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Abstract: The unprecedented non-reproducibility of the results published in the field of cancer
research has recently come under the spotlight. In this short review, we try to highlight some gen-
eral principles in the organization and evolution of cancerous tumors, which objectively lead to
their enormous variability and, consequently, the irreproducibility of the results of their investiga-
tion. This heterogeneity is also extremely unfavorable for the effective use of molecularly targeted
medicine. Against the seemingly comprehensive background of this heterogeneity, we single out
two supramolecular characteristics common to all tumors: the clustered nature of tumor interactions
with their microenvironment and the formation of biomolecular condensates with tumor-specific
distinctive features. We suggest that these features can form the basis of strategies for tumor-specific
supramolecular targeted therapies.
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tumor heterogeneity

1. Fundamentally Low Reproducibility in Cancer Research

“One of my biggest frustrations as a scientist that it is so hard to know which exciting
results are sturdy enough to build on”, is how Dr. Yusuf A. Hannun, director of the Stony
Brook University Cancer Center in New York, reacted in his comment in Nature [1] to the
recently published results of a large-scale replication project that highlighted just how hard
it is to repeat results, even those published in high-impact papers [2].

A group of researchers was involved in an eight-year project to reproduce the findings
of more than 50 high-impact papers [3]. It was launched in 2013 by the nonprofit Center
for Open Science (COS) in collaboration with the online research marketplace Science
Exchange. It was designed to assess reproducibility in preclinical cancer research and at-
tempted to reproduce key results from more than 50 high-impact studies published between
2010 and 2012.

Over the next eight years, the researchers managed to repeat experiments from a little
under half of those studies and found that the results they obtained were typically far less
clear-cut than the ones reported in the original papers—an assessment that has drawn
criticism from some of those papers’ authors. The team was often not able to obtain enough
information about the methods used from either the papers or their authors and had to
abandon attempts at replication altogether.

Finally, in December 2021, a series of papers appeared [4–6] that described repro-
ducibility issues in high-impact cancer papers [3] and identified significant challenges
associated with repeating other scientists’ work, renewing calls for increased transparency
and data-sharing in the biomedical community.
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The problem was reviewed in detail by us earlier [7] and even before by Begley
and Ioannidis in a paper entitled “Reproducibility in science: improving the standard
for basic and preclinical research” [8]. These authors underlined an important problem:
“The estimates for irreproducibility based on these empirical observations range from
75 to 90%...”. The variability of biological systems means that we should not expect an
obligatory reproduction of the results to the smallest detail. Many people are amazed, not
by the fact that scientists cannot exactly reproduce experiments, but that, in many cases,
the main conclusion is not supported even when the same scientists conduct repeated,
but blind, experiments when information about the test and control is masked (kept)
from the participants. Empirical assessments of preclinical studies have revealed many
other problems, including the studies that were not repeated, incorrect control usage,
reagent quality not being tested, and incorrect statistical tests not being used. In addition,
researchers often choose the best result for publication instead of a summation of the whole
set of data. Commonly, the result of such a practice is that not only are some experiments
not reproduced, but the main conclusion of the paper is not confirmed.

A recent review added more information in this regard: In a survey of 1500 researchers,
about 70% of those who attempted to reproduce someone else’s experiment failed; addition-
ally, and even more worrisome, more than 50% failed to reproduce their own experiments.
The problem is not limited to cancer. For the most recent consideration of this problem
with non-cancerous diseases, see [9].

It should be noted that the problem of reproducibility in cancer research is not new.
Countless steps have been taken to solve it: better reporting, better career incentives,
separating exploratory work from confirmatory work, and developing infrastructure for
large, collaborative confirmatory experiments [1]. Barriers to reproducing preclinical results
also included unhelpful author communication [10].

However, all the reasons listed above are subjective and can indeed be largely min-
imized by the correct organization of experiments and rules for publishing results. The
situation is much worse with the objective, intrinsic variability of biological objects in
general, which is especially high in cancerous tumors.

Due to the application of fast methods for decoding the whole genomes of organisms,
as well as the genomes of individual cancer tumors, it became clear that cancer development
is associated with hundreds of human genes. The mechanisms underlying the association of
genomic changes and cancer phenotype development were understood only to a negligible
extent. The unpleasant truth is that the majority of associations between the genotype as
a genome structure and the phenotype as a combination of external traits are extremely
complex. Genes are mutually dependent, they upregulate or downregulate the effects
of each other, and every phenotype manifestation involves many genes and non-genetic
processes that are called epigenetic. Identical genotypes in different conditions produce
different phenotypes, whereas different genotypes can behave in a similar way. This is true
not only for cancer but also for other diseases [11].

This multidimensional complexity results in extreme genetic, epigenetic, transcrip-
tional, and proteomic cancer heterogeneity. One gene may have many phenotypes, and at
the same time, one phenotype may be formed by many genes [12]. As such, Mullard [10]
was absolutely right when he noted an extremely important problem: “You can never do
experiments exactly the same”.

In this short review, we will look at these objective causes of variability in more
detail, trying to highlight some general principles in the organization and evolution of
cancerous tumors. We think that, in the case of cancer, the modern medical “sacred
cow”, personalized medicine, in view of the extreme heterogeneity of cancers, encounters
serious difficulties in its application and formulae; this is in contrast to possible generalized
principles of cancer medicine. Such approaches seem especially relevant against the
backdrop of a rapidly growing population, an equally rapidly deteriorating ecology, which
increases the incidence of cancer, and the very likely inaccessibility of personalized medicine
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to developing countries and individuals. Under such conditions, big medicine must
concentrate on universally applicable treatments.

2. Heterogeneity within Cancer Cells and in Their Interactions
with Microenvironment

One of us considered this problem earlier [13,14]. Since then, quite a number of
reports have confirmed the points of view expressed there. For the most recent reviews,
see, for example, [15–17]. In brief, there are more than 100 distinct types of cancer in
specific organs [18]. A tumor is a growing and evolving system [19] and undergoes
multiple changes to become cancerous, to resist antitumor agents, and to induce inter- and
intratumoral cellular heterogeneity that makes them unique for every patient [20]. The
dozens of “driver” genetic mutations and up to 12 different pathways can be involved in
the development of a single cancer type [21].

In addition, cancer cells actively interact with neighboring normal cells by modifying
them, forming tumor microenvironments, and by evolving together (see below).

Despite enormous complexity, all cancers have common essential alterations in cell
physiology (“hallmarks”) that are collectively necessary (but not sufficient, see below)
to order malignant growth [18,22,23]. Each hallmark can be acquired in different ways
in different tumors [23]. The permanently growing data demonstrates more and more
complex systems of genes, epigenetic changes, proteins, and various complexes involved in
tumor initiation and progression. Every cancer cell is a unique entity that possibly emerges
only once in the history of mankind [14]. Tumors possibly start from a stem cell converting
into a cancer stem cell (for details, see [14] and references therein). The latter divides into
two daughter cells, and these three cells are different from each other according to a number
of genetic changes, due to stochastic mutations and recombinations. In normal tissues, the
mutation rate varies from less than 1 × 10−8 per base pair per cell division to 10−10–10−11 in
the stem cells, which are supposed to give rise to cancers [14]. During development, cancer
cells may exhibit a mutator phenotype [24] (for a recent review, see [25]) that has increased
rates of mutagenesis. The mean frequency of mutations in cancer cells was estimated as
2.1 × 10−6 [26] (not everyone agrees with the mutator hypothesis, see [14] for discussion).

