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Abstract: Synthetic musks (SMs), as an indispensable odor additive, are widely used in various
personal care products. However, due to their physico-chemical properties, SMs were detected in
various environmental media, even in samples from arctic regions, leading to severe threats to human
health (e.g., abortion risk). Environmentally friendly and functionally improved SMs have been
theoretically designed in previous studies. However, the synthesizability of these derivatives has
barely been proven. Thus, this study developed a method to verify the synthesizability of previously
designed SM derivatives using machine learning, 2D-QSAR, 3D-QSAR, and high-throughput density
functional theory in order to screen for synthesizable, high-performance (odor sensitivity), and
environmentally friendly SM derivatives. In this study, three SM derivatives (i.e., D52, D37, and
D25) were screened and recommended due to their good performances (i.e., high synthesizability
and odor sensitivity; low abortion risk; and bioaccumulation ability in skin keratin). In addition,
the synthesizability mechanism of SM derivatives was also analyzed. Results revealed that high
intramolecular hydrogen bond strength, electrostatic interaction, qH+ value, energy gap, and low
EHOMO would lead to a higher synthesizability of SMs and their derivatives. This study broke
the synthesizability bottleneck of theoretically designed environment-friendly SM derivatives and
advanced the mechanism of screening functional derivatives.

Keywords: synthesizability; machine learning; QSAR; DFT; human health risk

1. Introduction

Synthetic musks (SMs), as a kind of additive with a particular smell, have been widely
used in perfume, shower gel, shampoo, lotion, shampoo, shaving cream, soap, deodorant,
sunscreen, nail polish, hair oil, hair dye, lip balm, aftershave softener, air freshener, washing
powder, and other personal care products in daily life to enhance the fragrance and mask
odors [1]. SMs contain various compounds and have been categorized into four categories
(i.e., nitromusks, polycyclic, macrocyclic, and cycloaliphatic). Polycyclic musks such as
galaxolide (HHCB) and tonalide (AHTN) have been classified as high-yield chemicals [2].
Specifically, the annual output of HHCB in the United States reached about 4536 tons
in 2015 [3]. After using personal care products, they entered the environment through
water and air, thus polluting the environment. SMs can also cause secondary pollution
problems because they cannot be completely degraded in their environments [2–7]. SMs
have been reported in various environmental matrices, such as surface water [8,9], air [10],
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and soil [2,11], and HHCB was even detected in sediment samples from the Arctic [12].
Regarding their environmental properties, SMs are considered semi-volatile, lipophilic,
bio-accumulative, and partially biodegradable [4,13,14]. The bioaccumulation abilities of
HHCB and AHTN have called for extensive attention in recent years. HHCB and AHTN
have been found to cause endocrine disruption and antiestrogenic activity in animals and
humans [4,15] and have also been shown to accumulate in living tissues and blood with
potential adverse health effects [16,17]. Furthermore, as an emerging pollutant, SMs have
been proven to have endocrine-disrupting effects and developmental toxicity to embryonic
development, which can potentially cause abortion risks in pregnant women [1,15,18].
Therefore, it is important to investigate and reduce the risk of SMs to the environment and
human health.

The environmentally friendly molecular design has been widely used for the source
control of emerging pollutants. Zhou et al. [19] designed a novel bee-friendly peptidomimetic
insecticide based on 3D-QSAR. Zhao et al. [20] developed and screened four neonicoti-
noid insecticides with bidirectional selectivity. Specifically, these four insecticides had
enhanced toxic effects on pests and grubs (increased by 1.44–12.58%), while the chronic sub-
lethal impact on beneficial insects (i.e., bees and earthworms) slowed down (0.29–27.18%).
Ren et al. [21] designed two LEV substitute molecules using levofloxacin (LEV) as the
parent molecule. They found that the binding effects of LEV substitutes on B-G mutant
proteins were increased by 13.24% and 19.40%, respectively. These results indicated that
antibacterial drug resistance had improved, thus inhibiting its vertical gene transfer ability
in humans. Fu et al. [22] designed and screened a fluoroquinolone substitute molecule with
high biodegradability (+120.51%), improved functional properties (genotoxicity) (+13.66%),
decreased bioaccumulation (−44.81%), and relieved human liver toxicity (−106.21%). In
addition, a variety of SM derivatives, including 19 SM derivatives with improved func-
tionality (strong odor sensitivity) [23], ten function-improved SM derivatives with reduced
risk through dermal exposure [24], and 48 SM derivatives with lower abortion risk [18],
were evaluated in our previous studies. The design of those environmentally friendly
alternatives for emerging pollutants is generally based on theoretical methods. Although it
has been confirmed from multiple perspectives, such as molecular functional characteristics,
environmental characteristics, environmental existence, and environmental friendliness
improvement mechanisms of emerging pollutant substitutes, none of these derivatives have
been synthesized. It is undoubtedly a shortcoming for theoretically designed emerging
pollutant derivatives. For this reason, compared with the commercially available emerging
pollutants, the research on the synthesizability and mechanism of theoretically designed
emerging pollutant substitute molecules is expected to make up for the above shortcom-
ings to a certain extent. It can also provide technical support for effectively reducing
development costs when put into experimental synthesis.

The synthesizable studies of environmentally friendly emerging contaminant deriva-
tives were barely reported. Density functional theory (DFT) has been widely used to
predict the positive frequency value of emerging pollutant derivatives to verify whether the
designed molecules can exist in the environment [21,25–27]. However, the synthesizability
of derivatives calculated by the DFT method has not been compared with their precursors;
thus, the prediction is incomplete. Frey et al. [28] used a machine learning (ML) model
to predict the synthesizability of two-dimensional metal carbides and nitrides and their
precursors for the first time and screened 18 molecules and 111 phases from 56 MXenes
and 792 MAX phases, respectively, with improved synthesis efficiency. By this means,
this paper attempted to improve the prediction ability of accurately screening environ-
mentally friendly SMs and their derivatives with improved functionality using DFT and
ML methods.

