ornamental kale [35]. To date, the molecular mechanisms of ornamental kale red leaf
formation in low-temperature environments still remain largely unclear. Guo et al. (2019)
found that 10 anthocyanin biosynthesis genes (BoDFR1, BoANS1, BoANS2, BoUGT79B1.1,
BoTTG1, BoTT8, Bol012528, BoMYBL2.1, BoTT19.1, and BoTT19.2) might participate in an-
thocyanin accumulation under low temperatures in ornamental kale [27]. However, the
study only focused on the color change in new and mature leaves between different colored
accessions, while the mechanism underlying anthocyanin accumulation in new leaves
under low temperature remains unknown and warrants further exploration.

In this study, we detected pigment contents and anthocyanin metabolites in a red-leaf
ornamental kale double haploid line ‘Y007-P-24′, in which the newly formed inner leaves
undergo a coloration change from white to red at low-temperature color turning stage. To
gain insights into the potential key genes involved in anthocyanin biosynthesis during
the new leaves reddening under low temperature, a series of RNA sequencing and co-
expressed gene analyses were performed among the three different leaf color development
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stages. Overall, the present study aimed to prospect key genes involved in anthocyanin
accumulation and lay a foundation for further exploring molecular mechanisms underlying
leaf color characteristics change in ornamental kale under low temperature.

2. Results
2.1. Anthocyanin Levels in the New Leaves of Red-Leaf Kale at Three Developmental Stages

During the leaf development of a red leaf ornamental kale ‘Y007-P-24′ (Figure 1a),
its new leaves undergo a color change from white to red (Figure 1b). To investigate the
new leaf reddening under low temperature, the anthocyanin contents of new leaves at
three developmental stages (S0, S1, and S2) were detected using the pH differential method.
As depicted in the Figure 1c, there were no anthocyanins detected at S0 and the total
anthocyanin contents gradually increased from S0 to S2, which indicated that the new leaf
reddening mainly resulted from the accumulation of anthocyanin.
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Figure 1. Phenotype and pigment accumulations in the new leaves at different developmental stages.
(a) The whole plant morphology of ‘Y007-P-24′; (b) The new leaves phenotype of ‘Y007-P-24′ at
different developmental stages. Bars = 1 cm; (c) The anthocyanin contents at S0–S2. Different capital
letters show significant differences based on an analysis of variance (Tukey’s test, p ≤ 0.01).

2.2. Anthocyanin Metabolite Analysis

In order to further explore the mechanism of anthocyanin accumulation in the new red
leaves, the component and content of anthocyanins at S2 were examined by LC-MS/MS.
As showed in Table 1, a total of 23 anthocyanins were detected in red leaves, namely
6 cyanidins, 7 delphinidins, 1 malvidin, 2 pelargonidins, 5 peonidins, and 2 petunidins.
Among them, the largest proportion was the cyanidins, accounting for 92.73% of the total
content of anthocyanins, while the total content of malvidin only accounted for 0.02% of
the total anthocyanin content. Above all, Cyanidin-3-O-glucoside is the highest component
of all cyanidins, followed by Cyanidin-3-O-5-O-(6-O-coumaroyl)-diglucoside. These two
abundant anthocyanin metabolites accounted for 77.30% of the total anthocyanins, sug-
gesting that they might be the principal substances for the red coloration of ‘Y007-P-24′

new leaves.

2.3. Library Construction and DEG Analysis

For a better understanding of the molecular mechanisms underlying the color change
in new leaves of ornamental kale, RNA-seq was exploited for comparing the differences
between the pairwise developmental stages. Nine cDNA libraries (three biological repli-
cates), corresponding to S0, S1, and S2, were constructed for transcriptomic sequencing.
After filtering the raw reads, a total of 63.83 Gb valid clean data were obtained (Table S1).
There were 147,150,188, 140,048,122, and 138,348,338 valid reads identified in S0, S1, and
S2, respectively (Tables S1 and S2). The clean reads yielded from all samples produced the
bases scoring Q20 and Q30 values ranging from 99.36% to 99.73% and 95.34% to 96.89%,
respectively. The GC content ranged from 46.5% to 47.00% (Table S1). Approximately
87.12–88.92% of the reads were mapped to the reference genome. A total of 798, 3097,
and 1333 differentially expressed genes (DEGs) were detected in S1 vs. S0, S2 vs. S0, and
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S2 vs. S1, respectively (Figure 2). Of the 798 DEGs in S1 vs. S0, 322 were upregulated,
whereas 476 were downregulated. The 3097 DEGs in S2 vs. S0 contained 1615 upregulated
DEGs and 1482 downregulated DEGs. A total of 673 upregulated and 660 downregulated
DEGs were identified in S2 vs. S1. The DEGs in S1 vs. S0, S2 vs. S0, and S2 vs. S1 were
used for trend analysis, gene expression pattern analysis, and co-expression analysis.