Considering the number 2.1 × 10−6, we will find that if the tumor size is 109 (it
is a detectable size—1 g [27] (30 cycles of division occur in a hypothetical scenario in
which there is no cell death)), then each cell in such a tumor will have 189,000 mutations.
These figures agree rather well with experimental estimates; some cancer genomes carry
100,000 point mutations, whereas others have fewer than 1000 [28]. With such a number of
randomly distributed mutations, the distribution of these mutations along the genome is
unique in each particular cell of 109 different cancer cells. All of the cells are different from
all others in this particular tumor, and as so in all other tumors in the world [14–16,29,30].

The tumor heterogeneity is further increased due to epigenetic [31], proteomic [32], and
metabolomic [33] heterogeneity detected, in particular, by single-cell omics means [34–36].

A huge amount of information concerning tumor heterogeneity obtained by means of
single cell omics technology has been published recently. Researchers use methods to test
individual cells, from characterizing their gene expression to documenting their epigenetic
state, transcription factor activity, and cell–cell communication [37]. Numerous problems
exist with wet-lab techniques and adequate analytical methods. The reproducibility of
the results is also questionable [38,39]. As the primary goal of our review is to show the
extreme variability of cancers at both the intercellular and intracellular levels in order to
explain the failures of molecular targeted approaches in cancer therapy, a discussion of
the reliability and reproducibility issues of single cell omics extends beyond the scope
of this review. The reader can read about this extremely intensively developing field in
the latest comprehensive reviews and comments, as detailed in [38–42]. Intracancerous
heterogeneity determines the heterogeneity of molecules and complexes exposed to the
surface of cancer cells (surfaceome—all of the surface proteins of a cell or organism [31,43];
The Cancer Surfaceome Atlas integrates genomic, functional, and drug response data
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and substances secreted by cancer cells [44]). For the understanding, identification, and
therapeutic treatment of cancer, some of the most important components of the surfaceome
are a plethora of adhesion molecules, which, in turn, have sometimes been united under
the term adhesome [45].

Cell adhesion molecules (CAMs) play central roles in much of the connection and
communication between cells. Cell-adhesion-related communication is essential for the
correct development in a variety of organs and tissues and also plays a substantial role in
cell recognition processes in adult organisms [46]. Surface adhesion proteins are connected
to a network of cytoskeleton proteins, implementing signal transduction.

The secretome of an organism [47] represents the proteins and other products re-
leased by all types of cells/tissues of the organism. A cell secretome represents all
the substances secreted by the cell [48]. Secretory Proteins (SPs) are crucial for cor-
rect cell proliferation, metabolism, immune functions, and communication. Many SPs
serve as important biomarkers for diverse cancers, and some of them could be used as
therapeutic targets.

All of these variable factors form complex systems with differences between cancer
cells in various aspects of gene expression, phenotypic markers, growth dynamics, and,
importantly, unpredictable emergent properties that make the tumor extremely resistant to
therapeutic interventions. In addition, cancer evolution leads to metastasis and circulating
tumor cell clusters (see below), which are formed due to the cancer–tumor microenviron-
ment (TME) interactions. On the other hand, the same cancer–TME interactions (hereinafter
defined as intratumoral) necessary for its evolution can serve as its Achilles heel, at which
killing arrows can be directed. The network of these interactions could be defined as cancer
connectome in contrast to intracellular interactions defined as the interactome [49].

Below we try to consider various aspects of the complexity of tumor systems, which
make each tumor a unique formation and lead to objective reasons for the poor repro-
ducibility of studies conducted in this area. We focus on systems of cancer cells–TME
connectomes and put forward a hypothesis that the destruction of these interactions can be
a universal strategy for tumor therapy [50].

3. Tumor Micro Environment (TME) and Its Immunological Components
(TIME) Heterogeneity

Tumor heterogeneity determines the heterogeneity of the tumor microenvironment
(TME), including the tumor immune microenvironment (TIME), of cancer cells.

In our previous reviews [51–53], we tried to outline the problems of the tumor mi-
croenvironment. Here, we briefly repeat some points discussed there, add important new
information that has appeared since these publications appeared, and focus mainly on the
immune component of tumor stroma.

The definition given by the American National Cancer Institute to the TME is as
follows: “The normal cells, molecules, and blood vessels that surround and feed a tumor
cell. A tumor can change its microenvironment, and the microenvironment can affect
how a tumor grows and spreads” [54]. Cancer cells are the primary architects of the
tumor microenvironment [55]. During tumor evolution, cancer cells use the tumor–stroma
crosstalk to reorganize the microenvironment for maximum tumor robustness.

The TME consists of a complex mixture of various cells and extracellular material.
TME cells, including fibroblasts, cancer-associated fibroblasts (CAFs), myofibroblasts,
mesenchymal stem cells, adipocytes, and endothelial cells, have a mesenchymal origin and
cells of hematopoietic origin, such as lymphoid cells (T, B, and NK cells) and myeloid cells
(macrophages, neutrophils, and myeloid-derived suppressor cells), that form TIME (see
above). The non-cellular component is represented by the extracellular matrix. All of these
entities form an interacting and evolving system with multiple emergent properties. They
also recruit normal cells and form an ecological tumor niche—a very important player in
both the development of the primary tumor and its metastasis [56–62].
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The interactions of cancer and stromal cells include (i) direct binary contacts be-
tween ligands and receptors exposed on the surface of cancer and stromal cells, and (ii)
paracrine communication between cancer cells and various TME cells [53,63,64]. Some
authors use the term “symbiotic” for tumor–stroma interactions, such as [52] and the
references therein. The symbiosis of cancer and stromal cells is based on a complementary
exchange of paracrine factors that leads to changes in the TME characteristics, the most
important result of which is the transformation of normal fibroblasts into cancer-associated
fibroblasts (CAFs) [65–73]).

Paracrine signals can be transmitted by diffusion over distances of tens of cell diam-
eters [64], forming a gradient of signals that exclude the “yes” or “no” binary responses
of the cells but, depending on the distance from the source, induce different responses.
Clearly, the signal efficiency will be higher for closely located cells, where it occurs in
synapse-like structures (see below). The tumor–stroma crosstalk eventually leads to the
increased robustness of the tumor. A hypothesis was put forward [51] that such interactions
include the formation of synapses and synapse-like structures with the interacting cells
positioned at a distance of 10–30 nm [74]. Such a tight intercellular space could enhance the
paracrine cross-communication.

