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Abstract: This study aimed to identify a distant-recurrence image biomarker in NSCLC by inves-
tigating correlations between heterogeneity functional gene expression and fluorine-18-2-fluoro-2-
deoxy-D-glucose positron emission tomography (18F-FDG PET) image features of NSCLC patients.
RNA-sequencing data and 18F-FDG PET images of 53 patients with NSCLC (19 with distant recur-
rence and 34 without recurrence) from The Cancer Imaging Archive and The Cancer Genome Atlas
Program databases were used in a combined analysis. Weighted correlation network analysis was
performed to identify gene groups related to distant recurrence. Genes were selected for functions
related to distant recurrence. In total, 47 image features were extracted from PET images as radiomics.
The relationship between gene expression and image features was estimated using a hypergeometric
distribution test with the Pearson correlation method. The distant recurrence prediction model
was validated by a random forest (RF) algorithm using image texture features and related gene
expression. In total, 37 gene modules were identified by gene-expression pattern with weighted
gene co-expression network analysis. The gene modules with the highest significance were selected
(p-value < 0.05). Nine genes with high protein–protein interaction and area under the curve (AUC)
were identified as hub genes involved in the proliferation function, which plays an important role in
distant recurrence of cancer. Four image features (GLRLM_SRHGE, GLRLM_HGRE, SUVmean, and
GLZLM_GLNU) and six genes were identified to be correlated (p-value < 0.1). AUCs (accuracy: 0.59,
AUC: 0.729) from the 47 image texture features and AUCs (accuracy: 0.767, AUC: 0.808) from hub
genes were calculated using the RF algorithm. AUCs (accuracy: 0.783, AUC: 0.912) from the four
image texture features and six correlated genes and AUCs (accuracy: 0.738, AUC: 0.779) from only the
four image texture features were calculated using the RF algorithm. The four image texture features
validated by heterogeneity group gene expression were found to be related to cancer heterogeneity.
The identification of these image texture features demonstrated that advanced prediction of NSCLC
distant recurrence is possible using the image biomarker.

Keywords: non-small cell lung cancer; distant recurrence; RNA-sequence; 18F-FDG PET; prediction model

1. Introduction

Non-small cell lung cancer (NSCLC) has high incidence among cancers and large
molecular heterogeneity in tissues [1,2]. Its molecular heterogeneity was shown to be
different not only between patients but also between intratumor and intertumor regions [3].
Intratumor heterogeneity is known to be linked to the development of primary tumors and
recurrence [4]. It is possible to diagnose cancer by analyzing intracellular gene expression
events and find a suitable treatment method for each cancer [5]. Many studies have been
conducted to search for methods to diagnose cancers having different genotypes and to find
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a treatment for each cancer. Image features that analyze phenotypes based on genotype,
next-generation sequencing (NGS) for large-scale gene analysis, and radiogenomics com-
bining fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography (18F-FDG
PET) image features and NGS are a few examples.

Heterogeneity functional gene expression was identified by NGS analysis of NSCLC.
NGS is a high-throughput sequencing analysis method that is more capable of accurately
quantifying large amounts of gene information than conventional gene analysis methods [6].
The classical imaging techniques use radiation to image the affected area without causing
pain to the patient, grasping the overall characteristics of the affected area; it has the
advantage of quick analysis [7] but only shows the cancer phenotype. Radiogenomics
is a technique that combines image feature technology for analyzing images and NGS
technology for mass analysis of genes, revealing the relationship between the expression
of specific genes related to cancer and the image features present. By combining the two
analysis methods, non-invasive diagnosis and prediction of cancer are possible [8].

18F-FDG PET/computed tomography (CT) has the advantage of evaluating metabolic
processes in cancer. 18F-FDG is absorbed during glucose metabolism, and it is possible to
estimate glucose metabolism by imaging the FDG remaining in the cell. Each image feature
represents the cellular phenotype and can be used for diagnosis. 18F-FDG PET/CT image
radiomics analysis was used to analyze lung cancer heterogeneity by Buvat et al. [9]. Studies
by Yoon et al. and Bianconi et al. showed that it is possible to understand the current cancer
status through image texture analysis of CT images of lung cancer [10,11]. Patients were
classified by the tumor, node, and recurrence (TMN) stage for analysis, and recurrence
and survival were predicted using 18F-FDG PET/CT image analysis by Andersen et al.
and Nakajo et al. [12,13]. Ravanelli et al. predicted survival rates through analysis of CT
imaging factors associated with mutations in epidermal growth factor receptor (EGFR) [14].
Piñeiro-Fiel et al. showed that image texture features are related to biological heterogeneity
in lung cancer [15].