In order to accurately verify the predicted synthesizability of SM derivatives, it is
important to analyze the mechanism of the relationship between the molecular structures
and descriptors and the synthesizability of SM derivatives. The integration of DFT and ML
methods for predicting the synthesizability of SM derivatives is based on the comparative
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analysis of the topological parameters, electronic parameters, geometric parameters, and
physico-chemical parameters of the SMs and SM derivatives. The sensitivity coefficient
analysis was conducted using the two-dimensional quantitative structure-activity rela-
tionships (2D-QSAR) model for screening key feature molecular descriptors [29,30]. In
addition, to further understand the influence of molecular structure on the synthesis of
SM derivatives and to further guide the design of environmentally friendly artificial musk
substitutes, the contour maps of a three-dimensional quantitative structure-activity relation-
ship (3D-QSAR) model were introduced [31]. Coupling molecular force field information
with key descriptors affecting the molecular synthesis of SM derivatives for analyzing
the synthesis of SM derivatives has never been reported before. Intramolecular hydrogen
bonds can directly affect the molecular stability of compounds [32]. The calculation of
intramolecular hydrogen bonds can help to obtain high stability and synthesizability of
new compounds due to their directional non-covalent interaction [33]. Thus, the theoretical
analysis of intramolecular hydrogen bond theory can be used to analyze the synthesizabil-
ity of SM derivatives. Therefore, this study investigated the mechanism analysis for the
synthesizability of environmentally friendly SMs, which has never been tackled before.

The objective of this study is thus to summarize the environmentally friendly SM
derivatives with improved functionalities described in the existing research, aiming to
provide the primary mechanism analysis and synthetic strategy for the synthesizability
of theoretically designed SM derivatives. This is the first attempt to combine DFT with
multiple ML methods to accurately predict the synthesizability of SM derivatives. In-depth
synthesizable mechanisms for designing environmentally friendly SMs were investigated
by integrating the 2D-QSAR model, the 3D-QSAR model, and intramolecular hydrogen
bond theory. This study constructed a cost-effective screening system for synthesizing
theoretically designed SM derivatives, which is expected to provide theoretical guidance
for replacing emerging pollutants and developing new materials.

2. Results and Discussion
2.1. Dimensionality Reduction of Descriptors of SM and SM Derivatives Using Pearson
Correlation Coefficient Method

In this study, 1471 descriptors, including electronic parameters, structural parame-
ters, topological parameters, physico-chemical parameters, and spectra of SMs and SM
derivatives, were calculated by Gaussian 09 (Gaussian, Inc., Wallingford, CT, USA), PaDEL-
Descriptor, and ChemBioDraw 12.0 software (PerkinElmer, Waltham, MA, USA). After
eliminating the descriptors without values, there were 1022 descriptors left, which are
provided in Supplementary Material II. These descriptors were loaded into the “python soft-
ware (python 3.11.1, Holland) code package” for the Pearson correlation coefficient analysis.
The correlation between descriptors was calculated. The characteristic descriptors of the
PU machine learning model were screened by adjusting the classification threshold (which
was set at p = 0.6 in this study), and the characteristic values with strong correlations were
automatically eliminated. As shown in Figure 1, the number of molecular descriptors of
SMs and SM derivatives was reduced from 1471 to 16 by the Pearson correlation coefficient
method. The Pearson correlation coefficient (PCC) can be used to describe the strength of
the linear relationship between each pair of descriptors. The relationship strength between
two descriptors is considered low when the absolute value of PCC is <0.5 [34]. It can be
seen from Figure 1 that the 16 key descriptors were screened out, including qH+, EHOMO,
energy gap (EG), dipole moment (DM), QYY, QZZ, QXY, QXZ, QYZ, positive frequency (Freq),
Raman, GE, AATSC8c, GATS5c, GATS6c, and GATS3s. The PCC of the key descriptors
were all within a reasonable range, and the dataset also meets the training requirements of
the bagging-PU model in this paper [28].
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2.2. The Synthesizability Calculation of SM Derivatives
2.2.1. Synthesizability Calculation of SM Derivatives Based on the Bagging-RF Algorithm

In this paper, the 88 SMs and SM derivatives retrieved were divided into positive and
unlabeled samples, of which 11 commercial SMs were marked as positive samples. The
remaining 77 theoretically designed and yet-to-be synthesized environmentally friendly
SM derivatives were labelled as “unlabeled samples”. In each iteration of the PU machine
learning process, some unlabeled samples can be randomly marked as unlabeled, non-
synthesizable samples. In addition, the key descriptors screened by Pearson correlation
coefficients were used to construct a random forest base classifier for predicting the synthe-
sizability of unlabeled samples. The above PU machine learning procedure was repeated
for 23 iterations, and the unlabeled, non-synthesizable samples were relabeled in each
iteration. Furthermore, the synthesizability of an unlabeled sample was defined as the
average of the RF classifier prediction scores for all samples except that sample. The SM
derivatives with synthesizability greater than 0.5 were marked as an unlabeled synthesiz-
able sample, and those with less than 0.5 were marked as an unlabeled non-synthesizable
sample [28]. The model outputted the synthesizability of unlabeled synthesizable samples
as an indicator representing their synthesizability. The 16 key descriptors screened were
used to construct a PU ML prediction model for the synthesizability of SM derivatives
based on the bagging-RF algorithm. The evaluation score of the built model was 0.705
(>0.7), indicating that the model has good predictive performance [28]. According to
Table 1, the predicted synthesizability of 16 (i.e., D3, D5, D7, D8, D22, D25, D28, D33, D35,
D37, D38, D50, D51, D52, D60, and D34) out of 77 unlabeled samples was greater than
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0.5. So, the above 16 theoretically designed environment-friendly SM derivatives had
strong synthesizability. This result provides important guidance for developing green SM
derivatives in the future and simultaneously reduces the number of unlabeled samples by
79.22%, which minimizes the research cost of subsequent musk substitute molecules.

Table 1. Synthesizability of SM derivatives calculated through bagging-RF algorithm.

SM Derivatives Synthesizability SM Derivatives Synthesizability SM Derivatives Synthesizability

D1 0.33 D27 0.47 D53 0.32
D2 0.41 D28 0.55 D54 0.39
D3 0.52 D29 0.43 D55 0.34
D4 0.46 D30 0.36 D56 0.46
D5 0.51 D31 0.42 D57 0.25
D6 0.49 D32 0.43 D58 0.31
D7 0.65 D33 0.57 D59 0.49
D8 0.61 D34 0.50 D60 0.50
D9 0.27 D35 0.55 D61 0.23