TIME has been shown to be significantly involved in tumor development and metasta-
sis and is highly heterogeneous [75–80].

The important role of immune system cells in the progression of cancer and, in
particular, metastases has been repeatedly noted (see, for example, review [58] and the
references therein). It was reported, in particular, that the immune system can augment
secondary tumor growth. In a mice model, the recruitment of monocytes/macrophages
and neutrophils in TIME advanced tumor cell survival, colonization, and pre-metastatic
niche establishment was observed. Neutrophils, in their turn, can enhance metastasis by
grouping Circulating Tumor Cells (CTCs) in circulation. They can also promote metastatic
growth by remodeling the host extracellular matrix.

In their comprehensive review [81], the authors provide information concerning the
pro- and antitumoral role of various immune cells present in the TIME. In particular, the
authors note that CTC and white blood cells can be clustered during circulation (see below),
or even earlier, and that the important participants of this process were innate immune
cells [82]. Many authors also mention macrophages as one of the most abundant cells
in TIME, the presence of which correlates with worse survival in most cancers, and they
participate in many stages of cancer evolution [83]. Other cell–cell interactions in metastatic
clusters were also reported [84].

We will return to the problem of immune cell participation in tumor progression, but to
conclude this paragraph, we want to emphasize once again that inter-patient heterogeneity
in immune composition and immune cell function is also clearly manifested. It represents
a major challenge for cancer immunotherapy [85].

4. General Principles of Intercellular Interactions

Clustering is a prominent feature of receptors and ligands in the plasma membrane
(PM). It plays an important role in signaling [51].

Extracellular protein–protein interactions for soluble ligands are rather strong, with
the equilibrium constant of dissociation (Kd) in the nanomolar to the picomolar range. Such
high-affinity binding ensures signal initiation under conditions when the concentration of
interacting molecules in the solution is low. On the contrary, the affinities are extremely
low for membrane-bound individual receptor–ligand–protein interactions, with the Kd
bound within the micromolar to the millimolar range [86]. This effect is due to the very
low half-life of the membrane-embedded protein contacts that often have milliseconds
in a monomeric state [87]. The strength of intercellular contacts, in this case, is achieved
through the clustering of adhesion molecules that involves hundreds of ligand–receptor
pairs. This increases the avidity of the intercellular contact to a level sufficient to switch on
a signaling cascade [88].
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A relatively well-studied example of cell–cell interactions through surface ligand–
receptor pairs is the clusterization of cadherins during the formation of the cadherin-
mediated intercellular contacts [89]. The emergent intercellular adhesion is initiated by the
binding of cadherin ectodomains to the cell surfaces. Due to diffusion, the formed cadherin
trans-dimers gather into small clusters at the sites of cell adhesion. With the participation of
intracellular transformations of the cytoskeleton formed by the inner parts of the cadherins,
the clusters are stabilized and expanded. As a result, cell adhesion is enhanced strongly.
Small nanoclusters usually slowly diffuse or can be fixed through the actin cytoskeleton.
Upon the binding of a ligand, the already existing small nanocluster can include accessory
monomers (Figure 1). The activation of the nanoclusters through binding ligands leads to
an enlargement of nanoclusters, making them functional. Nanoclusterization is a general
organizing principle for many membrane receptors. Nanoclusters often coexist with
randomly distributed non-clustered components. This coexistence may play a functional
role or a regulatory role. Nanoclusters may function as complexes assembled in advance
and are capable of fast activation when binding a ligand [90].
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Figure 1. Illustration of individual molecules freely diffusing on the membrane surface (A), and a
cluster of the intercellular adhesive complexes (B). Adhesion molecules (deep green) initiate binding,
which also may involve other transmembrane proteins (pink) and cytoplasmic proteins that can bind
to the cytosolic part of the transmembrane proteins (orange). It also involves lipid groups present on
the inner surface of the plasma membrane (yellow) and proteins with lipid-binding domains (light
blue). Clustering may lead to the displacement of negative regulators associated with the cytosolic
part of the adhesion molecules (R). Actin microfilaments stabilize macromolecular clusters through
actin-binding proteins (cyan) (modified from [91]).

4.1. Synapses as a Way of Communications of Tumor and Its TIME

Synapses are adhesive spaces between two neighboring cells in multicellular organ-
isms. They serve cell–cell communication as well as information processing and storage.

The synapse concept appeared more than 100 years ago for neuronal cell–cell commu-
nication [92,93] and recently was adapted to other cell–cell communication mechanisms.
Currently, the concept of the synapse is used to describe various intercellular communi-
cations [94], among them are specialized adhesive contacts of various types of cell–cell
interactions, such as neurons, immune cells, epithelial cells, and even pathogens and
host cells [95–104].

The history of many failures demonstrates the very low effectiveness of cancer treat-
ment targeted at indecipherable intracellular interactomes, and the development of efficient
cancer therapies should focus on a new paradigm. A classic example of a new paradigm can
be demonstrated by immune checkpoint therapy, which focuses on the interactions between
cancer and stromal cells as therapeutic targets. As we tried to substantiate earlier [51,52],
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only direct interactions (for example, between ligands and their cognate receptors) form
relatively simple binary contacts that are necessary for successful therapeutic action. Such
binary contacts universally provide synapse-like structures (interfaces) where the inter-
acting cells are located at a distance of 10–30 nm (see below). Within these interfaces,
molecules initiating and strengthening the interaction are organized, and a very confined
intercellular space facilitates the concentration of secreted cytokines, enhancing paracrine
cross-communication. These features of synapses represent a new target for efficient cancer
drug discovery [51,52]. A telling example of the success of such a concept is tumor immune
checkpoint therapy.

4.2. Immunological Synapse as a Classical Example of Cell–Cell Functionally Efficient Interactions

The most important example of clusterization to make the cell–cell contact strong
enough is the enabling of the immunological synapse to form a stable interface between
the immune cells organized by the adaptive or innate immunoreceptors in concert with
adhesion molecules [100,105]. One of the most important functions of the immunological
synapse is the integration of innate and adaptive signals to decide if the initiation of
an immune response or an effector program is appropriate following specific antigen
recognition [100]. A synapse formed by a T-cell receptor (TCR) is illustrated in Figure 2.
Micro-clusters interacting with ligands and receptors/co-receptors, as well as adhesive
molecules, are formed and create a stable 10–30 nm cleft allowing for effective exchange
with cytokines and other substrates. Synaptic clefts are densely occupied with different
proteins, such as adhesion proteins, receptors, and transporters [74].

Stable synapses are important in the regulation of immune response decisions and
efficient effector function [100].

Cell–cell adhesion is mediated by structurally diverse classes of cell-surface gly-
coproteins, which form homophilic or heterophilic interactions across the intercellular
space [94,105]. Surface-positioned adhesion proteins have internal parts that bind to a
cytoplasmic network of scaffolding proteins, regulators of the actin cytoskeleton, and signal
transduction pathways that control the structural and functional organization of synapses.