Table 1. Determination of the component and content of anthocyanins in the red leaves at S2.

Compounds Class Content (µg·g−1)

Cyanidin-3-(6′ ′-caffeylsophoroside)-5-glucoside Cyanidin 3.889 ± 0.304
Cyanidin-3-O-sambubioside-5-O-glucoside Cyanidin 0.436 ± 0.077

Cyanidin-3-O-glucoside Cyanidin 64.825 ± 4.807
Cyanidin-3-O-5-O-(6-O-coumaroyl)-diglucoside Cyanidin 36.004 ± 2.653

Cyanidin-3,5,3-O-triglucoside Cyanidin 5.515 ± 0.258
Cyanidin-3-O-sophoroside Cyanidin 10.300 ± 0.954

Delphinidin-3-O-(6-O-malonyl-beta-D-glucoside) Delphinidin 0.062 ± 0.006
Delphinidin-3-O-galactoside Delphinidin 1.360 ± 0.208

Delphinidin-3-O-(6-O-acetyl)-glucoside Delphinidin 0.017 ± 0.005
Delphinidin-3-O-sophoroside Delphinidin 0.964 ± 0.073

Delphinidin-3-O-sambubioside Delphinidin 0.015 ± 0.0005
Delphinidin-3-O-rhamnoside Delphinidin 0.138 ± 0.142

Delphinidin-3,5-O-diglucoside Delphinidin 2.365 ± 0.223
Malvidin-3-O-glucoside Malvidin 0.030 ± 0.003

Pelargonidin-3-(6′ ′-caffeylsophoroside)-5-glucoside Pelargonidin 0.008 ± 0.002
Pelargonidin-3-sophoroside-5-glucoside Pelargonidin 1.577 ± 0.258

Peonidin-3-(caffeoyl-glucosyl-glucoside)-5-glucoside Peonidin 0.010 ± 0.003
Peonidin-3-O-(6′ ′-ferulylsophoroside)-5-glucoside Peonidin 0.003 ± 0.001

Peonidin-3-O-glucoside Peonidin 0.131 ± 0.019
Peonidin-3,5-O-diglucoside Peonidin 0.536 ± 0.042

Peonidin-3-sophoroside-5-glucoside Peonidin 1.105 ± 0.224
Petunidin-3-O-sophoroside Petunidin 0.877 ± 0.133

Petunidin-3-O-(6-O-malonyl-beta-D-glucoside) Petunidin 0.277 ± 0.061

Data are represented as the mean ± standard deviation. (n = 3).
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We subsequently analyzed the enriched Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways of the DEGs (Figure 3). The DEGs in S1 vs. S0, S2 vs. S0, and
S2 vs. S1 were mapped to 63, 112, and 88 pathways, respectively. Two pathways, including
“flavonoid biosynthesis” (ko00941) and “phenylpropanoid biosynthesis” (ko00940), were
identified in S1 vs. S0 and S2 vs. S0, which were closely related to anthocyanin accumula-
tion in plant development. There were two, three, and four DEGs assigned to “flavonoid
biosynthesis” (ko00941) with respect to S1 vs. S0, S2 vs. S0, and S2 vs. S1. Bo8g081770 and
Bo9g177250 were upregulated expressed in all pairwise comparisons. Meanwhile, 5, 15, and
6 DEGs were mapped to “phenylpropanoid biosynthesis” (ko00940) in S1 vs. S0, S2 vs. S0,
and S2 vs. S1, respectively. Bo6g120830 was downregulated in all pairwise comparisons.
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Notably, the number of DEGs involved in these two pathways increased along with the
accumulation of anthocyanin from S0 to S2.
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2.4. Trend Analysis