D10 0.45 D36 0.38 D62 0.21
D11 0.46 D37 0.62 D63 0.45
D12 0.43 D38 0.55 D64 0.36
D13 0.42 D39 0.25 D65 0.33
D14 0.26 D40 0.27 D66 0.41
D15 0.48 D41 0.35 D67 0.20
D16 0.42 D42 0.33 D68 0.25
D17 0.21 D43 0.39 D69 0.40
D18 0.29 D44 0.36 D70 0.48
D19 0.35 D45 0.34 D71 0.31
D20 0.30 D46 0.38 D72 0.23
D21 0.36 D47 0.45 D73 0.33
D22 0.57 D48 0.37 D74 0.30
D23 0.44 D49 0.25 D75 0.24
D24 0.45 D50 0.62 D76 0.29
D25 0.63 D51 0.57 D77 0.43
D26 0.37 D52 0.50

2.2.2. Synthesizability Calculation of SM Derivatives Based on Bagging-ERT Algorithm

In this paper, bagging-ERT ML was used to predict the synthesis of SM derivatives.
The Extremely Randomized Tree Classifier (ERT) was used in the replacement algorithm of
the PU machine learning prediction model to prove that the synthesis of SM derivatives
does not depend on specific predictive models. Eleven commercial SMs were selected as
positive samples, and the remaining 77 theoretically designed environmentally friendly
SM derivatives that have not yet been synthesized were used as unlabeled samples. The
bagging-ERT algorithm for predicting the synthesizability of SM derivatives was con-
structed. The evaluation score of the built model was 0.727 (>0.7), indicating that the model
has good predictive performance [28]. Among the 77 unlabeled samples, the predicted syn-
thesizability of 16 unlabeled samples (i.e., D5, D8, D9, D11, D23, D25, D26, D29, D34, D35,
D38, D51, D52, D53, D57, and D60) was greater than 0.5. Thus, the above 16 theoretically
designed environment-friendly SM derivatives had strong synthesizable properties in the
follow-up experimental development process (Table 2). Compared with the RF algorithm,
11 SMs substitute molecules (i.e., D7, D8, D22, D25, D28, D33, D34, D37, D50, D51, and
D52) with a high synthesizable probability were screened out by both the bagging-RF
and bagging-ERT algorithms. The synthesizability of these SM derivatives was ranked in
the top 10 of the two prediction models. The deviations of synthesizability for D37, D8,
D22, D34, D51, D28, and D52 in the bagging-RF and bagging-ERT prediction models were
less than 10.13%, indicating that the constructed bagging-RF and bagging-ERT machine
learning models both had high prediction accuracy.
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Table 2. Synthesizability of SM derivatives calculated through the bagging-ERT algorithm.

SM Derivatives Synthesizability SM Derivatives Synthesizability SM Derivatives Synthesizability

D1 0.37 D27 0.38 D53 0.44
D2 0.37 D28 0.52 D54 0.44
D3 0.48 D29 0.47 D55 0.40
D4 0.51 D30 0.19 D56 0.54
D5 0.49 D31 0.25 D57 0.26
D6 0.44 D32 0.42 D58 0.34
D7 0.65 D33 0.71 D59 0.46
D8 0.58 D34 0.52 D60 0.40
D9 0.19 D35 0.48 D61 0.16

D10 0.59 D36 0.29 D62 0.24
D11 0.36 D37 0.56 D63 0.50
D12 0.37 D38 0.42 D64 0.37
D13 0.35 D39 0.15 D65 0.22
D14 0.23 D40 0.22 D66 0.28
D15 0.37 D41 0.25 D67 0.14
D16 0.37 D42 0.30 D68 0.31
D17 0.27 D43 0.36 D69 0.31
D18 0.24 D44 0.32 D70 0.45
D19 0.32 D45 0.23 D71 0.29
D20 0.22 D46 0.27 D72 0.14
D21 0.35 D47 0.32 D73 0.29
D22 0.52 D48 0.31 D74 0.29
D23 0.50 D49 0.21 D75 0.28
D24 0.28 D50 0.79 D76 0.27
D25 0.50 D51 0.60 D77 0.33
D26 0.25 D52 0.56

2.2.3. Synthesizability Calculation of SM Derivatives Based on Bagging-GBC Algorithm

The gradient-boosting classifier (GBC) was selected as the basic classifier to construct
the bagging-gradient-boosting classifier (bagging-GBC) model for further analyzing the
molecular synthesis of SM derivatives. We aim to screen the SM derivatives with high
predicted synthesizability that meet different models so that these screened environmentally
friendly SM derivates could have the highest probability of synthesis. The synthesizability
of the SM derivatives was predicted using the bagging-GBC algorithm. The constructed
model showed an evaluation score of 0.770 (>0.7), indicating that the model has good
predictive performance [28]. Table 3 shows the prediction results of the PU machine
learning model for the molecular synthesizability of SM derivatives based on the bagging-
GBC algorithm. The synthesizability of D6, D7, D8, D25, D32, D35, D37, D50, D51, and
D52 is greater than 0.5. Seven SM derivatives (i.e., D7, D8, D25, D37, D50, D51, and
D52) were screened and simultaneously met the requirements of synthesizable probability
(greater than 0.5) predicted by bagging-GBC, bagging-ERT, and bagging-RF algorithms.
The synthesizability and molecular structures of these seven SM derivatives are provided
in Figure 2. The synthesizability of D7 and D50 predicted by three ML models was high.
Specifically, the synthesizability of D7 predicted by the three models was all greater than
0.65, and the synthesizability of D50 predicted by the three models was greater than 0.62
(Table 3). In addition, the synthesizability of the seven SM derivatives ranked in the top
10 of the predicted values predicted by the bagging-GBC, bagging-ERT, and bagging-RF
models, indicating the prediction accuracy of the three synthesizable prediction models
has consistency (Table 4).
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Table 3. Synthesizability of SM derivatives calculated through bagging-GBC.

SM Derivatives Synthesizability SM Derivatives Synthesizability SM Derivatives Synthesizability

D1 0.32 D27 0.30 D53 0.08
D2 0.47 D28 0.44 D54 0.31
D3 0.42 D29 0.49 D55 0.09
D4 0.30 D30 0.05 D56 0.20
D5 0.47 D31 0.26 D57 0.06
D6 0.63 D32 0.50 D58 0.06
D7 0.77 D33 0.49 D59 0.47
D8 0.61 D34 0.49 D60 0.29
D9 0.14 D35 0.57 D61 0.06

D10 0.49 D36 0.13 D62 0.04
D11 0.29 D37 0.57 D63 0.16
D12 0.36 D38 0.25 D64 0.14
D13 0.30 D39 0.05 D65 0.07
D14 0.13 D40 0.10 D66 0.15
D15 0.32 D41 0.10 D67 0.03
D16 0.17 D42 0.15 D68 0.11
D17 0.02 D43 0.26 D69 0.07
D18 0.14 D44 0.13 D70 0.34
D19 0.25 D45 0.05 D71 0.05
D20 0.11 D46 0.11 D72 0.03
D21 0.19 D47 0.25 D73 0.06
D22 0.34 D48 0.20 D74 0.05
D23 0.26 D49 0.08 D75 0.09
D24 0.18 D50 0.70 D76 0.06
D25 0.61 D51 0.51 D77 0.22
D26 0.06 D52 0.50
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Table 4. Prediction of the top 10 SM derivatives for synthesizability predicted by bagging-GBC,
bagging-ERT, and bagging-RF models.