Predictions of distant recurrence have a considerable impact on the survival of pa-
tients with NSCLC. In this study, we analyzed the correlation between the expression
of proliferation-related genes involved in distant recurrence of NSCLC and quantitative
18F-FDG PET image texture features to evaluate an image biomarker for the prediction of
NSCLC distant recurrence. The NSCLC distant recurrence prediction model was based
on image texture features that are related to gene expression. A radiogenomics-based pre-
diction model that incorporates both imaging features and gene expression can accurately
predict the distant recurrence of NSCLC.

2. Results

In this study, 18F-FDG PET data and RNA-sequencing data from 53 patients with
NSCLC were used for analysis. The average age of the patients was 67.5 years, and the
ratio of men to women was approximately 8:2 (Table 1). The process of development of the
relationship between the RNA-sequencing data and 18F-FDG PET image features is shown
as a schematic in Figure 1.

2.1. Gene Modulation and Hub Gene Assay

To identify hub genes that might play an important role in distant recurrence, weighted
gene co-expression network analysis (WGCNA) was used to construct gene modules with
similar expression patterns, followed by a network analysis. In total, 37 gene modules
were obtained (Figure 2). The violet, dark gray, and cyan modules with highly significant
correlations in the distant recurrence group were selected (p-value < 0.05). The STRING
network was constructed to identify strong PPI genes in each module (node degree ≥ 10).
GO term analysis was performed to confirm module functions. Nine genes (RAD54L,
NDC80, POLE, BLM, MYBL2, NCAPG2, RECQL4, E2F1, and INCENP) were selected as
proliferation-related hub genes (p-value < 0.05).
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Figure 1. Schematic outline of the study. RNA sequencing data of NSCLC patients with GSE103584 
were analyzed by the WGCNA method, and modules with high significant correlation with distant 
recurrence were identified. The hub genes were intersected for PPI network construction, enrich-
ment analysis, and AUC calculation. The hub genes and image texture features were identified us-
ing the Pearson correlation method. The 6 genes and 4 image texture features were significantly 
correlated. A random forest model of NSCLC distant recurrence was constructed with identified 
hub genes and image texture features. 
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Figure 1. Schematic outline of the study. RNA sequencing data of NSCLC patients with GSE103584
were analyzed by the WGCNA method, and modules with high significant correlation with distant
recurrence were identified. The hub genes were intersected for PPI network construction, enrichment
analysis, and AUC calculation. The hub genes and image texture features were identified using the
Pearson correlation method. The 6 genes and 4 image texture features were significantly correlated.
A random forest model of NSCLC distant recurrence was constructed with identified hub genes and
image texture features.

Table 1. List of clinical data for NSCLC patients. The patient age, sex, type of cancer, smoking status,
epidermal growth factor receptor (EGFR) mutation, Kirsten rat sarcoma virus (KRAS) mutation, and
cancer progression are shown.

Characteristic Result Rate

Average age 69.28
Sex

Male 44 83
Female 9 17

Histology
Adenocarcinoma 36 68

Non-small cell lung cancer (not otherwise
specified) 2 4

Squamous cell carcinoma 15 28
Smoking status

Current 8 15
Former 37 70

Non-smoker 8 15
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Table 1. Cont.

Characteristic Result Rate

EGFR mutation
Wild 38 72

Mutation 6 11
Unknown 9 17

KRAS mutation
Wild 32 60

Mutation 12 23
Unknown 9 17

T stage
T1a 10 19
T1b 13 25
T2a 17 32
T2b 5 9
T3 5 9
T4 2 4
Tis 1 2

N stage
N0 41 77
N1 5 9
N2 7 13

Recurrence
No recurrence 34 64

Distant recurrence 19 36

1 
 

 

 
  

 
Figure 2. Gene regulation was performed through clustering. In total, 37 gene modules were
generated, with each module comprising genes with similar expression patterns (left); the relationship
between each module and distant recurrence is shown as a heatmap (right). The modules relevant
to distant recurrence are the violet (module meaning = 0.3, p-value = 0.033), dark gray (module
meaning = 0.28, p-value = 0.041), and cyan (module meaning = 0.28, p-value = 0.042) modules.

