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Abstract: Glaucoma is a multifactorial neurodegenerative illness requiring early diagnosis and
strict monitoring of the disease progression. Current exams for diagnosis and prognosis are based
on clinical examination, intraocular pressure (IOP) measurements, visual field tests, and optical
coherence tomography (OCT). In this scenario, there is a critical unmet demand for glaucoma-related
biomarkers to enhance clinical testing for early diagnosis and tracking of the disease’s development.
The introduction of validated biomarkers would allow for prompt intervention in the clinic to help
with prognosis prediction and treatment response monitoring. This review aims to report the latest
acquisitions on biomarkers in glaucoma, from imaging analysis to genetics and metabolic markers.
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1. Introduction

The progressive loss of retinal ganglion cells (RGC) that characterizes glaucoma, the
most prevalent cause of permanent blindness in the world, is thought to be the result of a
multifactorial neurodegenerative illness. A combination of clinical examination, intraocular
pressure (IOP) measurements, visual fields, and structural imaging parameters are currently
needed to diagnose glaucoma, classify its severity, and monitor the progression and the
response to medical or surgical intervention. A diagnosis may be missed or delayed when
visual symptoms are minimal or absent in the early stages of glaucoma.

Clinical, functional, and structural tests now suffer from the necessity for baseline
testing and the lengthy lag time needed to determine disease progression and treatment
response. Additionally, RGCs may experience malfunction before cell death, which may be
reversed with treatment [1]. Thus, there is a critical unmet demand for glaucoma-related
biomarkers to enhance clinical testing for early diagnosis and tracking of the disease’s de-
velopment. The United States National Institutes of Health Biomarkers Definitions Working
Group defined a biomarker as “a characteristic that is objectively measured and evaluated
as an indicator of normal biological processes, pathogenic processes, or pharmacologic
responses to a therapeutic intervention” [2]. Pulse rate and blood pressure are examples of
biomarkers, as well as simple chemistry tests and more advanced laboratory or imaging
studies. The development of biomarkers for therapeutic utility involves statistical valida-
tion of repeatability, specificity, sensitivity, and the evaluation of relevance [3]. Relevance
is the capacity of a biomarker to deliver information that will influence clinical decisions
and endpoints.

The introduction of validated biomarkers would allow for prompt intervention in the
clinic to help with prognosis prediction and treatment response monitoring, as well as to
conduct early-phase clinical trials more quickly, for example, to test potential medicines [4].
This review aims to report the latest acquisitions on biomarkers in glaucoma, from imaging
analysis to genetics and metabolic markers.
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2. Method of Literature Search

We searched Pubmed, Web of Science, ScienceDirect, and EMBASE for articles relating
to glaucoma and precision medicine. We included articles from 1992 to August 2022 by
using the following terms in various combinations: “precision medicine”, “biomarkers”,
“artificial intelligence”, “genetics”, “glaucoma”, and “redox state”. Studies were limited to
the English language. Relevant articles from the reference lists of the identified articles were
manually searched for additional inclusions. However, articles written in other languages
with an English abstract were also considered if the abstract provided adequate information.
Articles without an English abstract were excluded.

3. Artificial Intelligence in Glaucoma

The use of artificial intelligence is expanding rapidly. Machine learning (ML) and deep
learning (DL) allowed a more sophisticated and self-programming way to use machines in
automatic data analysis. More in detail, in machine learning, a system can automatically
improve its performance and learn by itself with experience without being specifically
programmed to do so. Specifically, using a convolutional neural network (CNN) architec-
ture, the deep learning algorithm can take in an input image, assign importance (learnable
weights and biases) to various aspects/objects in the image, and be able to differentiate
one from the other [5]. Similar to neurons derived from the mammalian visual cortex,
the neural network’s architecture consists of many hidden layers, each with its specific
receptive field and connection to a further layer (Figure 1).
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The deep learning network works as a two-step process. The first is the feature
learning step, in which convolution, pooling, and activation functions make the ‘jump
ahead’ between hidden layers. Secondly, the classification function converts the probability
value to a label, providing a clinical output such as healthy or pathologic [6,7].

Although this architecture traditionally provided a high degree of computational
power, in recent years, more advanced network architectures have been developed, allow-
ing the system to analyze more complex data sources. AlexNet (2012) was introduced to
improve the results of the ImageNet challenge. VGGNet (2014) was introduced to reduce
the number of parameters in the CNN layers and improve the training time. ResNet (2015)
architecture makes use of shortcut connections to solve the vanishing gradient problem
(which is encountered when during the iteration of training, each of the neural network’s
weights receives an update proportional to the partial derivative of the error function with
respect to the current weight) [8]. The basic building block of ResNet is a residual block that
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is repeated throughout the network. There are multiple versions of ResNet architectures,
each with a different number of layers. Inception (2014) increases the network space from
which the best network is to be chosen via training. Each inception module can capture
salient features at different levels [9].

Traditional metrics assessing the DL algorithm’s quality are sensitivity, specificity,
precision, accuracy, positive predictive value, negative predictive value, and area under the
receiver operating curve (AUC).

It is known that the early detection of glaucoma could eventually preserve vision in
affected people. However, due to its clinical history of being symptomatic only in advanced
stages and when most of the RGCs are already compromised, it is crucial to introduce a tool
to detect glaucoma in clinical practice in pre-symptomatic form automatically. Furthermore,
it could be of clinical relevance also to find new ways to provide targeted treatment and
forecast the clinical progression.

In this scenario, we reviewed the most recent advances in artificial intelligence for
either the detection or prediction of glaucoma progression, focusing on various sources of
clinical data such as fundus photography (FP), optical coherence tomography (OCT), and
standard automatic perimetry (SAP).

3.1. Fundus Photography

In clinical practice, ophthalmologists suspect glaucoma by analyzing optic nerve head
(ONH) anatomy, cup-to-disc ratio (CDR), optic nerve head notching or vertical elongation,
retinal nerve fiber layer (RNFL) thinning, presence of disc hemorrhages, nasal shifting of
vessels, or the presence of parapapillary atrophy. However, the diagnostic process could be
challenging considering the extreme variance of these parameters [10]. It has been shown
that agreement among experts on detecting glaucoma from optic nerve anatomy is barely
moderate [11]. Furthermore, with standard fundus photography, not only the variability of
anatomy could be misleading, but also the parameters of acquisition such as exposition,
focus, depth of focus, contrast, quality, magnification, and state of mydriasis.

In this scenario, artificial intelligence algorithms can extract various optic disc features
and automatically detect glaucoma from fundus photographs. For example, Ting et al. [7]
collected 197,085 images and trained an artificial intelligence algorithm to automatically
determine the cup-disc ratio (CDR) with an AUC of the receiver operating characteris-
tic (ROC) curve of 0.942 and sensibility and specificity, respectively, of 0.964 and 0.872.
Similarly, Li et al. [12] developed an algorithm based on 48,116 fundus images reporting
high sensitivity (95.6%), specificity (92.0%), and AUC (0.986). Although the importance of
automatically detecting the excavation of the optic nerve head, it is known that high inter-
subject variability characterizes CDR; some large optic nerve heads have bigger cupping
even without any sign of glaucoma. To reduce the rate of false positives, other researchers
trained a deep learning algorithm to determine the presence of glaucoma based on fundus
photographs and implemented it with the visual field severity [13].

Li and coworkers used a pre-trained CNN called ResNet101 and implemented it with
raw clinical data in the last connected layer of the network; interestingly, there were no
statistically significant changes in AUC, but they found an improvement in the overall
sensitivity and specificity of the model, confirming the importance of multi-source data to
improve the discriminative capacity of the glaucomatous optic disc [14].