Ranking SM
Derivatives

Predicted Syn-
thesizability

by Bagging-RF

SM
Derivatives

Predicted
Synthesizability
by Bagging-ERT

SM
Derivatives

Predicted
Synthesizability
by Bagging-GBC

1 D7 0.65 D50 0.79 D7 0.77
2 D25 0.63 D33 0.71 D50 0.70
3 D37 0.62 D7 0.65 D6 0.63
4 D50 0.62 D51 0.60 D8 0.61
5 D8 0.61 D10 0.59 D25 0.61
6 D22 0.57 D8 0.58 D35 0.57
7 D51 0.57 D37 0.56 D37 0.57
8 D33 0.57 D52 0.56 D51 0.51
9 D38 0.55 D56 0.54 D52 0.50

10 D28 0.55 D34 0.52 D32 0.50

2.3. Evaluation of Environmental Risk and Functional Properties of SM Derivatives

The environmental risks and functional properties of seven SM derivatives screened by
the bagging-GBC, bagging-ERT, and bagging-RF models were predicted by the 3D-QSAR
models constructed by Li et al. [18,23,24] and EPI Suite 4.1 (U.S. Environmental Protection
Agency, USA) software. The results are shown in Table 5. The abortion risk induced by SM
derivatives was represented by the docking scores of SM derivatives to estrogen (1A52)
and progesterone (1A28), respectively [24]. The docking score of SM derivatives to skin
keratin proteins (4ZRY) was used to characterize the bioaccumulation of SM derivatives
in humans [18]. The biotoxicity of SM derivatives was reflected by LC50 in the fish [23].
The functional property (i.e., odor sensitivity) of SM derivatives was represented by the
binding energy of SM derivatives and human olfactory protein (OR5AN1).

Table 5. Environmental risk and functional properties of seven selected SM derivatives.

Name Abortion Risk (Predicted) Biotoxicity (Predicted) Bioaccumulation
Ability (Predicted)

Functional Property
(Odor Sensitivity,

Predicted)

SMs and
SM

Derivatives

Docked
to 1A52

Change
Rates

Docked
to 1A28

Change
Rates

LC50 mg/L
(fish)

Change
rates

Docked
to 4ZRY

Change
Rates

Docked to
OR5AN1

Change
Rates

HHCB 1.93 ** 1.958 ** 0.032 ˆ 120.398 111.766
D7 1.883 ** −2.42% 1.962 ** 0.20% 8.387 26,109.38% 116.022 −3.63% 116.639 4.36%
D8 1.858 ** −3.72% 1.962 ** 0.20% 2.540 7837.50% 108.7 −9.72% 101.292 −9.37%

D37 1.869 −3.15% 1.934 −1.23% 0.154 ˆ 381.25% 113.439 −5.78% 119.79 7.18%
MK 1.719 ** 1.855 ** 0.242 114.902 105.461
D50 1.751 ** 1.86% 1.833 ** −1.19% 0.198 −18.18% 109.97 −4.29% 114.814 8.87%
D51 1.826 ** 6.22% 1.804 ** −2.75% 1.477 510.33% 99.259 −13.61% 108.348 2.74%
D52 1.687 ** −1.86% 1.839 ** −0.86% 6.214 2467.77% 119.211 3.75% 116.82 10.77%

PHAN 1.903 ** 1.951 ** 0.069 89.31 139.604
D25 1.917 0.79% 1.95 −0.04% 0.582 743.48% 73.57 * −17.25% 150.283 * 7.65%

* Data obtained from [24]; ** Data obtained from [18]; ˆ Data obtained from [23].

It was found that D37, as a substitute molecule for HHCB, had a 7.18% improvement in
its functional properties (odor sensitivity) compared with HHCB. The docking scores of D37
to 1A52 and 1A28 decreased, indicating that the abortion risk induced by D37 was alleviated.
In addition, D37 had an improved LC50 value in fish and reduced bioaccumulation ability
in skin keratin, indicating that the environmental risks of D37 were lower than those of its
precursor, HHCB. Therefore, D37, with its high synthesizability and lower environmental
impacts, can be an alternative for HHCB. According to Table 5, the odor sensitivity of D7
was increased, and its bioaccumulation ability and abortion risk were reduced. Moreover,
the biological toxicity of D7 is one level lower than that of its precursor, HHCB [23].
Thus, D7 can be recommended as another substitute molecule for HHCB. Compared
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with the other six screened SM derivatives, the functional properties (odor sensitivity)
of D52 were significantly improved (10.77%). For the design of SM alternatives with
improved functional properties, D52 is the first choice as the substitute for its precursor,
MK. Furthermore, D52 has almost equal bioaccumulation ability to MK but a lower abortion
risk and lower biotoxicity. For PHAN, the odor sensitivity of D25 was increased by 7.65%,
and the biotoxicity was significantly reduced (−743.48%). The predicted LibDock scores of
D25 for two hormone proteins (i.e., progestogen and estrogen) were consistent with those of
its parent molecule, PHAN, maintaining the same level of abortion risk. Nakata et al. [35]
found that skin contact was the most important way for SMs to be absorbed into the human
body. Thus, the bioaccumulation ability of SMs can be effectively reduced by inhibiting
their entry into skin keratin. The bioaccumulation ability of D25 was decreased by 17.25%,
indicating that D25 can be recommended as one of the environmentally friendly substitutes
for PHAN, which is consistent with the conclusion provided by Li et al. [24].