As indicated above, an essential feature of the ISs is the formation of surface-receptor
and ligand clusters, which mediate intercellular contacts. Some authors even suggest the
formation of synapse-like structures for all cases of membrane signalization. For exam-
ple, as indicated in [106], “this in a way predicts a ‘synapse’ like entity for all membrane
signaling events. Here, there is no difference between a ligand/receptor pair induced
higher-order lipid domain or one produced by a membrane curvature or any other bio-
physical means. The central purpose is to bring together enough sorted lipids and their
associated protein receptors, and signaling ensues”.

A receptor cluster in the T-cell synapses initiates the recruitment of hundreds of
molecules to the membrane, interacts with the actin cytoskeleton, and plays a significant
role in signal transmission. The formation of signal clusters leads to functional results
that are difficult to predict from individual components [107]. These complex system
interactions lead to the appearance of numerous emergent properties [108].
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Figure 2. Simplified representation of the organization of the immunological synapse (IS) demonstrat-
ing a T-cell receptor (TCR)/CD3 complex-MHC bound peptide interactions within the synapse cleft.
Clusterization of other receptors (CD28, CTLA4 with their ligands (CD80) and adhesion molecules
LFA-1 and ICAM-1, on the surface of both cells, are responsible for the formation and stabilizing ISs
and for the initiation of signal pathways generated by the TCRs [95,103,109]. All transmembrane
contacts are clustered and have been symbolized by their pairs in the figure. Synapse formation also
leads to the appearance of a biomolecular condensate (see below).

Clusterization provides stability for signaling by enhancing ligand–receptor functional
local concentration and reducing the possible effect of the protein-degrading enzymes
on the interaction result. A fundamental property of the synapse is the proximity of the
interacting cells. Such proximity was reported in an X-ray structural analysis of a CD200R
and CD200 protein complex. CD200 (earlier known as OX2) is a widespread cellular surface
protein that interacts with the receptor CD200R, expressed in the myeloid cells and some
lymphoid cells. The authors calculated a distance of ~12 nm between the interacting
cells, which corresponds to the spatial parameters of an immunological synapse. Since
CD200 is also expressed in the non-lymphoid cells, synapse-like interactions may be widely
used [110,111]. Various techniques provide a width of the immunological synaptic cleft
ranging from 10 to 30 nm [74].

The NKG2D receptor abundantly present on all NK cells is important for immunologi-
cal synapse formation between NK and tumor cells. NKG2 allows NK cells to recognize
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virus-infected cells and tumor cells [112,113] and to form the cytotoxic synapse, antibody-
stimulated proliferation and adhesion of NK cells to target cells [114].

4.3. Other Systems Also Use Synapse-like Contacts for Cell–Cell Communication

In the last ten years, the synapse concept was adapted to embrace other cell–cell
communication phenomena [92]. Intercellular interactions underlie multicellularity. The
key components that mediate these interactions are now known, in particular: the cadherin
superfamily, nectins, CAMs, connexins, Notch/Delta, lectins, and eph/Ephrins [115].
Below we will briefly consider some of them, forming synapse-like structures.

4.3.1. Ephrin Type-A Receptor 2 (EphA2)/EphrinA1 System

The transmission of intercellular adhesion signals in other cellular systems is sim-
ilar to the processes in T-cell immunological synapses. The ephrin type A receptor
2 (EphA2)/EphrinA1 system, which regulates cell adhesion, motility, and angiogene-
sis, is one recent example. Surface-attached cell ligand ephrins convey signals through
receptors that are members of the Eph family of tyrosine kinases. Dimerization in receptor
tyrosine kinase signaling is well known [116]; however, to trigger Eph signaling, higher-
order oligomerization is necessary [117]. The binding of EphA2 to EphrinA1 eventually
leads to the formation of clusters on the cell membrane [107].

Ephrins and Ephs signal complexes may change cluster size and composition. It
has been reported [118] that the receptor is initially activated by the formation of 6-mer
to 8-mer oligomers. The interactions between these oligomers can further form larger
clusters that inhibit signaling [119]. This system uses fundamentally the same organiza-
tional principles as the immunological synapse: intercellular contacts are achieved due
to the presence of receptor clusters on one of the interacting cells and ligand clusters on
the other. These clusters are associated with the remodeling of the intracellular cytoskele-
tons. This allows the polarization of the cell secretory mechanism—another feature of
synapse-directed secretion [103,106,110,120].

4.3.2. Phagocytic Synapse-like Behavior

Macrophages (MPs) in TME or tumor-associated macrophages (TAMs) cells are critical
elements in regulating tumor development in multiple cancers [83,92,121–123]. MPs are
one of the most abundant immune cells in the TME, and their presence may indicate an
unfavorable development of the disease. MPs participate throughout the whole tumor
evolution and stimulate angiogenesis, invasion, and the intravasation of the metastatic cells
at the primary site and participate in the preparation of a metastatic site for the arrival of
metastatic cells and the promotion of their subsequent growth [83]. An important function
of macrophages is the elimination of injured or apoptotic cells [124].

MPs can engulf tumor cells and present tumor-specific antigens for recognition by the
cells of the adaptive immune response. In addition, macrophages also rapidly recognize
and engulf apoptotic cells (efferocytosis) in the tumor microenvironment, which inhibits
inflammatory responses and facilitates the immune escape of tumor cells [121].

The term “phagocytic synapse,” analogous to the immunologic synapse, has been
used to determine the space between phagocyte receptors and their target [122,125]. The
generation of phagocytic and immunological synapses is initiated by different immune
receptors and executed by different cell types. However, it was demonstrated that very
similar molecular and cellular events control both processes. Phagocytic and immuno-
logical synapses use specific patterns of receptors, signaling molecules, and clustering
of phagocytic receptors to induce signal transduction pathways using particle-associated
ligands. Phagocytic receptor signaling switches on the reorganization of the actin cytoskele-
ton similarly to the one induced by the TCR. The list of similarities can be continued, as
detailed in [122].

Phagocytic synapses, as well as other synapses, explain the high potential of eukaryotic
cells for the integration of multitudes of various signals into desirable physiological effects.
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Recent studies argue that MPs and TAMs can enter the cell cycle and self-renew [126].
The plasticity of MPs and their ability to self-renew significantly influences tumor progres-
sion and resistance to therapy. TME factors also influence macrophage metabolism and can
have a significant impact on TAMs proliferation [127].

Innate immune cells (MPs, neutrophils, NK cells, etc.) detect and eliminate non-self
invaders. Unlike adaptive immune cells, innate immune cells use a limited number of
receptors, recognizing certain structural pattern characteristics of an invader or damaged
cells; these are the so-called pattern recognition receptors (PRRs). Receptor clustering
has been discovered in the activation of the innate immune system during host–pathogen
interactions. It has been reported that innate immune receptors also assemble into nano- or
micro-sized domains on the surfaces of cells, forming a multi-component system for the
detection of harmful events and organizing a proper immune response [128,129].