More recently, Hemelings et al. utilized a pre-trained CNN structure relying on active
and transfer learning to develop an algorithm with an AUC of 0.995. They also introduced
the possibility for clinicians to use heatmaps and occlusion tests to understand better the
predominant areas from which the algorithm based its predictions; it is an exciting way of
trying to overcome some problems related to the well-known ‘black-box’ effect [15].

The majority of the publications that were analyzed suggested that an automated
system for diagnosing glaucoma could be developed (Table 1). The severity of the disease
and its high incidence rates support the studies that have been conducted. Deep learning
and other recent computational methods have proven to be promising fundus imaging
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technologies. Some recent technologies, such as data augmentation and transfer learning,
have been used as an alternative way to optimize and reduce network training, even though
such techniques necessitate a large database and high computational costs.

Table 1. Summary of studies on glaucoma detection using fundus photography.

Author Year N. of Images Structure SEN SPEC ACC AUC

Kolar et al. [16] 2008 30 FD 93.80%

Nayak et al. [17] 2009 61 Morphological 100% 80% 90%

Bock et al. [18] 2010 575 Glaucoma Risk Index 73% 85% 80%

Acharya et al. [19] 2011 60 SVM 91%

Dua et al. [20] 2012 60 DWT 93.3%

Mookiah et al. [21] 2012 60 DWT, HOS 86.7% 93.3% 93.3%

Noronha et al. [22] 2014 272 Higher order
cumulant features 100% 92% 92.6%

Acharya et al. [23] 2015 510 Gabor transform 89.7% 96.2% 93.1%

Isaac et al. [24] 2015 67 Cropped input image
after segmentation 100% 90% 94.1%

Raja et al. [25] 2015 158 Hybrid PSO 97.5% 98.3% 98.2%

Singh et al. [26] 2016 63 Wavelet feature extraction 100% 90.9% 94.7%

Acharya et al. [27] 2017 702 kNN (K = 2) Glaucoma
Risk index 96.2% 93.7% 95.7%

Maheshwari et al. [28] 2017 488 Variational mode
decomposition 93.6% 95.9% 94.7%

Raghavendra
et al. [29] 2017 1000 RT, MCT, GIST 97.80% 95.8% 97%

Ting et al. [7] 2017 494,661 VGGNet 96.4% 87.2% 0.942

Kausu et al. [30] 2018 86 Wavelet feature extraction,
Morphological 98% 97.1% 97.7%

Koh et al. [31] 2018 2220 Pyramid histogram of visual
words and Fisher vector 96.73% 96.9% 96.7%

Soltani et al. [32] 2018 104 Randomized Hough
transform 97.8% 94.8% 96.1%

Li et al. [12] 2018 48,116 Inception-v3 95.6% 92% 92% 0.986

Fu et al. [33] 2018 8109 Disc-aware ensemble
network (DENet) 85% 84% 84% 0.918

Raghavendra
et al. [29] 2018 1426 Eighteen-layer CNN 98% 98.30% 98%

Christopher et al. [34] 2018 14,822 VGG6, Inception-v3,
ResNet50 84–92% 83–93% 0.91–

0.97

Chai et al. [35] 2018 2000 MB-NN 92.33% 90.9% 91.5%

Ahn et al. [36] 2018 1542 Inception-v3
Custom 3-layer CNN

84.5%
87.9%

0.93
0.94

Shibata et al. [37] 2018 3132 ResNet-18 0.965

Mohamed et al. [38] 2019 166 Simple Linear Iterative
Clustering (SLIC) 97.6% 92.3% 98.6%

Bajwa et al. [39] 2019 780 R-CNN 71.2% 0.874

Liu et al. [40] 2019 241,032 ResNet (local validation) 96.2% 97.7% 0.996
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Table 1. Cont.

Author Year N. of Images Structure SEN SPEC ACC AUC

Al-Aswad et al. [41] 2019 110 ResNet-50 83.7% 88.2% 0.926

Asaoka et al. [42] 2019 3132 ResNet-34 0.965
ResNet-34 without

augmentation 0.905

VGGI I 0.955
VGGI 6 0.964

Inception-v3 0.957

Kim et al. [43] 2019 1903 Inception-V4 92% 98% 93% 0.99

Orlando et al. [44] 2019 1200 Refuge Data Set 85% 97.6% 0.982

Phene et al. [45] 2019 86,618 Inception-v3 80% 90.2% 0.945

Rogers et al. [46] 2019 94 ResNet-50 80.9% 86.2% 83.7% 0.871

Thompson et al. [47] 2019 9282 ResNet-34 0.945

Hemelings et al. [15] 2020 8433 ResNet-50 99% 93% 0.996

Zhao et al. [48] 2020 421 MFPPNet 0.90

Li et al. [49] 2020 26,585 ResNet101 96% 93% 94.1% 0.992

FD = fractal dimensions; SVM = support vector machine; DWT = discrete wavelet transform; HOS = higher-
order spectra; PSO = particle swarm optimization; kNN = k-nearest neighbor; RT = Radon transformation;
MCT = modified census transformation; NN = neural network.

3.2. Optical Coherence Tomography

Optical coherence tomography (OCT) is an essential tool to capture not only the
glaucomatous optic disc in two dimensions (2D) but to provide a three-dimensional (3D)
visualization, including the deeper structures. It is a technique based on the optical
backscattering of biological structures; it has been widely adopted to assess glaucoma
damage both on the anterior segment (e.g., with anterior segment OCT to detect angle
closure) and posterior segment (e.g., with traditional OCT to detect ONH morphology and
RFNL thickness) [50].

For this reason, depending on the input data, it is possible to differentiate five sub-
groups of deep learning models: (1) models for prediction of OCT measurements from
fundus photography, (2) models based on traditionally segmented OCT acquisitions,
(3) models for glaucoma classification based on segmentation-free B-scans, (4) models
for glaucoma classification based on segmentation-free 3D volumetric data and (5) models
based on anterior segment OCT acquisitions.

Thompson et al. showed that it is possible to predict the Bruch membrane opening-
based minimum rim width (BMO-MRW) using optic disc photographs with high accuracy
(AUC was 0.945) [51]. Similarly, other researchers reported a high AUC for their model
to predict RNFL thickness from fundus images [52–54]. Asaoka et al. developed a CNN
algorithm to diagnose glaucoma based on thickness segmentations of RNFL and ganglion
cells with inner plexiform layer (GCIPL) [42,55]. Wang et al. used 746,400 segmentation-free
B-scans from 2669 glaucomatous eyes to automatically develop a model to detect glaucoma
with an AUC of 0.979 [56].

Maetschke et al. [57] developed a DL model with an AUC of 0.94 using raw unseg-
mented 3D volumetric optic disc scans. Similarly, Ran et al. [58] validated a 3D DL model
based on 6921 OCT optic disc volumetric scans; the AUC was 0.969, with a comparable
performance between the model and glaucoma experts. Russakoff et al. used OCT macular
cube scans to train a model to classify referable from non-referable glaucoma; despite the
quality of the model, it did not perform as expected on external datasets [59].

At last, DL models based on AS-OCT have been developed to detect the presence
of primary angle closure glaucoma (PACG), such as the one proposed by Fu et al. [60].
Xu et al. further developed this type of algorithm to predict the PACG as well as the
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spectrum of primary angle-closure diseases (PACD) (e.g., primary angle-closure suspect,
primary angle-closure) [61].

The papers cited clearly demonstrated that using DL on OCT for glaucoma assessment
is effective, precise, and encouraging (Table 2). Despite that, prior to implementing DL on
OCT monitoring, more research is required to address some current challenges, including
annotation standardization, the AI “black box” explanation problem, and the cost-effective
analysis after integrating DL in a real clinical scenario.