2.4. Synthesizable Mechanism Analysis of SM Derivatives
2.4.1. Sensitivity Analysis of the Synthesizability of SM Derivatives

To further analyze the influence of the 16 key descriptors (i.e., qH+, EHOMO, energy
gap (EG), dipole moment (DM), QYY, QZZ, QXY, QXZ, QYZ, positive frequency (Freq),
Raman, GE, AATSC8c, GATS5c, GATS6c, and GATS3s) screened by the Pearson correlation
coefficient method in Section 3.1, the python software was used to output the correlation
ranking between the 16 key descriptors and synthesizability. Then the sensitivity analysis
of the top 50% most important key descriptors was analyzed by SPSS software to explore
the important factors affecting the synthesis of SM derivatives. With the help of the
“sklearn.feature_selection” package in the ML tool library scikit-learn, the relationship
between the synthesizability of SM derivatives and 16 key descriptors in the bagging-RF,
bagging-ERT, and bagging-GBC algorithms [36] was analyzed. The SelectKBest function
was used to output the correlation ranking of 16 key descriptors in the three algorithm
models (Table 6).

Table 6. Correlation ranking of 16 key descriptors in bagging-RF, bagging-ERT, and bagging-
GBC models.

Importance Ranking of
Key Descriptors

PU Machine Learning Methods

Bagging-RF Method Bagging-ERT Method Bagging-GBC Method

1 Raman Raman Raman
2 Energy gap qH+ qH+

3 qH+ Energy gap Energy gap
4 Dipole moment Dipole moment Dipole moment
5 Positive frequency QYY Positive frequency
6 EHOMO Positive frequency EHOMO
7 QYY EHOMO AATSC8c
8 QXY QXY QYY
9 QXZ AATSC8c QXZ
10 AATSC8c GATS3s QYZ
11 QYZ GATS5c GE
12 GATS3s QXZ GATS5c
13 GATS5c QZZ QXY
14 GATS6c GE GATS6c
15 GE GATS6c QZZ
16 QZZ QYZ GATS3s

Raman, energy gap, qH+, dipole moment, positive frequency, QYY, and EHOMO are the
top 50% of the key descriptors in three models; QXY is the top 50% of the key descriptors
in two models; and AATSC8c ranks the top 50% of the descriptors of the key feature
correlation of the bagging-GBC model. Therefore, this paper selected nine key eigenvalues
(i.e., Raman, energy gap, qH+, dipole moment, positive frequency, QYY, EHOMO, QXY,
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and AATSC8c) for the sensitivity analysis. The above nine key descriptor values were
used as independent variables, and the synthesizability of SM derivatives was used as a
dependent variable for constructing three linear regression models by SPSS software. The
correlation coefficients R of the bagging-RF, bagging-ERT, and bagging-GBC algorithms
were 0.793, 0.825, and 0.805, respectively, all of which met the statistical requirements,
and the Sig. of these models were all 0.000, passing the significance test [37]. The linear
relationship between the synthesizability of SM derivatives and key descriptors was shown
in Formula (1) (bagging-RF), Formula (2) (bagging-ERT), and Formula (3) (bagging-GBC).
The coefficients of Raman, positive frequency, and EHOMO are positive, indicating a positive
correlation between these three descriptors and the synthesizability of SM derivatives. The
coefficients of the energy gap, qH+, dipole moment, QYY, QXY, and AATSC8c are negative,
indicating a negative correlation between these three descriptors and the synthesizability
of SM derivatives.

Y = 0.64848 + 0.00114× Raman− 0.61591× EG− 0.57966× qH+

− 0.02471× DM + 0.00008× Freq− 0.00701×QYY
+ 0.54305× EHOMO − 0.00033×QXY − 7.81030× AATSC8c

(1)

Y = 0.76458 + 0.00133× Raman− 0.82302× EG− 0.98987× qH+

− 0.04021× DM + 0.00014× Freq− 0.01438×QYY
+ 0.49688× EHOMO − 0.00017×QXY − 17.60495× AATSC8c

(2)

Y = 0.75092 + 0.00170× Raman− 0.87826× EG− 1.19493× qH+

− 0.04326× DM + 0.00015× Freq− 0.01299×QYY
+ 0.82854× EHOMO − 0.00036×QXY − 10.28994× AATSC8c

(3)

The absolute value of the sensitivity coefficient under different variation degrees of
key descriptors was calculated by Formulas (1)–(3) (Figure 3). As shown in Figure 3, when
the degree of key eigenvalues increased, the sensitivity coefficients of all key eigenvalues
showed an upward trend, except for the Raman descriptor in the bagging-ERT model.
Among the descriptors, the characteristics of Raman, energy gap, qH+, dipole moment, and
EHOMO were more prominent, and their sensitivity coefficients were all greater than 0.2.
However, the characteristics of positive frequency, QYY, QXY, and AATSC8c descriptors
were not obvious, and the sensitivity coefficients were all less than 0.05. Therefore, it can
be inferred that the key descriptors (i.e., Raman, energy gap, qH+, dipole moment, and
EHOMO) have a more significant impact on the synthesizability of SM derivatives and are
in a higher position in the ranking order of the key descriptors’ correlations (Table 6). In
contrast, the positive frequencies, QYY, QXY, and AATSC8c had relatively little effect on the
synthesizable properties of SM derivatives.
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Raman, energy gap, qH+, dipole moment, and EHOMO significantly impact the synthe-
sizability of SM derivatives when the change degree of key descriptors is less than 50%.
In order to further analyze the changing trend of the synthesizability of SM derivatives
when the parameter eigenvalues vary greatly, this paper analyzed the growth rate of the
sensitivity coefficients of the characteristic parameters. Thus, the eigenvalues that most
significantly affect the synthesizability of SM derivatives were screened, and the growth
rates of the sensitivity coefficients of the three models were calculated (Table 7). Results
showed that the average growth rates of sensitivity coefficients for the energy gap, qH+,
dipole moment, and EHOMO were all higher than 10%. However, the average growth rate of
Raman’s sensitivity coefficient was less than 3% and even showed a negative growth trend
in the bagging-GBC algorithm. After comparison, in the case of significant changes in key
eigenvalues, the potential impact of Raman on the molecular synthesis of SM derivatives is
much smaller than that of the energy gap, qH+, dipole moment, and EHOMO. Therefore,
energy gap, qH+, dipole moment, and EHOMO were the most significant key descriptors
affecting the synthesizability of SMs and their derivatives. EHOMO refers to the energy of
the highest occupied orbital of a molecule, which is one of the important quantum chemical
properties of molecules [38]. The energy gap is the difference in energy between the highest
and the lowest occupied orbitals of a molecule. Studies have shown that molecular EHOMO
and energy gap values are closely related to molecular stability [39]. The descriptor qH+

refers to the maximum charge number of molecular hydrogen ions, and intramolecular
hydrogen bonds can enhance the stability of molecules [39]. The dipole moment is the
product of the distance between the positive and negative charge centers in a molecule
and the charge at the charge center, which is closely related to the effective charge carried
by the molecule [40]. Li et al. [24] found that those mentioned above as key characteristic
values with significant influence belong to the electrons of the molecule parameter. The
molecular structure is associated with key eigenvalues such as EHOMO, energy gap, and
other properties [41]. Laikov [42] developed a new molecular electronic structure model
using the electronic parameters of the molecule and found that molecular structures were
inseparable from their electronic parameters. In quantum machine learning, molecular
structures and electronic parameters such as EHOMO, energy gap, and dipole moment play
an extremely important role in studying molecular physico-chemical properties [43]. In
summary, the eigenvalues of the molecular electronic descriptors of SM derivatives played
an essential role in the training process of ML models. They had a significant impact on the
synthetic probability of SM derivatives.