4.3.3. Viral (Virological) Synapses

A viral (virological) synapse is a cellular junction that has the characteristic features of
a synapse. Viruses such as the herpes simplex virus (HSV), human immunodeficiency virus
(HIV), and human T-lymphotropic virus (HTLV) form these junctions between the infected
(“donor”) and uninfected (“target”) cells and, in such a way, achieve direct cell–cell viral
transmission; thus, they escape destruction by the immune system [130–132].

4.3.4. Gap Junctions

Gap junctions (GJ)—a fundamental structure of normal epithelial cell function are
clusters of intercellular channels found in immunological synapses.

GJs form a trans-cellular channel formed by connexins [133] for the efficient direct
exchange of ions, metabolites, and second messengers. Heterogeneous GJs are important
to normal growth and differentiation [134–137]. GJs serve as an important communication
between tumor cells and stromal cells. Increased GJs coupling blocks metastatic potential in
some cancer–animal models, such as breast cancer and melanoma [135]. There exists plen-
tiful evidence suggesting that connexins, in particular connexin-43 (Cx43) gap junctions,
regulate signaling events in different types of IS [138]. In particular, GJs accumulate at the
immunological synapse [139] and contribute to T-cell activation at the cytotoxic immuno-
logical synapse [140]. It was noted that the role of GJs in tumor evolution is ambiguous;
independent of GJ composition and cancerous factors, tumoral GJ may support tumor
progression or suppression [137,141,142]. In addition to gap junctions, cells in the epithelial
state also use tight (TJ) and anchoring junctions (AJ) for cell–cell interactions, which can be
further subdivided into adherens junctions, desmosomes, etc. [143]. Additionally, recent
research indicates that some molecules in cell–cell junction structures have little effect on
primary tumor initiation and growth, but they are instead critical for the formation of
distant metastases [143].

5. Metastasis

Metastasis is responsible for more than 90% of cancer-related deaths globally [144].
Malignant tumor cells in TME are maintained and/or antagonized by their existing immune
cells [145–151]. These interactions also initiate metastasis, which involves the detachment
of tumor cells from their primary site and intravasation into the circulation. They then
survive there, migrate, and extravasate into the secondary organ to survive and grow at the
new site [144,152]. CTCs (circulating tumor cells) exist as single cells or cell clusters (groups
of aggregated CTCs, also known as the circulating tumor microemboli [153]). The process
also includes epithelial–mesenchymal transition (EMT) in single cells and a hybrid EMT
in collective migratory cells [150,154,155]. EMT is a key step in the metastasis of tumor
cells that lose polarity and acquire the migration ability necessary to metastasize [156]. E-
cadherin is expressed mainly in epithelial cells. It functions within the AJs of the epithelial
junctional complex and helps the cells to form a polarized cell layer performing barrier and
transport functions. This is essential to the stabilization of cell–cell adhesion. E-cadherin
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loss leads to the increased invasiveness and metastatic potential of cells [142]. Some data
indicates that TAMs induce the EMT program to enhance CTC migration, invasion, and
CTC-mediated metastasis [157].

Only a small proportion of the single CTCs (0.2% reported by Tripathi et al. [158]) can
survive and result in metastatic transformation [159]. Efficient metastasis (>90% [158]) has
been attributed to the CTC clusters. According to the estimates, per day, 3.2 × 106 tumor
cells per gram of primary tumor can be detached. More than half of them die [153]. Only
one cell per 106–107 leukocytes [153,160] remains. Clusters in circulation reportedly have
20- to 50-fold greater metastatic potential, but a shorter half-life (6–10 min for clusters
vs. 25–30 min for single cells), higher proliferation rate, and distinct molecular features
compared to single CTCs. Their presence in the peripheral circulation is associated with
unfavorable clinical outcomes in cancer patients [161]. Perhaps some role in the efficiency
of metastasis is played by the supposed acquisition by circulating cells of the properties of
cancer stem cells [162]. The CTC can evade immune surveillance [161,163–169].

CTC clusters that incorporate tumor or non–tumor cells, such as neutrophils, platelets,
macrophages, MDSCs, natural killer (NK) cells [170], and CAFs [171], may be homotypic [172,173]
or heterotypic. In particular, tumor-associated macrophages (TAMs), major components of the tu-
mor microenvironment, are frequently associated with tumor metastasis in human cancers [157].
The interactions between immune cells and CAFs with cancer cells possibly produce signaling
activities, promoting cancer invasion and metastasis [51,57,173–176].

The non–tumor cells can combine with cancer cells through multiple cell-adhesion
molecules and tight junction proteins both in homotypic and heterotypic
CTC clusters [51,153,166,167,169,177–180].

The interactions between neoplastic and immune cells (possibly by means of synapse
formation) regulate different stages of the metastatic process. Immune cells contribute
to invasion by secreting a large number of inflammatory factors that promote epithelial-
to-mesenchymal transition and the remodeling of the stroma. Above we have already
mentioned that paracrine-secreted signals have a rather small probability of reaching the
target cell due to diffusion [64]. The formation of a synapse would allow these signals
to be focused through a narrow synaptic cleft and make the signal efficiency for closely
located cells much higher. Cancer cells then intravasate to the circulatory system assisted
by macrophages and use several pathways to avoid recognition by cytotoxic lymphocytes
and phagocytes [181,182].

Recently, the presence of hybrid TAM and glioblastoma (GBM) cells that possessed
higher invasiveness was detected [147]. Additionally, macrophage-like cells containing
phagocytosed tumor material (CAMLs) and circulating hybrid cells (CHCs) that probably
result from cell fusion between cancer and immune cells were found in circulation [146].
Both can play a role in the metastatic cascade and are presented in higher numbers as
compared to CTCs in the peripheral blood. It was shown that macrophages displayed the
most robust cell fusion capacity [146]. Tumor-immune hybrid cells harbor immune and
neoplastic cell attributes. The role of such cellular griffons is not yet clear.

In their comprehensive review, the authors of [164] (also, see references therein) discuss
several important points. The formed groups of cells can arrange themselves in such a way
that, at the front-most end of the cluster, “leader” cells directing migration connected to
several “follower” cells appear. Leaders probably determine the direction of the cluster
migration. “Tip” cells are connected by cell–cell junctions to “stalk” cells leading to the
multicellular partners of endothelial cells. Despite their importance, there is no consensus
on how leader cells arise or their essential characteristics [149]. The number of cells in each
group and their composition vary greatly; however, this leader–follower combination has
repeatedly been observed. Leader and follower cells can communicate directly through
cell–cell junctions or through secreted molecules. Leader cells generate a migration path,
coordinate cluster cells to facilitate collective movement, and enhance the survival and
metastatic potential of the tumor [151]. TAM, CAF, basal epithelial leader cancer stem
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cells, mesenchymal leader cancer stem cells, hybrid, and EM leader cancer stem cells were
considered as possible leader cells [151].