All 3814 DEGs were filtered into eight distinct profiles. The DEGs in each profile
involved a wide range of KEGG pathways and GO terms, and displayed similar expression
patterns. Among these eight profiles, profiles 7, 0, 3, and 4 had a statistically significant
number of DEGs assigned to them. Profile 7 contained the highest number of DEGs,
followed by profile 0. The trend of DEGs in the profile 7 was positively correlated with an-
thocyanin accumulation, while negatively correlated with anthocyanin accumulation in the
profile 0. Profile 7 contained 1029 DEGs involved in anthocyanin biosynthesis, chlorophyll
biosynthesis, carotenoid metabolism, and photosynthesis. With regard to the 12 DEGs
involved in anthocyanin biosynthesis, there were 10 structural genes (BoC4H, Bo4CL3,
BoF3H, two BoDFR, BoF3′H, BoCHI, BoCYP98A3, BoCCOAMT, and BoSAT), 1 regulatory
gene (BoMYBL2), and 1 transport gene (BoTT19). Profile 0 contained 877 DEGs, including
4 DEGs involved in anthocyanin biosynthesis (BoSLP9, BoGL3, BoEGL3, and BoC4H). Profile
4 also contained the gene involved in anthocyanin biosynthesis among its total 410 DEGs
(Figure 4).

2.5. qRT-PCR to Determine Gene Expression Patterns

The gene expression patterns of the nine DEGs involved in anthocyanin metabolism
were validated by qRT-PCR (Figure 5, Table S3), which indicated that the transcriptome
analysis results were reliable and could be used for further analysis.

2.6. Anthocyanin Biosynthesis Genes at S0–S2

We observed that the development process of new leaves gradually turning red
attributed to the accumulation of anthocyanin in the leaves. On these grounds, we emphat-
ically investigated the anthocyanin biosynthesis genes. In total, 95 genes involved in antho-
cyanin biosynthesis were singled out, including 48 structural genes, 44 regulatory genes,
and 3 transport genes. The expression patterns of more than half of the genes involved
in anthocyanin biosynthesis were similar to those involved in anthocyanin accumulation
(Figures 6 and 7). Of the 95 genes, 21 were identified as DEGs (Table 2). As for the 13 struc-
tural DEGs, 12 showed significantly higher levels at S2 or S1 than at S0, including BoC4H
(Bo5g052100), Bo4CL3 (Bo6g099190), Bo4CL (Bo3g077430), BoCHS (Bo9g166290), BoCHI
(Bo9g177250), BoF3H (Bo8g081770), BoF3H (Bo7g100840), BoF3′H (Bo9g174880), BoDFR
(Bo9g058630 and Bo2g116380), BoCCOAMT (Bo2g056370), and BoSAT (Bo3g042330). With
regard to the regulatory DEGs, five out of seven were downregulated at S1 or S2, including
four positive regulatory genes and one negative regulatory gene. The four positive regula-
tory genes included BoGL3 (Bo4g141980 and Bo4g141990), BoEGL3 (Bo9g035460), and BoPR5
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(Bo6g119200). The negative regulatory gene was BoSLP9 (Bo4g015800). The upregulated
DEGs included a positive regulatory gene, BoHY5 (Bo9g171430) and a negative regulatory
gene, BoMYBL2 (Bo2g070770). In the aspect of the DEG involved in anthocyanin transport,
there was only one that upregulated BoTT19 (Bo9g161480) at S1.
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Bo4CL3 (Bo6g099190), BoCHI (Bo9g177250), BoF3H (Bo8g081770), BoF3′H (Bo9g174880),
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BoSLP9 (Bo4g015800), BoHY5 (Bo9g171430), and BoTT19 (Bo9g161480) might be responsible
for anthocyanin accumulation during the development of new leaves from S0 to S2.

Figure 5. Expression levels of the DEGs related to anthocyanin biosynthesis at S0–S2. Data are
represented as the mean ± standard deviation. Different lower-case letters indicate significant
differences based on an analysis of variance (Tukey’s test, p ≤ 0.05).
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Figure 7. The expression levels of the genes involved in anthocyanin biosynthesis at each stage
of leaf development (S0, S1, and S2). PAL: phenylalanine ammonia-lyase; C4H: cinnamic acid
4-hydroxylase; 4CL: 4-coumarate CoA ligase; CHS: chalcone synthase; CHI: chalcone isomerase;
F3H: Flavanone 3-hydroxylase; F3′H: flavanoid 3′-hydroxylase; F3′5′H: flavonoid-3′,5′-hydroxylase;
DFR: dihydroflavonol 4-reductase; ACC: acetyl CoA carboxylase; ANS: anthocyanidin synthase; FLS:
flavonol synthesis; UGT: family 1 glycosyltransferases; 5MAT: anthocyanidin 5-O-glucoside-6′′-O-
malonyltransferase; AAT: anthocyanin acyltransferases; EBGs: early biosynthesis genes; LBGs: late
biosynthesis genes; MBW: MYB-bHLH-WD40 complex; The expression levels of duplicated paralogs
belonging to a protein family were clustered in the same heat map module.