2.2. Hub Gene and Image Feature Associations

The analysis was performed using 47 image texture features and nine hub genes.
Results regarding the relationship between gene expression levels and texture image
features are presented in Figure 3. Four image features (gray-level run length matrix
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(GLRLM)_HGRE, standard uptake value (SUV)mean, and GLZLM_GLNU) were corre-
lated with the expression of six genes (RAD54L, POLE, BLM, MYBL2, E2F1, INCENP)
(p-value < 0.1). These genes were enriched in “Mitotic cell cycle” (MYBL2, POLE), “DNA
replication” (BLM, POLE), “G1/S transition of mitotic cell cycle” (E2F1, POLE), “DNA
duplex unwinding” (BLM, RAD54L), and “Positive regulation of mitotic cell cycle spindle
assembly checkpoint” (INCEP), which are functions in the proliferation process.
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Figure 3. Correlation map of image texture features and functional genes revealing significant
associations between 47 image texture features from PET and the 9 hub genes identified by func-
tional analysis.

2.3. Creation of the Prediction Model

Gene expression levels and features extracted from PET/CT images were used to create
a random forest (RF) model to predict the distant recurrence of NSCLC. The RF model
precision, recall, area under the curve (AUC), and accuracy scores with the 47 image texture
features identified by functional analysis were 0.692, 0.733, 0.729, and 0.59, respectively. The
RF model precision, recall, AUC, and accuracy scores with the nine hub genes identified
to be related to proliferation were 0.8, 0.783, 0.808, and 0.767, respectively. The RF model
precision, recall, AUC, and accuracy scores of the four image texture features and six genes
identified to be correlated were 0.802, 0.792, 0.912, and 0.783, respectively. The RF model
precision, recall, AUC, and accuracy scores of the four image texture features with a high
probability of significant correlation with hub genes were 0.832, 0.75, 0.779, and 0.738,
respectively (Table 2). The RF model test accuracy and AUC using 47 image texture features
were 0.727 and 0.732, respectively. The RF model test accuracy and AUC with the nine hub
genes were 0.727 and 0.679, respectively. The RF model test accuracy and AUC using the
four image texture features and six genes identified to be correlated were 0.818 and 0.804,
respectively. The RF model test accuracy and AUC with the four image texture features
were 0.727 and 0.732, respectively.

Table 2. Precision, recall, AUC, and accuracy values of predictive models created using proliferation-
related hub genes and image texture features expressed using the random forest algorithm.

Random Forest Image Texture
Features Hub Genes

Correlation of
Genes and

Image Texture

Four Image
Texture Features

Precision 0.692 0.8 0.802 0.832
Recall 0.733 0.783 0.792 0.75
AUC 0.729 0.808 0.912 0.779

Accuracy 0.59 0.767 0.783 0.738
AUC, area under the curve; Image texture features, 47 image texture features extracted from PET images; Hub
genes, 9 genes identified as proliferation-related; Correlation of genes and image texture, 4 image texture features
and 6 genes identified to be correlated; Four image texture features, 4 image texture features that are significantly
correlated with hub genes.
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3. Discussion