CTC clusters at least partially retained epithelial characteristics, in particular, the
high expression of cell–cell junction proteins and gap junction formation [183]. The au-
thors [164] note that cell–cell adhesion helps cells avoid death by activating integrin sig-
naling without ECM. In tumors, closely positioned cell-cluster signals can be directly
transmitted to their nearest neighbors (synapse?), and adjacent tumor cells can also form
gap junctions, allowing the diffusion of signaling molecules directly between the cytosols
of the contacting cells. It was reported [184] that the development of epithelial cancers
is mostly proceeded by the collective invasion of cell groups with coordinated cell–cell
junctions and multicellular cytoskeletal activity. The gap junction’s ability to permit direct
cytosol–cytosol flow makes them, and, possibly, synapses, promising targets to disrupt
tumor cell–cell communication [185].

An open question is whether synapse formation may play some role in the collective
movement of CTC clusters, as is shown in Figure 3. It would be reasonable to assume
that, by performing “professional” functions, macrophages (or other immune cells) could
contact tumor cells that send danger signals and, acting professionally, form a phagocytic
synapse with them. The strength of this connection would be provided by the clustering
of receptors and adhesion molecules. Additionally, the properties of such a ligament
could be determined by the highly probable formation of an MC (see next paragraph)
in the synapse [186,187]. The lifetime of such a connection would be long enough to
survive traveling through the vasculature. For estimation: cytotoxic lymphocytes (CTLs)
form somewhat transient synapses, lasting only a few minutes, as the target cells are
killed. On the other hand, Th lymphocytes make stable, lengthy synapses (>20–30 min
up to several hours) that are necessary for both directional and continuous secretion of
stimulatory cytokines [96,160,188].

Int. J. Mol. Sci. 2023, 23, x FOR PEER REVIEW 12 of 28 
 

 

through cell–cell junctions or through secreted molecules. Leader cells generate a migra-

tion path, coordinate cluster cells to facilitate collective movement, and enhance the sur-

vival and metastatic potential of the tumor [151]. TAM, CAF, basal epithelial leader cancer 

stem cells, mesenchymal leader cancer stem cells, hybrid, and EM leader cancer stem cells 

were considered as possible leader cells [151]. 

CTC clusters at least partially retained epithelial characteristics, in particular, the 

high expression of cell–cell junction proteins and gap junction formation [183]. The au-

thors [164] note that cell–cell adhesion helps cells avoid death by activating integrin sig-

naling without ECM. In tumors, closely positioned cell-cluster signals can be directly 

transmitted to their nearest neighbors (synapse?), and adjacent tumor cells can also form 

gap junctions, allowing the diffusion of signaling molecules directly between the cytosols 

of the contacting cells. It was reported [184] that the development of epithelial cancers is 

mostly proceeded by the collective invasion of cell groups with coordinated cell–cell junc-

tions and multicellular cytoskeletal activity. The gap junction’s ability to permit direct cy-

tosol–cytosol flow makes them, and, possibly, synapses, promising targets to disrupt tu-

mor cell–cell communication [185]. 

An open question is whether synapse formation may play some role in the collective 

movement of CTC clusters, as is shown in Figure 3. It would be reasonable to assume that, 

by performing “professional” functions, macrophages (or other immune cells) could con-

tact tumor cells that send danger signals and, acting professionally, form a phagocytic 

synapse with them. The strength of this connection would be provided by the clustering 

of receptors and adhesion molecules. Additionally, the properties of such a ligament 

could be determined by the highly probable formation of an MC (see next paragraph) in 

the synapse [186,187]. The lifetime of such a connection would be long enough to survive 

traveling through the vasculature. For estimation: cytotoxic lymphocytes (CTLs) form 

somewhat transient synapses, lasting only a few minutes, as the target cells are killed. On 

the other hand, Th lymphocytes make stable, lengthy synapses (>20–30 min up to several 

hours) that are necessary for both directional and continuous secretion of stimulatory cy-

tokines [96,160,188]. 

 

Figure 3. Hypothetical picture of a circulating tumor cell (CTC) cluster with a leader macrophage 

cell connected by synaptic interactions, with epithelia/hybrid mesenchymal–epithelial followers in-

teracting with each other by means of gap junctions. 

To conclude this section, it could be argued that intercellular cooperativity represents 

the main driving force behind the invincibility of metastasis. Therefore, anti-cancer and 

anti-metastatic drugs should be aimed at breaking these sinister alliances. 

Figure 3. Hypothetical picture of a circulating tumor cell (CTC) cluster with a leader macrophage
cell connected by synaptic interactions, with epithelia/hybrid mesenchymal–epithelial followers
interacting with each other by means of gap junctions.

To conclude this section, it could be argued that intercellular cooperativity represents
the main driving force behind the invincibility of metastasis. Therefore, anti-cancer and
anti-metastatic drugs should be aimed at breaking these sinister alliances.

Another conclusion in the context, indicated at the beginning of the article, is the
objective irreproducibility of cancer; it is clear that both the tumor microenvironment
and the composition and properties of metastases are unique for each patient. However,
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the interactions used by the tumor are based on common principles. Additionally, these
common principles should be universal anti-cancer targets.

Similar thoughts have already been expressed [52,189,190]. The two major concerns in
such an approach are: which interactions are the most common and most vulnerable, and
how do we destroy them in the safest possible way for a patient. We will consider these
issues below.

6. Biomolecular Condensates (Membrane Less Compartments)

It is evident now that multiple biochemical processes in cells take place in so-called
membraneless compartments (MCs), otherwise called biological biocondensates or mem-
braneless organelles [141,180,187,191–199].

MCs have been described in bacteria and in mammalian cells, both in the cytoplasm
and in the nucleus. These compartments are not enclosed in a membrane; they can rapidly
form and dissolve as well as easily change their properties. Firstly, such organelles, nu-
cleolus, and Cajal bodies were noticed as early as in the 19th and early 20th centuries.
In the cytoplasm, MCs, stress granules, P bodies, and germ granules were observed con-
siderably later. The reactions occurring in the MCs are essential for diverse areas of cell
functioning, including transcription, stress response, synaptic activity, and many more.
There are convincing arguments (though not proof of) that the condensation of molecules
into MCs may play important roles in various human diseases, such as cancer and viral
infections, numerous neurodegenerative disorders, and other diseases [200]. The basic
rules determining the formation, behavior, and physiological functions of MCs are still in
the process of detection and evaluation. For recent information on databases related to this
problem, the reader will find it in [195].

Due to a process of liquid–liquid phase separation (LLPS), sequestering specific pro-
teins and nucleic acids into MCs takes place. As a result, molecules in solution form a
condensate phase with high molecule concentration and a surrounding phase with a low
concentration of molecules (Figure 4) [196]. The last decade was full of reports concerning
this problem, and many excellent reviews have summarized the results and hypotheses
relating to their possible roles in development, cancer and neurologic diseases [193].
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MC formation depends on a solute concentration. As soon as it reaches a critical
threshold, the system experiences a phase division into two phases: concentrated and
dilute. MCs reversibly form in response to various cellular signals, in particular, changes in
local concentration and epigenetic and post-translational modifications, and are stabilized
by numerous weak biomolecular interactions [201].