2.7. Identification of Differentially Co-Expressed Genes

To further identify the key genes involved in the new leaf reddening of ornamental
kale, the DEGs in S1 vs. S0, S2 vs. S1, and S2 vs. S0 were compared, and 89 DEGs were
identified as co-expressed genes (Figure 8a, Supplementary File S1). These DEGs included
BoCOR47 (Bo5g030290) and BoBBX17 (Bo5g073010), which were associated with stress
response. In addition, three DEGs involved in anthocyanin biosynthesis were identified:
Bo4CL3, BoF3H, and BoCHI. By comparing the upregulated and downregulated DEGs
among three pairwise comparisons, it was found that there were 48 upregulated and
40 downregulated DEGs (Figure 8b,c). All of these 88 DEGs were identified as co-expressed
genes in S1 vs. S0, S2 vs. S1, and S2 vs. S0. The DEGs, including BoCOR47, BoBBX17,
Bo4CL3, BoF3H, and BoCHI, were all upregulated and co-expressed. Subsequently, we
performed correlation analysis on the co-expressed DEGs and constructed a co-expression
network, in which Bo4CL3, BoF3H, and BoCHI were identified as hub genes (Figure 8d;
Tables S4 and S5). As mentioned above, the trends in the expression levels of these
five DEGs were positively correlated with anthocyanin accumulation. Therefore, it was
suggested that these genes might play a dominant role in anthocyanin accumulation of
new leaves under low-temperature conditions.
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Table 2. Differently expressed genes related to anthocyanin biosynthesis at S1 vs. S0, S2 vs. S1 and
S2 vs. S0.

Gene Annotation S1 vs. S0 S2 vs. S1 S2 vs. S0

Bo5g052100 C4H up up up *
Bo3g024650 C4H down down down *
Bo6g099190 4CL3 up * up * up *
Bo3g077430 4CL up up * up *
Bo9g166290 CHS up up * up
Bo9g177250 CHI up * up * up *
Bo8g081770 F3H up * up * up *
Bo7g100840 F3H up down up *
Bo9g174880 F3′H - up up *
Bo9g058630 DFR up up up *
Bo2g116380 DFR up * up up *
Bo3g042330 SAT up * up up *
Bo4g141980 GL3 down down down *
Bo4g141990 GL3 down down down *
Bo9g035460 EGL3 down down down *
Bo9g171430 HY5 up up up *
Bo2g070770 MYBL2 up * up up *
Bo4g015800 SLP9 down down down *
Bo9g161480 TT19 up * up up
Bo6g119200 PR5 down down * down *
Bo2g056370 CCOAMT up up * up *

* Represents differentially expressed genes.
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3. Discussion

For ornamental kale, its newly formed inner leaves will gradually ‘blossom out’
into various pattern-colored leaves during the low-temperature color turning stage. This
distinctive growth characteristic, together with its strong cold resistance, makes ornamental
kale a popular decorative plant. Anthocyanins play an important role in plant physiology
that furnish bright colors across the plant kingdom. Herein, we aimed to decipher the
potential mechanism that underlies the new leaf reddening in ornamental kale. To this
end, we firstly detected the changes of anthocyanin accumulation in new leaves at S0–S2 at
the physiological level and determined the anthocyanin metabolites in detail. Following
comparative transcriptome profiling between the pairwise S0, S1, S2 stages identified
21 DEGs involved in anthocyanin biosynthesis. A series of trend analysis, correlation
analysis, and co-expression analysis were carried out. Four structural DEGs (BoDFR, BoCHI,
Bo4CL3, and BoF3H) involved in anthocyanin biosynthesis and two transcription factor
DEGs (BoBBX17 and BoCOR47) in stress response were identified, which were upregulated
when expressed from S0 to S2, and positively correlated with anthocyanin accumulation.
Our results not only identified the key genes which might cooperatively contribute to the
anthocyanins accumulation in ornamental kale at the color turning stage, but also provided
insight into the potential mechanism underlying leaf reddening under low temperatures.