Liao et al. (2020) identified the significance of the mRNA expression-based stemness
index (mRNAsi) in the clinical characteristics of LUAD. They found that hub genes highly
correlated with mRNAsi by WGCNA analysis. Specifically, they identified RAD54L as one
of the hub genes that may have a strong influence on LUAD stem cell maintenance. Our
current study aimed to find hub genes that correlate with the distant recurrence of NSCLC
using the WGCNA approach. We also suggested that RAD54L could influence the distant
recurrence of NSCLC. Bai et al. (2018) confirmed experimentally in mice that glioblastoma
cells exhibit radioresistance by upregulating the expression of RAD54L. Shen et al. (2021)
identified hub genes to be significantly correlated with the recurrence of LUAD in patients
and suggested the possibility of treatment with drugs targeting these hub genes. They used
the Kaplan–Meier method to identify eight hub genes that had influence on the survival
of LUAD patients and constructed drug–hub gene interaction. In this study, we validated
the hub genes with the AUC value and specified image texture features for predicting
distant recurrence in NSCLC patients. Anusewicz et al. (2020) revealed differential gene
expression regulation through the Notch, Hedgehog, Wnt, and ErbB signaling pathways
in lung squamous cell carcinoma (LUSC) and LUAD. They investigated differences in
the profiles of downstream target genes in LUSC and LUAD and specified the pathways
affecting the progression of cancer before performing gene analysis. They identified E2F1,
which is involved in hyperphosphorylation in NSCLC, to significantly alter the prognosis
of LUSC patients [16]. In this study, we focused on the differences in gene expression
between patients with NSCLC distant recurrence and non-recurrence patients. Consistently,
we also identified E2F1 as a hub gene in distant recurrence of NSCLC.

We estimated the heterogeneity image biomarkers of NSCLC that can be used to
develop distant recurrence prediction models using heterogeneity-related functional genes.
Heterogeneity analysis studies through genetic analysis or image analysis have been
performed [17,18], but their respective drawbacks have limited their use [19]. A more
accurate heterogeneity diagnosis is possible by fusing two different types of data using
radiogenomic analysis [20]. The correlations between the nine proliferation-related hub
genes and 47 image texture features identified four image texture features (GLRLM_SRHGE,
GLRLM_HGRE, SUVmean, GLZLM_GLNU) that were related to six genes, which could
further be used as a predictive image biomarker for cancer heterogeneity. For validation, the
accuracy of the machine learning predictive model was evaluated using RNA-sequencing
results and image texture features; when 47 image features were used, the accuracy was
0.59, and when the four image texture features and six genes identified by the Pearson
correlation method were used, accuracy was 0.783.

Cancer heterogeneity is a phenomenon that occurs due to cell distribution changes
in cancer tissue [21]. Cancer cells have functions similar to stem cells, allowing them to
self-renew, migrate, and differentiate [22]. With changes in the distribution of cells in the
tissue, their heterogeneity increases when these functions are activated. The effects of
increased heterogeneity in cancer are as follows: first, cancer treatment becomes more
difficult [23]. The effectiveness of treatment with a single anticancer agent is reduced, and
there is an increased risk of needing multiple anticancer agents, because as the cancer
heterogeneity increases, cancer cells with different properties make up the cancer tissue.
Second, migration of cancer cells to secondary sites and external organs occurs, and these
cells proliferate, resulting in enlarged cancer tissue, thereby making treatment difficult [24].

Cancer aggressiveness is associated with cell proliferation [25]. In normal tissue,
the mitotic cell cycle is controlled; however, cancer tissues sustain proliferative signal-
ing and increases in the cell-cycle pathway [26]. The proliferation of cancer cells leads
to the accumulation of genetic abnormalities and heterogeneous changes in the tumor
microenvironment [27]. Therefore, by analyzing the expression of proliferation-associated
genes, instead of the expression of all genes, one can analyze heterogeneity more accurately.
Nine NSCLC proliferation-related hub genes were identified and used for analysis. These
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proliferation-related genes were further used to evaluate the degree of association between
cellular heterogeneity and image biomarkers.

As described above, the current status can be diagnosed through image analysis of
lung cancer. This can also be used to predict mortality or cancer recurrence. CT image
analysis can be used to estimate recurrence with the tumor size. Analysis with 18F-FDG
PET/CT imaging can also be useful for determining tumor heterogeneity. The information
contained in an image is limited, and it is very difficult to explain the behavior of cancer
cells using this alone. To overcome this limitation, we researched genes expressed in
relation to imaging factors and confirmed the imaging biomarkers using a combination of
gene expression and image texture features. PET image biomarkers for NSCLC recurrence
prediction were characterized by combining 18F-FDG PET/CT image texture features and
genetic analysis.