Table 2. Summary of studies on glaucoma detection using OCT technology.

Author Year Outcome Measures Arch SEN SPEC ACC AUC

O
C

T
Fu

nd
us

Thompson et al. [47] 2019 1. Global BMO-MRW
prediction ResNet34 0.945

2. Yes glaucoma vs.
No glaucoma

Medeiros et al. [53] 2019 1. RNFL thickness prediction ResNet34 80% 83.7% 0.944
2. Glaucoma vs.
Suspect/healthy

Jammal et al. [52] 2020 RNFL prediction ResNet34 0.801

Lee et al. [62] 2021 RFNL prediction M2M

Medeiros et al. [54] 2021 Detection of RFNL thinning
from fundus photos CNN

O
C

T
2D

Asaoka et al. [55] 2019 Early POAG vs. no POAG Novel CNN 80% 83.3% 0.937

Muhammad et al. [63] 2017 Early glaucoma vs.
health/suspected eyes

CNN + transfer
learning 93.1% 0.97

Lee et al. [64] 2020 GON vs. No GON CNN (NASNet) 94.7% 100% 0.990

Devalla et al. [65] 2018 Glaucoma vs. normal Digital stain
of RNFL 92% 99% 94%

Wang et al. [56] 2020 Glaucoma vs. no glaucoma CNN + transfer
learning 0.979

Thompson et al. [51] 2020 POAG vs. no glaucoma ResNet34 95% 81% 0.96
Pre-perimetric vs. no glaucoma 95% 70% 0.92

Glaucoma with any VF loss
(perimetric) vs. no glaucoma 95% 80% 0.97

Mild VF loss vs. no glaucoma 95% 85% 0.92
Moderate VF loss vs.

no glaucoma 95% 93% 0.99

Severe VF loss vs. no glaucoma 95% 98% 0.99

Mariottoni et al. [66] 2020 Global RNFL thickness value ResNet34

O
C

T
3D

Ran et al. [58] 2019 Yes GON vs. No GON CNN (NASNet) 89% 96% 91% 0.969
78–90% 86% 86% 0.893

Maetschke et al. [57] 2019 POAG vs. no POAG Feature-agnostic
CNN 0.94

0.92

Russakoff et al. [59] 2020 Referable glaucoma vs.
non-referable glaucoma gNet3D-CNN 0.88

A
S-

O
C

T

Fu et al. [60] 2019 Open angle vs. Angle closure VGG-16 + transfer
learning 90% 92% 0.96

Fu et al. [67] 2019 Open angle vs. Angle closure CNN 0.9619

Xu et al. [61] 2019 1. Open angle vs. angle closure CNN (ResNet18) +
transfer learning 0.928

2. Yes/PACD vs. no PACD 0.964

Hao et al. [68] 2019 Open angle vs. Narrowed
Angle vs. Angle closure MSRCNN 0.914

ARCH = Architecture; SEN = Sensibility; SPEC = Specificity; ACC = Accuracy; AUC = Area under the curve.
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3.3. Standard Automatic Perimetry

Visual field testing represents a fundamental exam for diagnosing and monitoring
glaucoma. In distinction from the fundus photographs and OCT, it allows the interpretation
of the functionality of the whole visual pathway. Given the importance of visual function
testing for the detection and clinical forecast of glaucoma, many researchers recently
developed DL algorithms using the complex quantitative data it contains. Asaoka et al. [69]
trained a DL algorithm to automatically detect glaucomatous visual field loss with an AUC
of 0.926; the performance of their model was higher if compared to other machine learning
classifiers methods, such as random forests (AUC 0.790) and support vector machines
(AUC 0.712).

Elze et al. [70] employed archetypal analysis technology to obtain a quantitative
measurement of the impact of the archetypes or prototypical patterns constituting visual
field alterations. Similarly, Wang et al. developed an artificial intelligence approach to
detect visual field progression based on spatial pattern analysis [71].

Given the importance of predicting visual loss patterns in glaucoma patients, specifi-
cally for prescribing a personalized treatment, researchers have developed interesting tools
to predict the probability of disease progression based on visual field data. DeRoos et al. [72]
were able to compare forecasted changes in mean deviation (MD) on perimetry at different
target pressures using a machine-learning technique called Kalman Filtering (KF). KF is
a machine-learning technique derived from the aero-spatial industry that compares the
course of the disease of a single patient to a population of patients with the same chronic
disease; in this scenario, it could potentially predict the rate of conversion to glaucoma in
patients with ocular hypertension as well as disease progression in the future for patients
with manifest glaucoma (Table 3). [73,74].

Table 3. Summary of studies on artificial intelligence applied to visual field testing.

Author Year Outcomes Mesures Architecture SEN SPEC ACC AUC

Asaoka et al. [69] 2016 Pre-perimetric VFs vs.
VFs in healthy eyes FNN 0.926

Kucur et al. [75] 2018 Early glaucomatous VF loss
vs. no glaucoma

CNN with Voronoi
representation

Li et al. [12] 2018 Glaucomatous VF loss vs.
no glaucoma VGG I 5 93% 83% 88% 0.966

Li et al. [76] 2018 Glaucoma vs. Healthy VGG 93% 3% 0.966

Berchuck et al. [77] 2019

Rates of VF progression
compared to SAP MD;
Prediction of future VF
compared to point-wise
regression predictions

Deep variational
autoencoder

Wen et al. [78] 2019 HFA points and
Mean Deviation CascadeNet-5

Kazemian et al. [74] 2018 Forecasting visual
field progression

Kalman Filtering
Forecasting

Garcia et al. [73] 2019 Forecasting visual
field progression

Kalman Filtering
Forecasting

DeRoos et al. [72] 2021 Forecasting visual
field progression

Kalman Filtering
Forecasting

SEN = Sensibility, SPEC = Specificity, ACC = Accuracy, AUC = Area under the curve.

The possibility of low-cost screening tests for the disease has been made possible by
the consistent demonstration of deep learning models’ ability to detect and quantify glauco-
matous damage using standard automated perimetry automatic assessment. Additionally,



Int. J. Mol. Sci. 2023, 24, 2814 8 of 25

it has been demonstrated that DL enhances the evaluation of the damage on unprocessed
visual field data, which could enhance the utility of these tests in clinical practice. As
already stated, the validation of new diagnostic tests, despite how exciting AI technologies
may be, should be based on a rigorous methodology, with special attention to the way the
reference standards are classified and the clinical settings in which the tests will be adopted.

4. Biomarkers and Precision Medicine in Glaucoma

Following the definition given by the National Institutes of Health, a biomarker is
“a characteristic that is objectively measured and evaluated as an indicator of normal
biological processes, pathogenic processes, or pharmacological responses to a therapeutic
intervention”. Notably, a molecular biomarker may be helpful for clinicians to identify the
early phase of glaucoma to guarantee the most accurate and precise approach. To display
this function, biomarkers recognized as valid for clinical practice must have reasonable
specificity, sensitivity, and reproducibility. By now, several researchers have focused
their attention on the identification of new molecular markers characteristic for glaucoma
manifestation and progression. Among these, multiple metabolites and proteins have been
investigated in different biological fluids—such as tear film, vitreous, aqueous, serum, and
plasma—as they are potentially involved in molecular and cellular pathways causing the
damage of neuronal cells in people suffering from glaucoma [79]. Given the considerable
number of molecules identified in recent years, our purpose is to provide an overview of
the main categories of the biological markers suitable for improving glaucoma detection.