Table 7. Growth rate of the key descriptors with high correlation in the bagging-RF, bagging-ERT,
and bagging-GBC models.

ML Methods Key Descriptors
Parameter Growth Rate of the Descriptor

10–20% 20–30% 30–40% 40–50% Average

Bagging-RF

Raman 3.44% 3.00% 2.64% 2.34% 2.85%
Energy gap 11.88% 11.18% 10.60% 10.11% 10.94%

qH+ 13.03% 12.39% 11.88% 11.48% 12.20%
Dipole moment 11.49% 10.77% 10.17% 9.67% 10.53%

EHOMO 12.73% 12.07% 11.54% 11.11% 11.86%

Bagging-ERT

Raman 2.33% 2.01% 1.75% 1.54% 1.91%
Energy gap 13.10% 12.46% 11.96% 11.57% 12.27%

qH+ 16.60% 16.34% 16.29% 16.44% 16.42%
Dipole moment 13.34% 12.72% 12.24% 11.87% 12.54%

EHOMO 12.58% 11.92% 11.38% 10.94% 11.70%

Bagging-GBC

Raman −1.18% −0.99% −0.84% −0.72% −0.94%
Energy gap 14.74% 14.25% 13.91% 13.71% 14.15%

qH+ 21.69% 22.48% 23.87% 26.08% 23.53%
Dipole moment 15.14% 14.69% 14.41% 14.27% 14.63%

EHOMO 17.16% 16.99% 17.04% 17.33% 17.13%
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2.4.2. The Mechanism Analysis for the Synthesizability of SMs Derivatives Based on
3D-QSAR Model

In Section 2.4.1, energy gap, qH+, dipole moment, and EHOMO were screened out
as the key descriptors that significantly affect the synthesis of theoretically designed SM
derivatives. In order to verify the above results, the 11 commercially synthesized SMs
(positive samples), the top seven SM derivatives with high synthesizability, and the last
seven SM derivatives with low synthesizability predicted by the three models were selected.
The energy gap, qH+, dipole moment, and EHOMO values of the 14 SM derivatives and
11 commercially synthesized SMs are given in Table 8. Compared with the 11 synthesized
SMs, the energy gap, qH+, dipole moment, and EHOMO eigenvalues of the seven synthesiz-
able SM derivatives changed by 3.72%, −0.66%, −5.70%, and −7.57%, respectively. The
energy gap, qH+, dipole moment, and EHOMO eigenvalues of the seven none synthesizable
SM derivatives changed by 3.72%, −0.66%, −5.70%, and −7.57%, respectively, compared
with the 11 commercially synthesized SMs. The results further showed that the eigenvalues
of qH+, dipole moment, and EHOMO have relatively significant effects on the synthesizable
properties of SMs. The higher the value of qH+, the larger the value of the dipole moment,
and the lower the value of EHOMO, the lower the synthesizability of SM derivatives, which
is consistent with the conclusion of the sensitivity analysis of the constructed machine
learning models.

Table 8. Four key descriptors of positive samples, synthesizable, and non-synthesizable SM deriva-
tives on three models.

Synthesizability Name Energy Gap qH+ Dipole Moment EHOMO

Synthesizable
SM derivatives

D7 0.174 0.173 2.279 −0.239
D8 0.164 0.178 5.101 −0.252

D25 0.184 0.184 2.594 −0.241
D37 0.222 0.162 2.827 −0.226
D50 0.178 0.213 1.192 −0.284
D51 0.173 0.213 3.018 −0.281
D52 0.161 0.210 4.471 −0.279

Average 0.180 0.191 3.069 −0.257

Non-synthesizable
SM derivatives

D39 0.168 0.410 2.679 −0.241
D49 0.222 0.394 2.892 −0.215
D57 0.178 0.221 4.548 −0.311
D61 0.158 0.431 4.313 −0.294
D62 0.160 0.217 5.726 −0.283
D67 0.139 0.415 5.915 −0.279
D76 0.160 0.222 5.055 −0.288

Average 0.169 0.330 4.447 −0.273

Positive samples

PHAN 0.186 0.175 3.458 −0.232
ABDI 0.184 0.181 3.213 −0.231

AHTN 0.187 0.181 3.457 −0.233
HHCB 0.220 0.164 1.551 −0.221
VER 0.190 0.183 3.040 −0.234
MA 0.162 0.212 4.276 −0.258
MC 0.229 0.185 2.161 −0.241
MK 0.173 0.193 3.034 −0.267

MMP 0.169 0.195 1.542 −0.169
MUSCONE 0.175 0.206 4.471 −0.269

MX 0.178 0.213 1.192 −0.284
Average 0.187 0.190 2.854 −0.240

The 3D-QSAR model can effectively analyze the relationship between molecular struc-
tural features and physico-chemical activities [23]. Therefore, the synthesizability of unla-
beled samples (SM derivatives) was used as the input to construct an environment-friendly
3D-QSAR prediction model (CoMSIA) for predicting the synthesis of SM derivatives. The
data set (n = 35) was composed of a training set (27 SMs) and a test set (9 SMs) for 3D-QSAR
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model construction and validation, and the template molecule (SM 12) existed in both
the training set and test set. The cross-validation coefficient q2 is 0.753 > 0.5, indicating
that the constructed 3D-QSAR model had a good prediction ability [23]. Relatively high
values of non-cross-validation (R2 = 0.971 > 0.9 and close to 1.000) and the external test
coefficient (r2

pred = 0.940 > 0.6) further proved the good predictive ability and robustness of
the generated models. The standard error of estimate (SEE) of the model was 0.047 < 0.95,
which confirmed the good fit ability and predictive ability of the constructed 3D-QSAR
model. In addition, in order to verify the rationality of setting the positive samples and
unlabeled samples of the machine learning prediction model, this paper also used the
constructed 3D-QSAR model to predict the synthesizability of the 11 positive samples
(i.e., Phantolide, Celestolide, Tonalid, Galaxolide, Versalide, Musk xylene, Muscone, Musk
methy, Musk ambrette, Moskene, and Musk ketone). However, since the 3D-QSAR model
can only predict molecules with a common skeleton (Table 9), it cannot predict Muscone
without a common benzene ring. Based on the 3D-QSAR model prediction, it was found
that 90% of the positive samples had a synthesizability greater than 0.5, indicating that the
constructed 3D-QSAR model had high prediction accuracy. At the same time, it showed
that the setting of positive and unlabeled samples of SMs and SM derivatives used for
machine learning model training is reasonable.