In this study, four image texture features were confirmed to be sufficient to predict
distant recurrence. In general, features such as the maximum SUV (SUVmax), peak SUV
(SUVpeak), total lesion glycolysis (TLG), and Entropy_log10 have been previously used for
radiogenomic analysis for cancer prediction or cancer recurrence prediction [28]. However,
in this study, the correlations (p-values) with SUVmax, SUVpeak, TLG, and Entropy_log10
were lower than those for the four image texture features. This result suggests that new
factors can be used to develop a model for the improved prediction of recurrence in NSCLC
using radiogenomics.

This study demonstrates how to specify image biomarkers through validation of
functional gene groups. Because the image characteristics obtained by image analysis are
phenotypic, there is a problem regarding reduced accuracy of diagnosis. To solve this
problem, we developed a method to increase the prediction accuracy of image features
by coupling them with the expression of a set of genes that can represent the genotype.
Proliferation-related functional hub genes involved in recurrence and heterogeneity were
extracted, and image biomarkers were specified by comparing their relevance with image
features. To verify this, the accuracy was estimated using a machine learning method. Using
this method, it is expected that phenotype and genotype can be diagnosed simultaneously
with high accuracy using imaging biomarkers.

Further research will be required on radiogenomic analysis methods that simultane-
ously analyze the imaging features and genes of NSCLC and image biomarkers that can
diagnose cancer types and behaviors by simultaneously analyzing different types of cancers.
Although this study was able to identify imaging biomarkers related to recurrence in a
small number of non-small cell patients, it lacks validity for clinical application. Currently,
research on image biomarkers using radiogenomic methods is in its infancy, and research
has not been conducted on most cancers. More research is needed to properly apply image
biomarkers in clinical practice.

4. Materials and Methods
4.1. NSCLC NGS Data Processing

RNA-sequencing data, patient clinical data, and 18F-FDG PET images were acquired
from The Cancer Imaging Archive/The Cancer Genome Atlas database (NGS data accession
number: GSE103584, PET image data: http://doi.org/10.7937/K9/TCIA.2017.7hs46erv)
(Accessed on 1 October 2022). Tissues for RNA-sequencing were whole surgical specimens
that were obtained during surgery before treatment. The inclusion criteria were M0 stage
patients with recurrence data. Data for 53 patients were classified in a binary manner
between distant recurrence (n = 19) and non-recurrence (n = 34) groups based on clinical
data and 18F-FDG PET images. Patient information is summarized in Table 1. Acquired
data were normalized by Fragments Per Kilobase of transcript per Million (FPKM). The
genes with zero FPKM values from all of the samples were trimmed for fast analysis [16].

http://doi.org/10.7937/K9/TCIA.2017.7hs46erv
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4.2. Weighted Gene Co-Expression Networks and Modules Associated with Clinical Traits

To analyze the correlation between expressed genes and features extracted from
images, gene selection was performed. The "goodSampleGenes" function was used to
filter the genes with missing entries and zero variance before WGCNA (Version: 1.71).
The number of genes used for gene co-expression analysis was 13,060 out of 22,126. To
obtain the gene module with the greatest influence for determining distant recurrence,
WGCNA was performed [29]. The genes were separated into several modules using the
WGCNA tool in the R package. A soft threshold for network construction was selected for
gene clustering. In the soft threshold, the adjacency matrix forms a continuous range of
values between 0 and 1. The constructed network conforms to the power-law distribution
and is close to a real biological network state. A scale-free network was constructed
using the blockwise module function, followed by module partition analysis to identify
gene co-expression modules, which grouped genes with similar expression patterns. The
37 modules were defined by cutting the clustering tree into branches using a dynamic tree
cutting algorithm and assigned different colors for visualization [30]. For each module, the
correlation coefficient and statistical significance of the correlation with distant recurrence
in patients were calculated. The violet, dark gray, and cyan modules were selected with a
p-value < 0.05.

4.3. Hub Gene Analysis

PPI networks were constructed with the genes of each module using the STRING
database (Version: 11.5). The node degree of each gene was calculated to measure the
number of interactions in the network. Genes with a node degree >10 were selected with
the minimum required interaction score set to 0.9. To confirm the proliferation-related genes
in the modules, GO term analysis was performed. The genes enriched in the proliferation-
related term with p < 0.05 were extracted. AUC value for each gene was calculated.
Proliferation-related genes with high AUC values (AUC > 0.6) were selected.