4.1. Proteins and Hormones as Biomarkers in Glaucoma

Proteins are large molecules composed of one or more chains of amino acids displaying
several biological functions. The dysregulation of the levels of the same proteins has been
reported to be associated with glaucoma [80]. For instance, Farkas et al. reported that
upregulation in the retina of iron-regulating proteins ceruloplasmin, ferritin, and transferrin
and their mRNA was correlated to glaucoma [81]. These results suggested the involvement
of iron, copper, and antioxidant mechanisms in the pathogenesis of glaucoma [81]. In
the same way, Lin and coworkers revealed an association between higher ferritin levels
and glaucoma in a South Korean population [82]. Wang and colleagues compared the
levels of matricellular proteins in the aqueous humor from acute primary angle closure
(APAC) and non-glaucomatous cataract patients, finding a significant upregulation in
the first group [83]. Another research from González-Iglesias et al. evaluated, through
quantitative immunoassay, the alteration of 17 overexpressed proteins in the intact serum
of patients with primary open-angle glaucoma (POAG) and pseudo-exfoliation (PEX)
glaucoma compared to the healthy control group [84]. They suggested that these candidate
markers were part of a system linked to inflammatory and immune mechanisms [84].

Another interesting field of research considers the activity of growth factors and
cytokines and their role in glaucoma development. Several studies showed the involvement
of brain-derived neurotrophic factor and nerve growth factor, quantified in serum and
tears, in regulating retinal ganglion cell survival. These results suggest that altered levels
of these markers are associated with different stages of glaucoma [85–87]. Gupta and
colleagues evaluated whether the tear film cytokines can represent a biomarker in the early
POAG [88]. Their results showed that the tear film values of the majority of cytokines
were significantly lower in the group with glaucoma and, consequently, may be tested
as a marker of early POAG [88]. Another research from Guo and coworkers investigated
secreted frizzled-related protein-1 (SFRP1) and transforming growth factor-β2 (TGFβ2)
levels in the aqueous humor of patients suffering from several types of glaucoma [89].
They reported an increase in TGFβ2 and a decrease in SFRP1 levels in patients with POAG.
Conversely, both TGFβ2 and SFRP1 were correlated to a higher IOP in patients with acute
angle-closure glaucoma [89]. Other authors suggested a possible involvement of hormones
in glaucoma development due to estrogen receptors in retinal ganglion cells [80]. Li et al.
evaluated the correlation of 17-b-estradiol and interleukin-8 with primary angle closure
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glaucoma in postmenopausal women [90]. They found an increase in interleukin-8 and a
decrease in 17-b-estradiol in the serum correlated with a visual field (VF) progression [90].

Moreover, other studies suggested that estrogens have a protective role through
the downregulation of cytokine formation, causing the blockage of one of the possible
pathways of ganglion cell loss [91,92]. Canizales et al. explored the expression of superoxide
dismutase 1 (SOD1) in the aqueous humor of patients with POAG [93]. They found a
significant decrease in SOD1 mRNA expression in the POAG group than in the control
group [93]. In a subsequent paper, Mirzaei et al. evaluated proteins of the retina and
vitreous of controls and glaucomatous eyes, revealing a defect of oxidative phosphorylation
and the overexpression of proteins correlated to the classical complement pathway, and
previously reported to be associated with glaucoma (Table 4) [94].

Table 4. Summary of studies on proteins and hormones used as biomarkers for glaucoma.

Author Year Type of
Glaucoma Biomarker Type Mechanism Sample

Farkas et al. [81] 2004 Glaucoma Transferrin,
ceruloplasmin, ferritin

Peptides and
Amino Acids Upregulation Serum

Lin et al. [82] 2014 Glaucoma Ferritin Peptides and
Amino Acids Upregulation Serum

Wang et al. [83] 2018

Acute primary
angle closure
(APAC), non-
glaucomatous

cataract

Main matricellular
proteins (SPARC,

thrombospondin-2,
and osteopontin)

Peptides and
Amino Acids Upregulation Aqueous

humor

González-Iglesias
et al. [84] 2014 POAG, PEXG

Panel of 17 most
differentially altered

proteins

Peptides and
Amino Acids Serum

Ghaffariyeh et al. [95] 2009 POAG
Brain-derived

neurotrophic factor
(BDNF)

Peptides and
Amino Acids Downregulation Serum

Ghaffariyeh et al. [95] 2011 NTG
Brain-derived

neurotrophic factor
(BDNF)

Peptides and
Amino Acids Downregulation Tear

Oddone et al. [85] 2017 POAG
Brain-derived

neurotrophic factor
(BDNF)

Peptides and
Amino Acids Downregulation Serum

Oddone et al. [85] 2017 POAG Nerve growth factor
(NGF)

Peptides and
Amino Acids Downregulation Serum

Gupta et al. [88] 2017 POAG

Proinflammatory
cytokines (IFNγ, IL-10,
IL-12p70, IL-13, IL-1β,
IL-2, IL-4, IL-6, IL-8,

and TNFα)

Peptides and
Amino Acids

Human tear
samples

Guo et al. [89] 2019 POAG, CACG,
PACS, AACG TGFβ2, SFRP1 Peptides and

Amino Acids
Aqueous
humor

Li et al. [90] 2020 PACG 17-β-estradiol (E2),
interleukin-8 (IL-8)

Peptides and
Amino Acids Serum

Canizales et al. [93] 2016 POAG Superoxide dismutase
1 (SOD1)

Hormones and
enzymes

Peripheral
blood

Mirzaei et al. [96] 2020 Glaucoma Complement pathway Peptides and
Amino Acids Regulation Peripheral

blood
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4.2. Metabolic Biomarkers in Glaucoma

The research of metabolic products in glaucomatous patients may represent, for
operators, a possibility to implement current diagnostic tools. Among metabolites, one
of the most investigated is homocysteine (Hcy). Hcy results from methionine metabolism
implicated in oxidative stress mechanisms and vascular dysregulation. Consequently,
increased levels suggest a correlation between glaucoma and the vascular system [96].
Research from Lee and coworkers reported a correlation between plasmatic Hcy and
glaucomatous retinal nerve fiber layer (RNFL) defect in a group of 78,049 South Korean
people [96]. A subsequent study confirmed these results by evaluating the plasma levels of
Hcy, L-cysteine (Cys), and hydrogen sulfide (H2S) in people with POAG, OHT, and normal
tension glaucoma (NTG) and normal individuals [97]. They found reduced levels of H2S
and increased levels of Hcy and Cys in the glaucoma group, particularly in POAG [97].
In the same way, López-Riquelme et al. explored plasmatic values of Hcy, endothelin-1
(ET-1), vitamins A, B12, E, and folic acid in three populations: patients with POAG, NTG,
and control group [98]. While vitamin E was lower in NTG, Hcy and ET-1 were increased
in POAG, suggesting a correlation with endothelial dysfunctions. Conversely, vitamin
E lowering may result from oxidative processes involved in glaucoma pathogenesis [98].
In contrast with these results, a paper published in 2016 by Leibovitzh and colleagues,
including 11,850 Israelian patients, reported that Hcy levels and IOP did not show any
association [99].

Baumane et al. investigated the role of the atrial natriuretic peptide (ANP) system in
glaucoma pathogenesis by quantifying the N-terminal fragment of the pro atrial natriuretic
peptide (NT-proANP) levels in the aqueous humor and the plasma of people with glaucoma
and cataract [100]. Their results highlighted an increase in NT-proANP in patients with
POAG, supporting the theory of possible involvement of ANP in the pathogenesis of
glaucoma [100]. Javadiyan et al. explored the serum level of symmetric dimethylarginine
(SDMA) and asymmetric dimethylarginine (ADMA) in people with advanced glaucoma
compared to the control group [101]. These two metabolites interfere with the nitric oxide
(NO) formation system, and NO is an antioxidant protecting and supporting endothelial
cell activity. Both SDMA and ADMA showed an increase in the serum of patients with
advanced glaucoma, indicating a possible role of the NO pathway in the development of
glaucoma [101].