Table 9. The predicted synthesizability of positive samples using 3D-QSAR model.

SMs Molecular
Structures Synthesizability SMs Molecular

Structures Synthesizability

Phantolide
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In the contour maps of the CoMSIA model for the molecular synthesizability of
environmentally friendly SM derivatives, the contributions of hydrophobic, electrostatic,
hydrogen bond acceptor, hydrogen bond donor, and steric fields were 22.6%, 19.8%, 33.2%,
20.4%, and 4.0%, respectively. The results indicated that the hydrophobic, electrostatic,
hydrogen bond acceptor, and hydrogen bond donor fields significantly impacted the
synthesizability of SM derivatives. In this study, unlabeled sample D50 was taken as a
template molecule for analysis (Figure 4). Seven derivatives of MK (i.e., D50, D51, D57, D61,
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D62, D67, and D76) were selected as examples (Table 10) to analyze the synthesizability
mechanism based on the contour maps. Studies showed that increasing the positive electric
groups in the blue area in the contour maps was beneficial to chemical activity [22,44]. As
shown in Table 10 and Figure 4a, b, compared with the synthesizability of D50 and D51, the
non-synthesizable SM derivatives (i.e., D67, D61, D62, D57, and D76) had increased electron-
withdrawing groups (-NO2) at position 3, which led to the decreased synthesizability of
D67, D61, D62, D57, and D76. Previous studies have shown that adding strong electron-
withdrawing groups can reduce the EHOMO value of the molecule [45]. Then the energy
gap value of the molecule will change significantly, which will increase the charge of some
hydrogen atoms in the molecule. According to Long and Niu [46], the higher the qH+ value
of a molecule, the easier it is to accept electrons and generate electrophilic reactions. The
lower the energy gap value of the molecule, the easier it is for nucleophilic and electrophilic
reactions to occur, resulting in poor stability (or synthesizability) of the molecule [47,48].
Compared with the synthesizable D50 and D51, the EHOMO values of non-synthesizable SM
derivatives (i.e., D57, D61, D62, and D76) were all smaller than D50 and D51. Furthermore,
D57, D61, D62, D67, and D76 substitute molecules had lower energy gap values and higher
qH+ values than D50 and D51. The higher the value of qH+, the lower the value of EHOMO,
and the smaller the energy gap value, the lower the synthesis ability of SMs substitute
molecules. It showed that the higher the value of qH+, the lower the value of EHOMO, and
the smaller the energy gap value, the lower the synthesizability of SM derivatives.
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Table 10. Synthesizable and non-synthesizable musk ketone (MK) derivatives.

Synthesizability MK
Derivatives

Synthesizability
Predicted by
Bagging-RF

Synthesizability
Predicted by
Bagging-ERT

Synthesizability
Predicted by

Bagging-GBC
Molecular Structures

Synthesizable

D50 0.62 0.79 0.70
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Table 10. Cont.

Synthesizability MK
Derivatives

Synthesizability
Predicted by
Bagging-RF

Synthesizability
Predicted by
Bagging-ERT

Synthesizability
Predicted by

Bagging-GBC
Molecular Structures

Non-synthesizable

D57 0.25 0.26 0.06
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2.4.3. Mechanism Verification Analysis for the Synthesizability of SM Derivatives Based on
Intramolecular Hydrogen Bond Theory

In order to further analyze the synthesizable mechanism of SM derivatives, they
were screened based on bagging-RF, bagging-ERT, and bagging-GBC models. The in-
tramolecular hydrogen bond differences of the top seven SM substitute molecules
(D7 > D50 > D8 > D25 > D37 > D51 > D52) and the last seven non-synthesizable SM deriva-
tives (D67 < D62 < D39 < D57 < D61 < D76 < D49) were compared to analyze the intrinsic
factors affecting the internal reasons of synthesizability. HHCB and MK derivatives from
the above 14 SM derivatives were selected as representatives. D7, D8 (synthesizable),
and D39, D49 (non-synthesizable) were the derivatives of HHCB. D50, D51, and D52
(synthesizable) and D57 and D76 (non-synthesizable) were the derivatives of MK. For the
synthesizable derivatives, D7 contained one intramolecular hydrogen bond C3−H23···O13
(H23···O13 bond length is 2.46 Å), D8 contained one intramolecular hydrogen bond C16–
H29···O15 (H29···O15 bond length is 2.22 Å), D50 had five intramolecular hydrogen bonds
C10–H28···O17 (H28···O17 bond length is 2.22 Å), C1−H24···O20 (H24···O20 bond length
is 2.21 Å), C12−H36···O17 (H36···O17 bond length is 2.42 Å), C12−H35···O14 (H35···O14
bond length is 2.42 Å), C11–H33···O14 (H33···O14 O14 bond length is 2.22 Å), D51 had
six intramolecular hydrogen bonds C10–H30···O19 (H30···O19 bond length is 2.36 Å),
C13–H35···O22 (H35···O22 bond length is 2.70 Å), C10–H30···O18 (H30···O18 bond length
is 2.30 Å), C1–H25···O21 (H25···O21 bond length is 2.82 Å), C9–H27 ···O16 (H27···O16
bond length is 2.73 Å), C8–H31···O16 (H31···O16 bond length is 2.54 Å), and D52 had
four intramolecular hydrogen bonds C10−H31·· O20 (H31···O20 bond length is 2.31 Å),
C9−H30···O20 (H30···O20 bond length is 2.43 Å), C14–H38···O17 (H38···O17 bond length
is 2.49 Å), C12–H34···O23 (the bond length of H34···O23 is 2.34 Å). Among the non-
synthesizable SM derivatives, D39 and D49 had no intramolecular hydrogen bonds, while
D57 had five intramolecular hydrogen bonds C10–H33··O18 (the bond length of H33···O18
is 2.18 Å), C10–H33···O19 (H33···O19 bond length is 2.48 Å), C1–H28···O21 (H28···O21
bond length is 2.45 Å), C9−H29···O15 (H29···O15 bond length 2.67 Å), C9–H29···O16
(H29···O16 bond length is 2.34 Å), and D76 contained four intramolecular hydrogen bonds
C10–H33···O21 (H33···O21 bond length is 2.22 Å), C12–H36···O24 (H36···O24 bond length
is 2.51 Å), C9–H30···O19 (H30···O19 bond length is 2.27 Å), C1–H28···O13 (H28···O13 bond
length is 2.19 Å) (Table 11). Comparing the number of intramolecular hydrogen bonds, it
was found that the formation rate of intramolecular hydrogen bonds in the synthesizable
SM derivatives was 100%. The predicted rate of intramolecular hydrogen bond formation
in non-synthesizable SM derivatives was only 50% (Figure 5). Since the basic forms of
intramolecular hydrogen bonds in the SM derivatives were all C–H···O, it was speculated
that the hydrogen bond between the methyl group and the nitro group restricts the rotation
of the C–C bond between the benzene ring and the nitro group in the molecular center
of the SM derivatives. Thus, D7, D8, D50, D51, D52, D57, and D76 have stable, planar
molecular conformations that allow for synthesis. However, the lack of intramolecular
hydrogen bonds in D39 and D49 resulted in unclear molecular conformation and unstable
structures. Thus, D39 and D49 had low synthesizability. The above inference was consistent
with a previous study [50]. The expected molecular conformation and arrangement can be
obtained by rationally designing the intramolecular hydrogen bond between the amide and
alkoxy groups. The bispyridyl aromatic dicarboxamide derivatives and their complexes
can thus be designed [50].
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Table 11. The intramolecular hydrogen bond analysis of predicted synthesizable and non-
synthesizable SM derivatives.