There are six types of anthocyanin pigments commonly found in nature, including
pelargonidin, which usually renders plants orange-red in coloration; cyanidin, which gives
plants a purplish-red coloration; and peonidin, which provides magenta color; while the
blue-purple coloration is usually generated by delphinidin, petunidin, and malvidin [36].
The difference in these pigment proportions at the color-developing tissues ultimately
determine the external coloration of plants. In the present study, the increased anthocyanin
contents, along with the deepening of red coloration in new leaves, was almost 190 times
higher at S2 than that at S0. Subsequent anthocyanin components analysis determined
that the new leaf reddening was the result of the accumulation of cyanidins. High-level
Cyanidin-3-O-glucoside and Cyanidin-3-O-5-O-(6-O-coumaroyl)-diglucoside were the
two main components. Similar findings were highly consistent with that in the leaves
of red cabbage (B. oleracea), which were predominantly constructed of contain cyanidin
3, 5-diglucoside [37,38]. Similarly, Cyanidin 3, 5-O-diglucoside played an important role in
the final red coloration of Acer pseudosieboldianum in autumn [39]. These results suggest
that the cyanidins play a dominant role in the red coloration of ornamental kale.

The anthocyanin biosynthesis pathway is the best-understood secondary metabolic
pathway in plants and can be divided into four steps: phenylpropanoid biosynthesis, the
polyketide pathway, early biosynthesis, and late biosynthesis. Anthocyanin accumulation
is directly associated with structural and regulatory genes in the anthocyanin biosynthesis
pathway [40]. Across plant species, anthocyanin biosynthesis was found to be regulated by
MYB-bHLH-WD40 repeat protein (MBW) complexes [41]. To further explore the molecular
mechanisms underlying anthocyanin biosynthesis and accumulation during the process
of new leaves reddening in ornamental kale under low temperatures, we performed
comprehensively comparative transcriptome analysis among different color development
stages to prospect the key DEGs potentially making the greatest contributions to new leaf
color variation. As a result, we identified 21 DEGs involved in anthocyanin biosynthesis
from S0 to S2. The expression patterns of most structural genes were similar to those of
genes involved in anthocyanin accumulation. Since the Brassica species experienced an
extra whole genome triplication (WGT) event and tandem duplication (TD) compared
with the model plant Arabidopsis thaliana, most of the anthocyanin biosynthetic genes
were multiple gene copies in B. oleracea [27,42]. We noticed that several orthologous
genes among these 21 DEGs exhibited different expression patterns. For example, C4H
(Bo5g052100) transcript was increased from S0 to S2, while C4H (Bo3g024650) was the
opposite. Another case was that two DFR (Bo9g058630 and Bo2g116380) both showed
up-regulated expressions in three comparison groups (Table 2). These results indicated that
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these duplicate anthocyanin biosynthesis genes might possess functional redundancy or
play diverse roles in anthocyanin biosynthesis.

Of the differentially expressed 13 structural genes that were upregulated at S2 or S1
rather than at S0, three DEGs (Bo4CL3, BoF3H, and BoCHI) were denoted as co-expressed
genes. Among them, we found that the expression pattern of Bo4CL3 was significantly
correlated with anthocyanin accumulation (Figure 6). 4CL is the key enzyme involved in
the last step of the phenylpropanoid pathway and is expressed in many different organs.
Up to now, four 4CL genes have been identified in A. thaliana; among these genes, 4CL3 is
reportedly involved in flavonoid metabolism [43]. Guo et al. (2019) found 4CL3 exhibited
a rather high expression level in purple inner leaves of a purple ornamental cabbage
line [27]. In addition, in the transcriptome analysis of the roots from an anthocyanin-rich
radish variety ‘Xinlimei’, 4CL3 together with the other nine structural genes were identified
as critical for anthocyanin biosynthesis [44]. Notably, based on the conjoint analysis of
transcriptomes and metabolomes in tolerant and sensitive rapeseed varieties, it was found
that Bn4CL3 as one of the strong candidate genes might function in adapting to cold stress
in rapeseed [45]. Therefore, we conjectured that Bo4CL3 might play a principal role in
mediating anthocyanin accumulation at S0–S2 stages responding low temperatures.

CHI and F3H, as the ‘early’ genes in anthocyanin biosynthetic pathway, have been
characterized in multiple species [46,47]. CHI can catalyze chalcone to naringenin, and
the following F3H catalyzes the formation of colorless dihydroflavonols [48]. Studies have
shown that a lack of CHI expression often results in decreased anthocyanin levels [49]. The
expression levels of CHI were also different among the four flower development stages in
the Paeonia lactiflora variety ‘Huangjinlun’ [50]. Forkman et al. (1980) reported a f3h mutant
that led to the formation of white flowers in Matthiolaincana [51]. Furthermore, a knockout
mutant of F3H in A. thaliana contained lower flavanol and anthocyanin contents compared
to the wild type [52]. In addition, we noticed that the BoDFR accounting for the conversion
of dihydrofavonols to leucoanthocyanidins in the late step of anthocyanin biosynthesis
possessed the highest expression at S2. In ornamental kale, DFR has been proved as the
causal gene conferring the purple, red, and pink leaf traits [5,6,32,33].