Modest perturbations can result in fundamental shifts in a phase-separating sys-
tem [191,193,202,203]. Biological phase separation is governed, in part, by noncovalent
weak, transient multivalent and dynamic interactions among biopolymers, in particular,
proteins and nucleic acid polymers. Whereas classical biochemical complexes have a de-
fined stoichiometry, condensates are non-stoichiometric assemblies with a great number of
molecules with weak multivalent interactions, which are self-organized via clustering [202].
MCs allow for the organization of several billion proteins, nucleic acids, and other molecules
of the cell into separate compartments of the cell with specific functions [204]. A separate
MC usually contains tens to hundreds of macromolecules, though only a small part of them
appears to participate in the formation, structural integrity, and function of the MC [195].

MCs are dynamic structures that can condense or dissolve rapidly. Such properties
allow MC to respond efficiently to changing conditions [205,206], in particular, by adopting
the regulation of gene expression and signaling [207].

Compartmentalization can significantly enhance the rate of biochemical reactions.
Many cellular processes have recently been shown to occur in biomolecular conden-
sates [204]. MCs gather various factors involved in shared processes [208]. For example,
transcription involves a plethora of various biomolecules that should be arranged in a
functionally active transcriptional complex. Compartmentalization allows this goal to be
reached, and assembling multiple transcription factors together with the RNA-polymerase
at the promoter of a gene ensures a high level of transcription [204,209–213]. Transcriptional
condensates form at enhancers and promoters containing multiple transcription-factor (TF) bind-
ing sites through selective TF binding [165,204,209]. It is important that cytoplasmic condensates
can form around the plasma membrane signaling apparatus [180,186,204,214–216].

MCs form and dissolve quickly enough. Due to this property, the cells have the
possibility to collect and release biomolecules for use in different places after they are
exempt from use at a previous site [193,208,217]. Probably, one of the central roles of phase
separation is to quickly respond to fluctuations in the surrounding milieu.

It should also be noted that MC and membrane-bound organelles interact with each
other and are dynamically regulated by the cellular signaling network [218], a complete
understanding of which is still (or forever?) very far from understanding.

MC composition depends on its specific location in the cell; nuclear condensates can
contain DNA- or RNA-binding proteins, whereas cytoplasmic condensates can form at
sites on the plasma membrane [186,204,210,217,219]).

Individual MCs are densely populated with certain protein and RNA molecules that
are enriched for specific sets of biomolecules and depleted in others. In addition, proteins
that contain repetitive domains, and that are involved in the formation of transmembrane
signaling complexes, for example, clusters of T-cell receptors, are known to be inclined
toward MC formation [187]. The transmembrane signaling proteins of receptors can be core
components essential for MC formation [180]. MCs, as a rule, contain from ten to several
hundred various proteins and/or RNA molecules. Some components are constitutive,
and others are recruited transiently, for example, in response to stimuli. The contents of
condensates are chemically distinct microenvironments [191,202,220]. As a rule, molecules
inside and outside the condensate exchange across the boundary [220].

The principles regulating MC formation were discussed recently [191,214,221]. The
authors [221] introduced the concept of the “the molecular connectivity” of an MC. The
number of weak protein–protein interactions per unit of volume, determining the stability
of the MC, was positively correlated with connectivity. The molecules whose connectivity
govern the formation and existence of an MC (so-called “scaffolds” [191]) are supplemented
by molecules called “clients” [191], recruited by means of interactions with scaffolds.
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Various mechanisms for the regulation of MCs have been suggested. For example,
in [222], two mechanisms have been proposed to explain MC formation: 1) folded domain
(secondary structures such as α-helices or β-strands) exploitation and/or 2) the utilization
of intrinsically disordered regions (IDRs; unfolded regions that do not contain secondary
structures, as shown in Figure 4 [180,186,214,223]. In the first mechanism, proteins con-
taining tandem folded domains can be bound through protein–protein interactions. An
illustrative example of such a mechanism is that it provides the formation of nephrin
clusters using multivalent interactions between phosphotyrosines and Src homology
2 (SH2) domains and between proline-rich motifs and SH3 domains [186]. This was
the first example of successful reconstitution of phase-separated condensates in vitro. A
similar mechanism involving crosslinking operates when DNA or RNA molecules are used
instead of the protein components.

Proteins that form scaffolds of MC typically have numerous intrinsically disordered
regions (IDR) [196,208,224,225]. IDRs play a key role in the formation and properties of
MC [193,196], though mechanisms of the phase transition driving are still unknown. IDRs
are often depleted of hydrophobic residues and enriched with polar and charged residues.
They do not have a certain conformation in solution but rapidly exchange between different
conformations, thus, forming dynamic complexes [193]. The proteins with IDRs are rather
usual in the human proteome (~35% of all amino acids are predicted to be disordered), and
their sequence conservation in evolution is rather low. However, IDR functions are often
preserved across large evolutionary distances in the regulation of transcription, translation,
and signaling [193]. Client proteins cannot form MC; they bind to available sites in the
scaffolds, thus finalizing MC assembly [191,208].

Distinct proteins and nucleic acids involved in common functions occur in each
individual condensate. This variability probably indicates the distinct chemical specificities
of these compartments. This suggestion is supported by the observation that different
small-molecule drugs concentrate in different condensates. The term ‘chemical grammar’
has been proposed recently [226] to describe the rules determining the chemical features
of small molecules that cause attraction or repulsion due to the chemical content of an
individual condensate. If such rules exist, knowledge of them could help in the design of
drugs that target the compartment with therapeutic purposes.

7. P.S. Overcautious Fear

As interest in LLPS as a mechanism for organizing macromolecules in cells has in-
creased, as have criticisms of the quality of evidence for LLPS in vivo [227–229]. Some
researchers have expressed doubt that “the evidence for in vivo LLPS is often phenomeno-
logical and inadequate to discriminate between phase separation and other possible mech-
anisms”. Moreover, they fear that the causal relationship between the formation of conden-
sates and their functional consequences is not well established [227].

8. Instead of a Conclusion: Persistent Therapeutic Supramolecular Targets in Cancer’s
Fickle Microcosm

Numerous failures in clinical trials concerning targeted agents gave rise to a legitimate
question: is the paradigm of molecular targeting correct? The theoretical considerations
and findings discussed above suggest that it is barely possible to develop an efficient
therapy targeted to specific genes [14,230–234]. Tumorigenesis involves practically all cells
of the stromal environment of cancer [235]. Disrupting these detrimental connections is a
challenging, but still achievable and promising, task. To defeat cancer, we must admit the
insurmountable complexity of intracellular interactomes and try to disrupt the system as a
whole by destroying the interactions of its parts, connectome.