Another interesting and frequently investigated marker is uric acid (UA). UA is the
result of human purine metabolism and displays an antioxidant function [102]. Despite
the fact that we have several reports in the literature debating on the association with
POAG, the pathogenetic effect of UA is not clarified. Moreover, there is no consensus on
the direction of the UA effect. These results might be due to differences in ethnicity or to
the presence of other confounding factors. One of the possible explanations is linked to
the antioxidant activity of UA [103]. Li et al. evaluated UA levels in the serum of patients
with POAG compared to controls, finding a significantly higher concentration in the latter
group [104]. Thus, their conclusions further support the theory of oxidative stress action in
glaucoma pathogenesis.

A different field of research investigated biomarkers potentially modified by the action
of anti-glaucoma medications [105]. For instance, Kotikoski and coworkers showed that
NO metabolites changes might be disguised by glaucoma medications [106]. In the same
way, other papers revealed that the number of inflammatory cells in the conjunctiva of
patients undergoing long-term therapy for glaucoma was remarkably increased with a
consequent overexpression of inflammatory markers (Table 5) [107].



Int. J. Mol. Sci. 2023, 24, 2814 11 of 25

Table 5. Summary of studies on metabolic biomarkers and glaucoma.

Author Year Type of
Glaucoma Biomarker Type Mechanism Sample

Lee et al. [96] 2017 Glaucomatous
RNFL Defect Homocysteine (Hcy) Peptides, Amino

Acids Upregulation Plasma

Lin et al. [97] 2020 POAG, NTG,
OHT Homocysteine (Hcy) Peptides,

Amino Acids Upregulation Plasma

Lin et al. [97] 2020 POAG, NTG,
OHT L-cysteine (Cys) Peptides, Amino

Acids Upregulation Plasma

López-Riquelme
et al. [98] 2015 POAG, NTG Homocysteine (Hcy) Peptides, Amino

Acids Upregulation Serum

López-Riquelme
et al. [98] 2015 POAG, NTG Endothelin-1 (ET-1) Peptides, Amino

Acids Upregulation Serum

Leibovitzh et al. [99] 2016 Glaucoma Homocysteine (Hcy) Peptides, Amino
Acids Upregulation Plasma

Baumane et al. [100] 2017 Glaucoma and
cataract

N-terminal fragment of the
proatrial natriuretic peptide

(NT-proANP, 1–98)

Peptides, Amino
Acids Upregulation Plasma and

aqueous humor

Javadiyan et al. [101] 2012 Glaucoma

Asymmetric dimethylarginine
(ADMA), a dimethylated

isomeric derivative of the amino
acid l-arginine

Peptides, Amino
Acids Upregulation Serum

Javadiyan et al. [101] 2012 Glaucoma

Symmetric dimethylarginine
(SDMA), a dimethylated

isomeric derivative of the amino
acid l-arginine

Peptides,
Amino Acids Upregulation Serum

Li et al. [104] 2019 POAG Uric acid Serum

Golubnitschaja
et al. [105] 2007 Glaucoma

Stress response, apoptosis, DNA
repair, cell adhesion, tissue
remodeling, transcription

regulation, multi-drug
resistance, and

energy metabolism

Peptides,
Amino Acids

Circulating
leukocytes
in serum

Kotikoski et al. [106] 2002 Glaucoma NOx (nitrite + nitrate), nitrite
and cGMP

Peptides,
Amino Acids

Serum and
aqueous humor

Baudouin et al. [107] 1994 POAG Inflammatory antigens Peptides,
Amino Acids Upregulation Conjunctival

antigens

4.3. Antibodies as Biomarkers in Glaucoma

To date, multiple studies indicate the presence of an autoimmune component in glau-
coma development. We have several reports in the literature describing autoantibodies—
such as anti-HSP60, anti-a-A-crystalline, a-B-crystalline, HSP27 in NTG, and anti-HSP70,
phosphatidylserine, glycosaminoglycans, g-enolase, α-fodrin, vimentin, glutathione-S-
transferase, retinaldehyde binding protein, glial fibrillary acidic protein, retinal S-antigen,
and neuron-specific enolase—and all possibly correlate with glaucoma [108,109]. For in-
stance, Grus and coworkers, in 2006, showed that people with glaucoma have characteristic
differences in serum antibodies from the controls [110]. Furthermore, Western blot re-
sults reported an increased level and an improved reactivity to α-fodrin, an autoantibody
previously described in other neurodegenerative diseases [110]. Joachim and colleagues
analyzed the IgG autoantibody patterns against antigens of the retina, the optic nerve
head, and the optic nerve in the serum of a glaucomatous population compared to a con-
trol group [111]. The POAG group presented a higher reactivity against retinal antigens,
while in NTG, the autoimmune activity was addressed against the optic nerve head [111].
The following research compared the IgG antibody profile against retinal antigens in the
aqueous humor of patients with POAG, pseudoexfoliation glaucoma (PEX), and healthy
individuals [112]. While no alteration was noted between POAG and PEX, both groups
showed significant variations if compared to controls [112]. Tezel et al. conducted an
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immunoproteomic comparison of serum IgG on 111 people with POAG and 49 controls,
revealing several potential biomarkers of glaucoma [113]. Subsequently, Schmelter et al.,
evaluating IgG in the sera of 13 POAG patients, discovered 75 peptides corresponding to
variable IgG domains, presenting substantial glaucoma-related changes [114].

More recently, Beutgen et al. used serological proteomics analysis to examine au-
toantibody profile and revealed three new biomarkers, PGAM1, CALD1, and VDAC2,
that, merged with the previously discovered markers HSPD1 and VIM, can differentiate
glaucomatous from controls with a specificity of 93% and a sensitivity of 81% [108].

Hohenstein-Blaul and coworkers, using an experimental autoimmune glaucoma an-
imal model, showed a loss of retinal ganglion cells, independent from IOP elevation,
correlated to antibody depositions and increased values of microglia [109]. They revealed
an association between neuronal damage and changes in autoantibody reactivity. These
results suggest a potential role of autoantibody profiling as a biomarker for glaucoma
(Table 6) [109].

Table 6. Summary of studies on antibodies used as biomarkers in glaucoma.

Author Year Type of Glaucoma Biomarker Type Sample

Hohenstein-Blaul
et al. [109] 2017 POAG

Anti-GFAP, anti-γ-synuclein,
and anti-myoglobin antibody as

a control

Autoantibodies
and Antibodies

Aqueous humor
and tears

Beutgen et al. [108] 2019 POAG Antibodies against
trabecular meshwork

Autoantibodies
and Antibodies Serum

Grus et al. [110] 2006 POAG, NTG IgG autoantibody, α-fodrin Autoantibodies
and Antibodies Serum

Joachim et al. [111] 2005 POAG, NTG IgG Autoantibodies
and Antibodies Serum

Joachim et al. [112] 2007 POAG, PEX IgG (heat shock protein 27,
α-enolase, actin, and GAPDH)

Autoantibodies
and Antibodies Aqueous humor

Tezel et al. [113] 2012 POAG IgG Autoantibodies
and Antibodies Serum

Schmelter
et al. [114] 2017 POAG Autoantibody, IgG Autoantibodies

and Antibodies Serum

GFAP = Glial fibrillary acidic protein, GAPDH = Glyceraldehyde 3-phosphate dehydrogenase.