The accumulation of anthocyanins in multiple species has been proved as a strategy
to adapt to various external stresses [40,53]. It has been reported that there might exist a
strong relationship between low temperature induction and anthocyanin accumulation in
plants, which can improve plant adaptation to low temperatures [19,54,55]. Therefore, we
supposed that at low temperatures, the new leaves of ornamental kale might be induced
to accumulate anthocyanin compounds. Previous studies of low-temperature-induced
anthocyanin accumulation in Arabidopsis seedlings revealed that the CHI, F3H, and DFR
were all up-regulated by low temperatures in a manner that was most partially or fully
dependent on bZIP transcription factors HY5/HYH, which have been proved to be pivotal
transcription factors in anthocyanin synthesis by regulating the promoter activity of the
structural genes [56]. In our study, the positive regulatory gene BoHY5 was also identified
as an upregulated DEG in new leaf reddening, which might regulate the expression level
of structural genes, including BoCHI, BoF3H, and BoDFR.

To further clarify the anthocyanin biosynthesis mechanism during the low-temperature
color-changed period, we also identified the DEGs that respond to stress. Among the
89 co-expressed DEGs, BoCOR47 and BoBBX17 were identified as cold stress-response
genes. The two DEGs were upregulated in all three comparisons. Trend analysis showed
that these two DEGs, together with Bo4CL3, BoCHI, BoF3H, and BoDFR, all occurred in
profile 7 and exhibited high correlation with these three hub DEGs (Figures 4a and 8d;
Tables S4 and S5). Guo et al. (1992) identified a cold-regulated wheat gene, cor39. This gene
is related to cor47 and is expressed in leaf, root, and crown tissues at low temperatures [57].
COR47 is one of the principal dehydrins (DHNs) proteins that accumulate in response to
low temperatures and serve as a cryo-protector contributing to the cold stress response [58].
COR47 overexpression and RAB18 double-overexpression plants were cold tolerant [59].
In respect to BBX17, which belongs to B-box (BBX) zinc finger transcription factor family,



Int. J. Mol. Sci. 2023, 24, 2837 12 of 17

it is involved in regulating the growth and development of plants and resisting various
stresses [60,61]. Bai et al. (2014) found that an apple B-box protein controls the anthocyanin
levels in peels under UV-B and low temperature conditions [62]. An et al. (2021) found
that MdBBX37 promoted apple cold tolerance by binding to the promoters of MdCBF4
and MdCBF4 and activating their transcription [63]. Three B-box proteins (BBX20, BBX21
and BBX22) served as essential partners for HY5-dependent modulation of anthocyanin
accumulation and transcriptional regulation [64]. Gathering up these threads, we suspected
that BoCOR47, BoHY5, BoBBX17 might contribute to the anthocyanin accumulation, as well
to improving cold tolerance. However, the exact role of BBX17 and its potential linkage
with HY5 and COR47 need to be further studied in ornamental kale.

Based on our results, we proposed a potential genetic mechanism of anthocyanin
biosynthesis in the process of new leaf reddening of ornamental cabbage under low tem-
peratures (Figure 9). It was speculated that low temperatures might induce the expression
of BoCOR47 and BoBBX17 in the new white leaves at S0, whereafter the BoBBX17 might
further induce the up-regulated expression of BoHY5. The BoHY5 could directly promote
the synthesis of anthocyanins or indirectly promote the synthesis by activating the expres-
sion of MBW complex. The structural genes Bo4CL3, BoF3H, BoCHI, and BoDFR played
a crucial role in anthocyanin accumulation during low-temperature new leaf reddening.
The up-regulated BoBBX17 and BoCOR47 might act as cryo-protectors to adapt ornamental
kale to cold environment. Overall, our study provided a comprehensive gene network
of anthocyanin accumulation in ornamental kale, which contributes to further exploring
molecular mechanisms underlying ornamental kale leaf color characteristics change under
low temperatures.
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Figure 9. A possible regulatory network of anthocyanin accumulation in the process of new leaf
reddening of ornamental kale under low temperature. Red solid box represents the upregulated
DEGs in all three comparisons (S1 vs. S0, S2 vs. S1, and S2 vs. S0); Pink dashed box represents
the upregulated DEGs in S2 vs. S0; Solid line indicates direct interaction; Dotted line indicates
indirect interaction.