Direct cell–cell interactions produce targets simple enough to expect real therapeutic
effects. A bright example of the success of such a concept is a paradigm of tumor check-
point immunotherapy ([52,236,237] and references therein).
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However, this approach confronts other sides of tumor heterogeneity—quite a number
of patients do not respond to this therapy—and the inhibition of immune checkpoints
causes numerous side effects called immune-related adverse events
(IRAEs) [238–240]; furthermore, the problem of resistance that occurs during treatment is
also a matter of serious concern. Deborah Madden [241] asks if cancer immunotherapy
entails a change in paradigm? She writes that though immunotherapy had become the
best achievement in the field of cancer in 2016–2017, it spawned more questions than
answers. Further investigations into tumor–TME interactions are necessary for the identifi-
cation of new immune checkpoints or other key interactions that allow for more reliable
therapeutic strategies [84,242].

The survival of cancerous cells at all stages critically depends on the interactions
between each other and their microenvironment or with neighbors in the circulating tumor
cells during metastatic migration (see above). The means of cell–cell communications
are highly diverse meaning that even the gap distance between the plasma membranes
of two cells varies independent of communication type. For example, tight junctions
between epithelial cells have a gap size of ~2 nm, whereas the synaptic cleft in the case
of an immunological synapse is 10–30 [74]. However, cell–cell contacts share a common
set of components [141], and many of them are composed of large clusters (large-scale
molecular assemblies) of proteins at the cell membranes (see above and [243]), which are
especially essential in cancer. Each cluster recruits hundreds or even thousands of signaling
adhesion proteins to the membrane outside of the cell and numerous molecules of the
actin cytoskeleton inside of it (see above). These clusters have one common property: their
components are located close to each other, and with different quantitative compositions,
they have similar qualitative features. It should be noted that an extremely important
feature of clusters is that their components interact cooperatively [141].

A detailed analysis of the interactions taking place in CTC clusters demonstrates the
dynamic alterations in adhesion molecules and ligand–receptor pairs during the circulation
of CTM [84]. In particular, during an invasion, epithelial–mesenchymal transition (EMT)
occurs and epithelial cell–cell adhesion proteins, for example, E-cadherin and EpCAM,
are usually downregulated due to which tumor cells lose epithelial properties and gain
mesenchymal characteristics, such as migratory abilities. Additionally, intermediate hybrid
EMT cells appear simultaneously, expressing epithelial and mesenchymal markers. Such
hybrids retain some degree of epithelial cohesion, while acquiring enhanced migratory and
invasive potential, allowing invasion despite intact intercellular cohesion. Taken together,
these results reveal a highly complicated picture [84]. In our recent review [51], we suggest
the possible formation of synapse-like structures that emerge during the interaction of
cancer cells and cells of TIME, such as macrophages, neutrophils, NK-cells, and the cancer-
associated fibroblasts, which could play the role of leaders in the circulating clusters, as
shown in Figure 5. Such a combination would use clusters of receptor–ligand and adhesion
molecules, which is quite natural for immune cells. The existence of clusters opens a new
dimension in cancer treatment. The proximity of adhesion molecules in clusters in itself
opens up new possibilities for therapeutic agents directed at nearby receptor–ligand pairs
in the clusters. For example, the application of bivalent ligands composed of two functional
pharmacophores linked by a spacer. Bivalent ligands are thought to preferably target and
stabilize pre-formed/constitutive heteromers [244]. This is considered in pharmacology
as one of the promising strategies for the treatment of homo- or heterodimeric receptors
(see, for example, [244–248]). Such a therapy may be a new method for tumor destruction.
The above pertains to cancerous tumors and their metastasis, and this may supplement the
immune checkpoint therapy, which is also targeted at disrupting the synapses between the
cancer cells and the cells of the immune system.
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Quite reasonable attention has been paid by many authors to the potential therapeutic
use of the aberrant behavior of condensates in cancer.

Correlations between changes in phase separation and carcinogenesis only recently
attracted the attention of researchers, and, now, growing evidence is accumulating that
cancer-associated mutation or post-translational modification may influence the aberrant
location, composition, and physical properties of the MC [187,193,194,208,249–254]. Given
the enrichment for IDRs in proteins related to signaling and gene regulatory functions,
which are important for malignancy, authors [193] found that of the 53 of the 287 genes
with annotated cancer involvement participate in LLPS. In addition, compared to other
diseases, proteins in MC are more enriched in cancer driver genes; for example, they are
involved in the maintenance of genome stability, abnormal proliferation signaling, and the
regulation of gene expression. In addition to possible abnormalities in phase separation
caused by mutations to single genes, cancer gene fusions that have a strong influence on
MC formation were also enriched in IDRs. The authors discuss many other correlations in
favor of the involvement of MC in cancer evolution. However, in conclusion, they provide
an extremely sober evaluation of the data available. As an assessment of the validity of
the conclusions drawn on the basis of these data: the role of the mutations’ influence
on MC formation in cancer needs to be systematically evaluated, and systematic efforts
are needed to understand the role of cancer gene fusions in phase separation and its role
in cancer initiation and progression. The extent to which protein folding and stability
promote phase separation activity is largely unknown. All these problems need to be
systematically examined [193].

There are numerous problems to be solved on how to thoroughly control phase
separation. The specific mechanism of the dynamic behavior and impact of MC on the
origin and evolution of tumors is far from being understood [251]. Recently, many profound
studies have appeared in connection with this problem [255]. This shows the attention and
interest that it causes.

One of the most evident objects attracting the attention of researchers [256] is the
transcriptional deregulation characteristic for cancerous transformation. Such deregulation
could be caused by the reprogramming of gene-control machinery, RNA polymerase II
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and its cofactors, and, especially, super-enhancers that are responsible for high expression
levels. The chromatin state also plays an important role in gene regulation and expression.

The disruption of pathological condensates may provide new opportunities to treat
diseases. Small molecules and RNA therapeutics may display unexpected pharmacology
in condensates [192,255].

Phase separation seems to open up several new approaches for potential therapeutic
intervention in oncology [193]. One of them may use the differential distribution of a small
molecular therapeutic between the dilute and dense phases. It was reported that some MC
units might be destroyed by 1,6-hexanediol [193]. Recently drugs such as cisplatin were
found to be accumulated within condensates, influencing their pharmacodynamics [257].
Some small molecules were identified to be capable of influencing the phase separation
properties of p53 mutants [258].

Mitrea et al. [192] discuss the attractive opportunities to develop therapeutic agents
for various diseases by means of targeting MC if it turns out that similar condensates are
formed and dysregulated in different diseases. In this case, it will be possible to use a single
therapeutic agent for treating a larger spectrum of diseases while, classically, researchers
are trying to find an individual single target remedy for every disease.

In conclusion, we outlined two supramolecular characteristics common to all tumors:
the cluster nature of tumor interactions with their microenvironment, and the formation of
biomolecular condensates with tumor-specific distinctive features. We suggest that these
features can form the basis of strategies for tumor-specific therapies.

However, it is understandable that numerous challenges need to be overcome before
realistic approaches are developed.
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