4.4. Exosomes in Glaucoma

Extracellular vesicles are a group of lipidic bilayered structures that include microvesi-
cles, apoptotic bodies, and exosomes. Among them, with a mean size of 50 nm, the latter
is the smallest subtype [115]. They were found to be secreted by different types of cells,
displaying several roles, such as the mediation of intercellular communication via receptor–
ligand mechanisms and the transport of their load to other sites [115]. Recently the interest
of researchers in the role of exosomes in ocular diseases is emerging. Lerner et al. explored
the activity of exosomes originating from the non-pigmented ciliary epithelium (NPCE) on
the Wnt signaling pathway, a central regulator of TM, revealing that these vesicles influence
such pathways [116]. Subsequent research from the same group analyzed NPCE exosomes,
finding 182 proteins and 584 miRNAs displaying several functions, such as intercellular
adhesion and the deposition of extracellular matrix in TM [117]. Stamer et al. showed that
TM exosomes contain proteins causing glaucoma, such as myocilin, and, consequently,
hypothesized a possible function on the dysregulation of IOP [118].

Moreover, some authors proposed extracellular vesicles and exosomes as therapeutic
approaches for glaucoma-related damages. Mead and coworkers showed that bone marrow-
derived stem cell (BMSC) small extracellular vesicles, with an intravitreal administration,
have a neuroprotective action for 12 months in a rat model of OHT [119]. In the same way,
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Pan and colleagues demonstrated that umbilical cord mesenchymal stem cells-derived
exosomes implemented retinal ganglion cell maintenance in a mouse model [120].

Since glaucoma is a progressive and irreversible cause of vision loss, an early diagnosis
is a crucial aspect in the management of such a disease. A helpful strategy for glaucoma
detection includes the research of metabolites and proteins and, consequently, represents a
possibility to shed light on unknown molecular pathways implicated in the early stages of
the disease. Indeed, in addition to ethnicity, age, and sex, other potential risk factors are
represented by the dysregulation of systemic and ocular vascular pathways, the presence of
oxidative stress, and altered antibody profiles. One of the main examples is the evaluation
of the plasmatic levels of Hcy and Cys in patients with POAG and OHT. Indeed, such
results indicate a potential implication of methionine metabolism, related to oxidative stress
mechanisms and vascular dysregulation, in the pathogenesis of POAG [96]. Despite that,
it would be advisable to consider such markers with caution due to the heterogeneity of
disease presentation and the differences in the genetic pattern of individuals. In the same
way, other findings frequently reported in the serum and in the tear film of glaucomatous
are autoantibodies against ocular tissues. Indeed, following the last reports, we are able,
through the antibody profile, to distinguish the serum of glaucomatous from controls
with a specificity of 93% [108]. However, it is still unclear whether these alterations in
antibody profile are a cause or a consequence of glaucoma-related alterations. Consequently,
the evaluation of biological markers detectable with non-invasive tests, such as a blood
sample, seems more like an opportunity to obtain additional clinical information on the
disease characterization and progression than a real possibility to address the therapeutical
approach (Table 7).

Table 7. Summary of studies on possible applications of exosomes in glaucoma.

Author Year Materials Target Results

Lerner et al. [116] 2017
Cultured non-pigmented

ciliary epithelium
(NPCE) cells

Wnt signaling protein
expression in the

TM cells

>2-fold decrease in the level of β-catenin in the
cytosolic fraction

Lerner et al. [117] 2020 NPCE primary cells

Wnt proteins in a
human primary

trabecular meshwork
(TM) cells

Diminished pGSK3β phosphorylation and decreased
cytosolic levels of β-catenin in primary TM cells.

At the molecular level, it downregulated the
expression of positive GSKβ regulator-AKT protein

but increased the levels of GSKβ negative
regulator-PP2A protein in TM cells.

Stamer et al. [118] 2011
Primary cultures of

human TM cell
monolayers

TM exosomes have a characteristic exosome protein
profile and contain unique proteins, including the

glaucoma-causing protein, myocilin.

Mead et al. [119] 2018

Bone marrow-derived
stem cell (BMSC) small

extracellular vesicles
(sEV) and control

fibroblast-derived sEV
were intravitreally injected
into 3-month-old DBA/2J

mice once a month for
9 months.

Retinal ganglion cell
(RGC) neuroprotection

promoted by BMSC sEV

DBA/2J mice developed chronic ocular hypertension
beginning at 6 months. The delivery of BMSC sEV,

but not fibroblast sEV, provided significant
neuroprotective effects for RBPMSþ RGC while

significantly reducing the number of degenerating
axons seen in the optic nerve. BMSC sEV significantly

preserved RGC function in 6-month-old mice but
provided no benefit at 9 and 12 months.

BMSC sEV are an effective neuroprotective treatment
in a chronic model of ocular hypertension

Pan et al. [120] 2019

Umbilical mesenchymal
stem cells derived

exosomes (UMSC-Exos) in
a rat optic nerve crush

(ONC) model

UMSC-Exos significantly promoted Brn3a+ RGCs
survival in the retinal ganglion cell layer compared

with PBS controls. UMSC-Exos also significantly
promoted GFAP+ glia cell activation in retina and

optic nerve.
However, no increase in GAP43+ axon counts in the
optic nerve was found after UMSC-Exos treatment.

5. Genetics and Precision Medicine in Glaucoma

The newest and more affordable DNA genotyping allows for the easier identification
of the genes involved in the susceptibility for POAG [121,122]. Indeed, for patients with a
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new diagnosis of POAG, a proper genetic analysis may provide more accurate information
on the prognosis and the adequacy of the therapeutic approach. Moreover, in clusters of
families affected by hereditary glaucoma, genetic examinations allow closer monitoring
of relatives at risk of developing an overt POAG [122]. Furthermore, one of the main
advantages of discovering new “genetic markers” is the possibility to identify previously
unrecognized biological pathways, causing the disease manifestation and progression, and
consequently personalize the treatment of glaucoma.

One of the main reports of gene-supported precision medicine is the predictive gene
testing for myocilin-associated glaucoma [123]. Indeed, MYOC gene mutation is associated
with POAG, steroid-induced glaucoma, and juvenile-onset glaucoma [123–125]. MYOC
gene encodes for myocilin, a 55–57 kDa glycoprotein strongly expressed in TM cells.
Although the precise mechanism of IOP increase is not thoroughly described, the most
accepted theory points to the accumulation of mutated forms of myocilin in the endoplasmic
reticulum of the trabecular meshwork, activating a stress response (unfolded protein
response) and altering the resistance of this tissue. Mutated forms of myocilin accumulate
in the trabecular meshwork (TM) and modify the resistance to aqueous outflow [124].

One of the most extensive research investigating the ability of a genotype to predict
the conversion from ocular hypertension (OHT) to POAG was the Ocular Hypertension
Treatment Study (OHTS) [126]. This research aimed to assess, in a group of non-Hispanic
Whites patients genotyped for variants previously correlated to POAG, the association
between the variants and the conversion from OHT to POAG. The authors showed that
a single-nucleotide polymorphism (SNP) in TMCO1 is strongly associated with POAG
development [126]. TMCO1 has been reported to be a gene strongly implicated with
IOP magnitude. Indeed, people with double-risk alleles showed a three-fold increased
possibility of converting OHT in POAG compared to those with no risk alleles. Notably, no
statistical association was found in the African American subgroup.

Another exciting field of research is the possibility of predicting the progression of
the disease in patients already in treatment for POAG. A study by Trikha and coworkers
investigated whether genetic loci causing POAG were associated with VF progression [127].
Their paper included 469 Singaporean Chinese patients with five or more reliable VF. Their
results showed that only an SNP in TGFBR3-CD27 region was correlated to an increased
risk of VF progression (p = 0.002; odds ratio, 6.71 per risk allele) [127].