4. Materials and Methods
4.1. Plant Materials

‘Y007-P-24′ is a red-leaf double haploid line from the Osaka Red variety (TAKII, Japan).
The plants exhibited clear coloration with new red leaves during their decorative period
when they were grown in a greenhouse at Shenyang Agricultural University (Shenyang,
China). We sampled the leaves that were at three color developmental stages, which were
harvested from the same plant at the same time (Figure 1b): S0 (white leaf), S1 (light red
leaf with white main vein), and S2 (red and slightly green leaf with white main vein). New
red leaves first appeared at the end of September to early October when the temperature
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fell below 15 ◦C. The phenotype appeared from the end of September to March of the
following year. At S0–S2, samples of whole leaves without their main veins were collected,
and three independent biological replicates were used. All samples were immediately
frozen in liquid nitrogen and stored at −80 ◦C for pigment measurement, RNA-seq, and
qRT-PCR.

4.2. Measurement of Anthocyanin Content

The total anthocyanin content was determined by measuring the absorbance at 536 and
700 nm in two buffers (pH 1.0 and 4.5) [65]. Data were obtained from three independent bi-
ological replicates. Total anthocyanin content was calculated using the following formulas:

Anthocyanin content (mg/mL) =
A×MW × DF

e× 1

A = (A536 − A700) pH 1.0—(A536 − A700) pH 4.5, where MW = 449.2 g/mol; e = 26900;
DF represents the dilution factor; 1 represents the optical path of the cuvette, which was
1 cm.

4.3. Anthocyanins Extraction and Multiple Reaction Monitoring

The freeze-dried samples were ground into powder (30 Hz, 1.5 min), and 50 mg
powder was extracted with 0.5 mL methanol/water/hydrochloric acid (500:500:1, v/v/v).
Then the samples were vortexed for 5 min, ultrasound for 5 min, and centrifuged at
12,000× g under 4 ◦C for 3 min. The residue was re-extracted by repeating the above
steps under the same conditions. All the supernatants were collected and filtrated by a
membrane filter (0.22 µm, Anpel) before LC-MS/MS analysis.

UPLC conditions: The sample extracts were analyzed using an UPLC-ESI-MS/MS sys-
tem (UPLC, ExionLC™ AD, https://sciex.com.cn/, accessed on 1 March 2022); MS, Applied
Biosystems 6500 Triple Quadrupole, https://sciex.com.cn/ (accessed on 1 March 2022).
The analytical conditions were as follows: UPLC: column, WatersACQUITY BEH C18
(1.7 µm, 2.1 mm × 100 mm); solvent system, water (0.1% formic acid): methanol
(0.1% formic acid); gradient program, 95:5 v/v at 0 min, 50:50 v/v at 6 min, 5:95 v/v at
12 min, hold for 2 min, 95:5 v/v at 14 min; hold for 2 min; flow rate, 0.35 mL/min; tempera-
ture, 40 ◦C; injection volume, 2 µL.

ESI-Q TRAP-MS/MS: Linear ion trap (LIT) and triple quadrupole (QQQ) scans were
obtained on a triple quadrupole-linear ion trap mass spectrometer (QTRAP), QTRAP®

6500+ LC-MS/MS System, equipped with an ESI Turbo Ion-Spray interface, operating
in positive ion mode and controlled by Analyst 1.6.3 software (Sciex). The ESI source
operation parameters were as follows: ion source, ESI+; source temperature 550 ◦C; ion
spray voltage (IS) 5500 V; curtain gas (CUR) was set at 35 psi.

Anthocyanins contents were detected by Genepioneer based on the AB Sciex QTRAP
6500 LC-MS/MS platform, and were analyzed using scheduled multiple reaction monitor-
ing (MRM). All the data were analyzed using Analyst 1.6.3 software (Sciex). All metabolites
were quantified by Multiquant 3.0.3 software (Sciex). Mass spectrometer parameters, the
declustering potentials (DP), and collision energies (CE) for individual MRM transitions
were performed with further DP and CE optimization. A specific set of MRM transitions
were monitored for each period according to the metabolites eluted within this period.