4.4. 18F-FDG PET Imaging

Tumor volumes were segmented, and radiomics features in the defined tumors were
subsequently extracted using the Local Image Features Extraction (LIFEx) version 4.0
software package [31]. The tumor region of interest was drawn using a semi-automated
segmentation method with a threshold SUV of 2.0, based on our previous report [32], in
three-dimensional images. In the tumor region, the maximum SUV (SUVmax), SUVmean,
SUVpeak, metabolic tumor volume (MTV), TLG, and the shape of the histogram were
calculated as the intensity features. Gray-level texture features were assessed using four
texture matrices: gray-level co-occurrence matrix (GLCM), GLRLM, gray-level size zone
length matrix (GLSZM), and neighboring gray-level dependence matrix (NGLDM). The
GLCM was calculated in 13 directions with one voxel distance.

The relationship between neighboring voxels and each texture feature calculated from
this matrix was the average of the features over the 26 connectivity in space (X, Y, Z). The
GLRLM was calculated by number of runs with gray level and length, whereas the GLSZM
was computed with the 8-connected region in 2D. The NGLDM was computed from the
difference in gray levels between one voxel and all neighbors, and each texture feature was
calculated from this matrix [33]. The 47 total image texture features were extracted from
the PET image data. The index of extracted image texture features is in Table 3.
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Table 3. Index of textural features in global, local, and regional areas.

Feature Family Features

Intensity histogram

Maximum standard uptake value (SUVmax)
Mean standard uptake value (SUVmean)

Standard deviation (SUV_SD)
Total lesion glycolysis (TLG)

Metabolic tumor volume (MTV)
1st entropy

Gray-level co-occurrence matrix (GLCM)

Energy
Contrast
Entropy

Homogeneity
Dissimilarity

Neighboring gray-level dependence
matrix (NGLDM)

Contrast
Coarseness
Busyness

Small number emphasis (SNE)

Gray-level run length matrix (GLRLM)

Short run emphasis (SRE)
Long run emphasis (LRE)

Gray-level non-uniformity (GLNU)
Run length non-uniformity (RLNU)

Low gray-level run emphasis (SRLGE)
High gray-level run emphasis (SGHGE)

Gray-level size zone matrix (GLSZM)

Small zone emphasis (SAE)
Large zone emphasis (LAE)

Gray-level non-uniformity (GLN)
Zone size non-uniformity (SZN)

Low gray-level zone emphasis (LGLZE)
High gray level zone emphasis (HGLZE)

4.5. Hub Gene and Image Feature Correlation

In total, 47 image features and hub genes were used to estimate the relationship
between all factors, which was calculated with the Pearson correlation method and p-
value using R corrplot package. The image features and genes for inclusion in the distant
recurrence prediction model were selected by the p-value of the correlation calculated by
the t-test (p-value < 0.1).

4.6. RF Prediction Model Construction

To predict patient outcomes in terms of distant recurrence, we used a machine learning
approach [34] called RF [35]. The machine learning prediction model was evaluated
quantitatively in terms of the precision, recall, AUC, and accuracy score. To address the
data imbalance, the oversampling method was implemented using the Synthetic Minority
Over-sampling Technique (SMOTE). The model was evaluated by k-fold validation (K = 10).
A total image texture feature (47 image texture features extracted from PET image), a hub
gene (nine genes identified as proliferation-related), an image texture feature, a gene (four
image texture features and six genes identified as correlated), and an image texture feature
(four image texture features with a high probability of significant correlation with hub
genes) were used separately for the machine learning using the RF. The RF model was
trained with 80% of the 52 patients and tested with 20% of the patients, and the whole
dataset was split in a stratified manner.

5. Conclusions

Image biomarkers involved in NSCLC recurrence were identified upon validation
with proliferation-related genes and were evaluated on the basis of the accuracy of the
machine learning prediction model. Through this process, combined analysis of image
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biomarkers and proliferation-related genes was concluded to be suitable for evaluation of
the heterogeneity of NSCLC (78.3% accuracy), compared with the analysis of total image
texture features (0.59 accuracy). With an increasing amount of data accumulating from
ongoing studies on other cancers, imaging biomarkers together with proliferation-related
genes have the potential to be used in clinical applications.
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