Within the field of precision medicine, pharmacogenomics, which is defined as the
branch of genetics concerned with how an individual’s genetic attributes affect the likely
response to therapeutic drugs, offers clinicians an excellent opportunity to further personal-
ize the medical approach to the patient. Indeed, there is well-reported evidence that genetic
analysis may predict the efficacy of therapy and some of its potential side effects [128]. For
instance, McCarty et al. found that an SNP in ADRB2 was associated with an increased
IOP-lowering response to topical beta-blockers [129]. ADRB2 is an adrenergic receptor
gene, and its mutation results in an agonist-promoted downregulation of such receptor.
They reported that the polymorphism rs1042714 in ADRB2 was significantly more prone
to manifest an IOP decrease of 20% or more. Similarly, Sakurai et al. investigated the
patients’ response to latanoprost [130]. They reported an association between SNPs of the
prostaglandin F2α receptor gene and the magnitude of the IOP reduction both in OHT
and POAG patients [130]. Indeed, they suggest a correlation between the polymorphism
rs12093097 and a lowered response of these receptors to latanoprost. Low et al. reported
a case series of five patients with concomitant malignant glaucoma (MG) and genetically
confirmed BEST1 gene mutation [131]. A multi-disciplinary approach concluded that a
traditional surgical procedure ended up with a poor outcome in four patients and used
a different approach with the fifth patient who did not experience MG and had no glau-
coma progression five years after a pars plana vitrectomy and the insertion of a pars plana
Baerveldt tube, thus providing the proof-of-principle that genetic analysis can be used to
select the most appropriate surgical therapy in selected cases [131].
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Multiple studies focused on gene polymorphism causing steroid-induced ocular hy-
pertension (SIOH) and glaucoma. In this case, the genes so far involved are GPR158 and
HCG22 [132–134]. The first one encodes a member of the G protein-coupled receptor family
that increases in the trabecular meshwork (TM) cells with glucocorticoid administration.
This mechanism improves the barrier function of TM cells monolayer and, consequently,
the resistance to aqueous outflow [134]. The second one codifies a mucin protein expressed
in TM, which increases after glucocorticoid assumption [132]. These findings have the
potential to predict the predisposition to IOP increase in specific individuals before the
onset of long-term steroid therapies [133].

Moreover, several authors investigated the role the IL-6 gene displays in regulating
fibrosis after filtration surgery and in the progression of POAG [126,135–137]. Indeed,
Yu-Wai-Man et al. showed that the upregulation of IL-6 and the downregulation of the
PRG4 gene contributed to conjunctival fibrosis after glaucoma surgery [135]. Following
this research, another paper from Fernando et al. suggested administering targeted siRNA
nanocomplexes to transport regulators of fibroblasts to prevent fibrosis after filtration
surgery [138]. Nevertheless, it is still not recommended to choose medical and surgical
approaches based on genetic testing [122,139].

If pharmacogenomics helps predict the individual’s response to therapeutic drugs,
epigenetics, on the other hand, may modify genetic imprinting. Several authors focused
on studying the environmental action on gene expression and evaluating different mech-
anisms to modify DNA regulation. An example was the research from McDonnel and
coworkers [140]. They found that hypoxia displays a role in regulating the expression of
the pro-fibrotic TGFβ1 and the anti-fibrotic RASAL1 and the whole DNA methylation in
glaucomatous trabecular meshwork [140]. A previous randomized controlled trial, the
Collaborative Initial Glaucoma Treatment Study, reported the action of smoking on IOP [74].
Notably, IOP was higher in smokers than in non-smokers after nine years in the surgically
treated group, while no significant difference was noted in the medically treated group [74].
Their results suggest a possible function of tobacco in altering specific molecular pathways.

As stated above, in recent years, the interest in the field of genetics related to glaucoma
has significantly increased. One of the researchers’ main targets is to treat the disease in the
earlier phase with a more accurate approach led by genetics. The future of genetic testing
aims to offer prognostic information potentially addressing the follow-up strategy and the
intensity of the care. One example is the ability of TMCO1 to predict the conversion of OHT
to POAG. Despite that, none of the genetic markers reported in the literature seems to be a
reliable track to lead glaucoma management due to the relative smallness of the samples
and the absence of replicability of such studies [122]. Thus, we are looking forward to
larger and multicentric trials, resulting from global cooperation, able to direct operators’
decisions and offer our patients genetic-based precision medicine (Table 8).

Table 8. Summary of studies on genetics and precision medicine application to glaucoma management.

Author Year Type of Glaucoma Gene Chromosome Location Function

Morisette et al. [125] 1995 Primary Open
Angle Glaucoma GLC1A 1q23-q25 DlS445,

DlS416/D1S480

Glycoprotein with a
myosin-like domain, a

leucine zipper region and
an olfactomedin domain

Tamm et al. [124] 2002 Primary Open
Angle Glaucoma MYOC 1q24.3 Q368X

Glycoprotein with a
myosin-like domain, a

leucine zipper region and
an olfactomedin domain

Scheetz et al. [126] 2016 Primary Open
Angle Glaucoma TMCO1 1q24.1 Transmembrane protein

Trikha et al. [127] 2015 Primary Open
Angle Glaucoma TGFBR3-CDC7 1p22.1 rs1192415

Cell-surface chondroitin
sulfate/heparan sulfate

proteoglycan
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Table 8. Cont.

Author Year Type of Glaucoma Gene Chromosome Location Function

McCarty et al. [129] 2008 Primary Open
Angle Glaucoma

Sakurai et al. [130] 2014

Primary Open Angle
Glaucoma, Normal
Tension Glaucoma,

Ocular Hypertension

Prostaglandin
F2α (FP)
receptor

1p31.1 rs12093097 Prostaglandine receptor

Low et al. [131] 2020 Malignant Glaucoma BEST1 11q12.3
c.602 T > C, c.454
C > G, c.481 + 1 G

> T, c.914 T > C
Transmembrane protein

Fini et al. [133] 2017 Steroid-induced
Glaucoma

GPR158,
HCG22

10p12.1
(GRP158),

6p21.33
(HCG22)

Cell-surface protein with
seven transmembrane

(7TM) domain

Patel et al. [134] 2013 Steroid-induced
Glaucoma GRP158 10p12.1

Cell-surface protein with
seven transmembrane

(7TM) domain

Jeong et al. [132] 2015 Steroid-induced
Glaucoma HCG22 6p21.33

Yu-Wai-Man
et al. [135] 2017 Primary Open

Angle Glaucoma IL6, PRG4

7p15.3
(IL6);

1q31.1
(PRG4)

Cytokine and
proteoglycan

Zimmermann
et al. [136] 2013 Primary Open

Angle Glaucoma
IL-6 (IL-6–174G

> C) 7p21 rs1800795 Proinflammatory cytokine

Lin et al. [137] 2014 Normal Tension
Glaucoma

IL-6 (IL-6–174G
> C) 7p21 rs1800795 Proinflammatory cytokine

Zhou and Liu [141] 2010 Primary Open
Angle Glaucoma IL-6 7p21 rs1524107 Proinflammatory cytokine

Fernando et al. [138] 2018 Primary Open
Angle Glaucoma

siRNA
nanocomplexes

RNAi induced by
double-stranded small

interfering RNA

McDonnel et al. [140] 2016

Primary human normal
(NTM) with

glaucomatous (GTM)
cells; NTM cells under

hypoxic conditions

TGFβ1,
RASAL1

19q13.2
(TGFβ1),
12q24.13

(RASAL1)