4.4. Identification of Anthocyanin Biosynthesis Genes in Brassica Oleracea

The sequences of anthocyanin biosynthesis genes in A. thaliana were downloaded
from TAIR (http://www.arabidopsis.org/, accessed on 1 March 2022). The sequences were
aligned with the relevant protein sequences using BLASTP. The threshold was set at an
E-value ≤ 1 × 10−10.

https://sciex.com.cn/
https://sciex.com.cn/
http://www.arabidopsis.org/
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4.5. RNA Extraction and Library Construction

Total RNA was extracted from each sample using a Total RNA Purification Kit (LC
Science, Houston, TX, USA; TRK1001) according to the manufacturer’s protocol. Total
RNA was extracted from each whole leaf without the main vein collected at S0, S1, and
S2. Three biological replicates were used for each experiment. Nine RNA-seq libraries
were constructed. All extracted RNA samples were further monitored for quantity and
purity using a Bioanalyzer 2100 and an RNA 6000 Nano LabChip kit (Agilent Technologies,
Santa Clara, CA, USA), with an RNA integrity > 7.0. Poly(A) mRNA was isolated from
10 µg RNA using the poly-T oligo method (Invitrogen, Carlsbad, CA, USA). Cleaved RNA
fragments were used to generate a cDNA library using an mRNA-Seq Sample Preparation
kit (Illumina, San Diego, CA, USA) following the manufacturer’s protocol. The 150-bp
paired-end raw reads were sequenced by LC Science (Hangzhou, China) on an Illumina
HiSeq 4000 platform. The adapters, low-quality reads, and ambiguous reads were removed
from the raw reads. The Q20, Q30, and GC contents of the clean data were calculated
(Table S1).

4.6. Read Mapping onto the Reference Genome

All clean reads were mapped onto the B. oleracea reference genome
(ftp://ftp.ensemblgenomes.org/pub/release-38/plants/genbank/brassica_oleracea/,
accessed on 1 March 2022) using the HISAT package, allowing for a maximum of two
mismatches and multiple alignments per read (up to 20 by default).

4.7. Differential Expression Analysis

All mapped reads were assembled using StringTie, and the fragments per kilobase
million method was used to calculate mRNA expression levels. The DEGs were identified
via log2 (fold change) > 1 and statistical significance (p ≤ 0.05). All DEGs were mapped
to GO terms and KEGG pathways. Hypergeometric tests with the Bonferroni correction
were used to find the significantly enriched KEGG pathways and GO terms. The threshold
value was p ≤ 0.05.

4.8. Trend Analysis and Correlation Analysis

Trend analysis software was used to cluster the DEGs in S1 vs. S0, S2 vs. S0, and
S2 vs. S1 into eight different expression profiles according to the log2Ratio (http://www.
omicshare.com/tools/?l=en-us, accessed on 1 March 2022). Correlation analysis was
performed using the OmicStudio tools at https://www.omicstudio.cn/tool/62 (accessed
on 1 March 2022).

4.9. qRT-PCR

Total RNA was extracted from leaves at different developmental stages, as described
above, and cDNA was synthesized from 2 µg total RNA using a cDNA synthesis kit
(Vazyme, Nanjing, China) in a total volume of 20 µL. A total of nine DEGs related to
anthocyanin biosynthesis in S0–S2 were selected for qRT-PCR. Gene-specific primers were
designed using Primer Premier Software v.5.0 (Premier Biosoft, Palo Alto, CA, USA)
(Table S3). Ultra SYBR Mix (CWBIO, Beijing, China) and the QuantStudio 6 PCR system
(Thermo Fisher Scientific, Waltham, MA, USA) was used for qRT-PCR. Furthermore, 50 µL
reaction mixture contained 2 µL cDNA (1:50 dilution), 25 µL of 2×Ultra SYBR Mix (CWBIO,
Beijing, China), and 1 µL of each primer (100 nM final concentration). The amplification
conditions were as follows: 95 ◦C for 10 min, 40 cycles of 95 ◦C for 15 s, and 60 ◦C for 1 min.
A melting curve analysis (55–95 ◦C) was performed at 95 ◦C for 15 s, 60 ◦C for 1 min, 95 ◦C
for 15 s, and 60 ◦C for 15 s to confirm the specificity of the PCR amplification. Actin gene
was used as an internal control. Relative expression levels were calculated using the 2−∆∆Ct

method [66]. All experiments were performed using three independent samples from three
independent biological replicates.

ftp://ftp.ensemblgenomes.org/pub/release-38/plants/genbank/brassica_oleracea/
http://www.omicshare.com/tools/?l=en-us
http://www.omicshare.com/tools/?l=en-us
https://www.omicstudio.cn/tool/62
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4.10. Statistical Analysis

SPSS version 23 was applied to analyze the differences at different stages (IBM, New
York, NY, USA). Analysis of variance (followed by Tukey’s test) was used to test differences
between samples, with p ≤ 0.05 considered statistically significant. For correlation analysis,
the Pearson correlation coefficient (r) was calculated.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms24032837/s1.
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