Profibrotic factors

6. NAD+/NADH Redox State and Glaucoma

To date, the gold standard in the treatment of the POAG aims to reduce the IOP.
Despite that, a large group of patients progresses independently from the IOP lowering,
indicating the presence of multiple risk factors in glaucoma development and worsen-
ing [142]. Among them, a dysregulation of biochemical pathways, such as a dysfunction
of mitochondrial activity, may be linked to an increased weakness of the optic nerve head
(ONH). Indeed, an alteration of mitochondrial activity, which was previously correlated
to other neurodegenerative diseases, causes a lack of oxygenation of the retinal ganglion
cells, resulting in damage to the ONH [142]. As stated above, several authors have re-
ported oxidative damage associated with POAG. Notably, the mitochondrial electron chain
transfers electrons from the reduced form of nicotinamide adenine dinucleotide (NADH,
reduced form of NAD+) to oxygen. Reduced levels of NAD+ represent the “primum
movens” for impaired mitochondrial activity and, consequently, for neurodegenerative
damages [142]. Thus, the NAD+/NADH-redox state is an essential parameter in the energy
production pathway and can potentially be used as a systemic biomarker of susceptibility to
POAG [142]. Research from Kouassi and coworkers on 34 POAG individuals showed that
nicotinamide, the primary precursor of NAD+, was lowered in the plasma of glaucomatous
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patients [143]. These results suggest a possible role of nicotinamide supplementation as
therapy for POAG [143].

In the same way, Williams and colleagues revealed that oral nicotinamide or ge-
netic therapy, such as a driver of Nmnat1, an enzyme-producing NAD+, was effective
as a prevention and treatment for POAG [144]. Similarly, Hui et al. showed that nicoti-
namide supplementation improved inner retinal survival in glaucoma [145]. Moreover,
a nicotinamide supplementation showed to be a suitable inhibitor of poly (ADP–ribose)
polymerase 1 (PARP-1), a member of the PARP group of enzymes involved in genome
stability maintenance [144,146]. A condition with increased oxidative stress, such as in
glaucoma, activates PARP-1, reducing NAD+ levels; thus, its blockage seems a good option
for a therapeutical approach to reduce NAD+ depletion [144].

Other researchers focused on the possibility of applying NAD+ producing enzymes
as protecting factors. The two main categories are nicotinamide mononucleotide adenylyl
transferases (NMNATs) and nicotinamide phosphoribosyl transferase (NAMPT). For in-
stance, Williams and colleagues revealed in a rat model that a genetic therapy, such as a
driver of Nmnat1, an enzyme of the NMNATs family, was protective against POAG [144].
Avery et al. observed that Nmnat1 relocalizing proteins that move the latter outside the
nucleus improve its neuroprotective function [147]. Indeed, the nuclear Nmnat localization
seems to be useless in exerting a neuroprotective activity [147].

Another interesting research from Braidy and coworkers reported that increased
activity of inducible (iNOS) and neuronal nitric oxide synthase (nNOS) was linked to
an implemented NAD+depletion and cytotoxicity [148]. Consequently, nNOS and iNOS
activity blockage effectively inhibits these mechanisms [148]. Since the NOS function was
found to be implemented in POAG, reduced nitric oxide may be beneficial for glaucoma-
suffering patients [149]. Conversely, the isoform NOS-3, present in vascular endothelial
cells and astrocytes, may be neuroprotective, exerting vasodilatation and enhancing blood
flow [149].

Another field of research includes sirtuins, a group of enzymes that operate ADP
ribosylation and deacetylation [142]. Since sirtuins activity is regulated by NAD+ and
nicotinamide concentration and has a neuroprotective function on retinal ganglion cells,
their dysregulation may be considered part of glaucoma pathogenesis [142,150]. One
example has been reported by Balaiya and coworkers [142]. They tested in vitro the SIRT1
action in sustaining RGC viability by inducing hypoxia with a cobalt chloride (CoCl2)
administration. Cell apoptosis was evaluated by measuring stress-induced protein kinases
activity. They found that higher concentrations of CoCl2 increased SIRT1 levels significantly
and reduced RGC viability. Moreover, by inhibiting SIRT1 action, the viability of RGC was
further decreased (Table 9) [142].
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Table 9. Summary of studies on redox state and glaucoma.

Author Year Disease Biomarker Type Mechanism Sample

Petriti et al. [142] 2021 POAG NAD+/NADH
redox state Vitamin Upregulation Lymphocytes

from blood

Kouassi Nzoughet
et al. [143] 2019 POAG Nicotinamide Vitamin Downregulation Plasma

Williams et al. [144] 2017 POAG
Nicotinamide

Adenine
Dinucleotide

Vitamin Downregulation Plasma

Hui et al. [145] 2020 POAG Nicotinamide Vitamin Downregulation Plasma

Salech et al. [146] 2020 Alzheimer’s
Disease Nicotinamide Vitamin Downregulation Cerebrospinal

fluid, microglia

Avery et al. [147] 2009 Slow Wallerian
degeneration

Nicotinamide
mononucleotide

adenylyltransferase
Enzyme Upregulation Axons

Braidly et al. [148] 2009 Brain diseases Inducible NOS,
neuronal NOS Enzyme Upregulation Human brain

cells

Neufeld et al. [149] 1997 POAG NOS-1, NOS-2,
NOS-3 Enzyme Upregulation Optics nerve

head

Balayage
et al. [150] 2012 Glaucoma and

optic neuropathy SIRT1 Histone
deacetylase Uperegulation Retinal

ganglion cell

7. Conclusions

Even though clinically accepted biomarkers exist for diagnosing and treating glau-
coma, the demand for novel biomarkers with increased sensitivity and specificity remains.
This is especially crucial in the case of glaucoma, as the disease’s effects can be drastically
decreased with early detection and appropriate management.

Molecular biology, genome sequencing technologies, and pharmacogenomics are radi-
cally changing the development of novel medications in many medical specialties [151].
These developments will likely result in the rapid growth of new proposed therapeutics to
delay or even reverse glaucoma-related neuronal atrophy. However, surrogate endpoints
may be valid alternatives when getting the actual endpoints would make the study imprac-
tical. However, these substitutes must be appropriately evaluated before broad usage in
clinical practice. Validation requires evaluating biological plausibility and predictive value
and determining how much of the treatment’s effect on clinically significant outcomes can
be represented by the surrogate. Such validation studies have not yet been undertaken for
any of the putative biomarkers now available for glaucoma, and the scientific community
should make efforts to design and conduct such research. The potential for improved
precision in diagnosis and treatment is significant in the field of glaucoma.
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Abbreviations
RGC = retinal ganglion cells; IOP = intra-ocular pressure; ML = machine learning;

DL = deep learning; FP = fundus photography; ONH = optic nerve head; CDR = cup-to-disc
ratio; RNFL = retinal nerve fiber layer; AUC = area under the receiver operating character-
istic curve (ROC); CNN = convolutional neural network; BMO-MRW = Bruch membrane
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opening-based minimum rim width; GCIPL = ganglion cells with inner plexiform layer;
KF = Kalman filtering; APAC = acute primary angle closure; POAG = primary open-
angle glaucoma; PEX = pseudo-exfoliation; SFRP1 = secreted frizzled-related protein-1;
TGFβ2 = transforming growth factor-β2; VF = visual field; SOD1 = superoxide dismutase 1;
GON = glaucomatous optic nerve; PACD = primary angle closure disease; CACG = chronic
angle closure glaucoma; PACS = primary angle closure suspect; AACG = acute angle clo-
sure glaucoma; NTG = normal-tension glaucoma; OHT = ocular hypertension.
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