Predicted
Synthesizability SM Derivatives Intramolecular Hydrogen

Bonding Paths Bond Length (Å)
Electron Density

(a.u.)

Hydrogen Bond
Strength

(kcal/mol)

Hydrogen Bond
Type

Synthesizable

D7
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Table 11. Cont.

Predicted
Synthesizability SM Derivatives Intramolecular Hydrogen

Bonding Paths Bond Length (Å)
Electron Density

(a.u.)

Hydrogen Bond
Strength

(kcal/mol)

Hydrogen Bond
Type

Synthesizable D52
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Figure 5. Predicted intramolecular hydrogen bond distribution characteristics of synthesizable and
non-synthesizable SM derivatives.

Although the formation rate of intramolecular hydrogen bonds in non-synthesizable
SM derivatives was only 50%, D57 and D76 still had intramolecular hydrogen bonds due
to structural reasons. Therefore, we further analyzed the influences of intramolecular
hydrogen bonds on the synthesizability of MK derivatives (i.e., D50, D51, D52, D57,
and D76). Intramolecular hydrogen bond strength is difficult to calculate accurately
due to the complex and strict operation process. If the system needs to be cut off and
the cutoff point should be saturated, the structure needs to be adjusted to avoid severe
steric hindrance. Emamian et al. [51] first proposed that the bond critical point (BCP)
electron density can be defined by AIM theory to estimate the intramolecular hydrogen
bond strength (E_HB). Emamian et al. [51] also redefined the standard definition of in-
tramolecular hydrogen bond strength, where E_HB > −2.5 kcal/mol is weak strength
and E_HB < −2.5 kcal/mol is weak strength. Among these, E_HB > −2.5 kcal/mol is
“very weak intensity”, and −14 < E_HB < −2.5 kcal/mol is “weak to medium intensity”.
The BCP electron densities of D7, D8, D50, D51, D52, D57, and D76 were calculated by
density functional theory (DFT). The strength of the intramolecular hydrogen bonds of
these derivatives was then estimated (Table 11, Figure 5). Among the synthesizable SM
derivatives, D50 formed three extremely weak intramolecular hydrogen bonds with E_HB
of −2.336, −1.102, and −1.101 kcal/mol, respectively, and two weak intramolecular hy-
drogen bonds with E_HB of −2.704 and −2.707 kcal/mol, respectively. D51 formed five
extremely weak intramolecular hydrogen bonds (with the E_HB of −1.960, −1.602, −1.919,
−2.100, and −0.677 kcal/mol) and one weak intramolecular hydrogen bond (with E_HB of
−4.039 kcal/mol). D52 formed two extremely weak intramolecular hydrogen bonds (E_HB
were −2.182, −1.091 kcal/mol) and two weak intramolecular hydrogen bonds (E_HB were
−2.885, −4.127 kcal/mol). Among the non-synthesizable SM derivatives, D57 formed
four “very weak intensity” intramolecular hydrogen bonds (E_HB were −2.280, −2.105,
−2.167, and −2.128 kcal/mol) and one weak intramolecular hydrogen bond (E_HB was
−2.576 kcal/mol). D76 formed three “very weak intensity” intramolecular hydrogen bonds
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(E_HB were −2.049, −2.200, and −2.485 kcal/mol) and one weak intramolecular hydro-
gen bond (E_HB was −2.781 kcal/mol). Statistical analysis found that the formation rate
of weak intramolecular hydrogen bonds in predicted synthesizable SM derivatives was
33.33%, and the weak intramolecular hydrogen bond formation rate in non-synthesized
SM derivatives was 22.22%. It showed that “very weak intensity” intramolecular hydro-
gen bonds are more conducive to synthesizing SM derivatives than weak intramolecular
hydrogen bonds. Studies have confirmed that when the intramolecular hydrogen bond is
weak, it is mainly dominated by electrostatic interaction forces [51]. This result is consistent
with the conclusion in Section 2.4.2 that the electrostatic field can affect the synthesizability
of SMs and their derivatives. In addition, based on the sensitivity analysis results of the
synthesizability-machine learning model, it can be seen that the energy gap, qH+, dipole
moment, and EHOMO are key descriptors affecting the synthesizability of SM derivatives.
Among them, the size of EHOMO and the energy gap are closely related to molecular stabil-
ity, and qH+ affects the interaction between donor and acceptor in intramolecular hydrogen
bonds [39]. Therefore, the intramolecular hydrogen bond strength analysis, the sensitiv-
ity analysis of the three synthesizability-machine learning models, and the contour map
analysis by the 3D-QSAR model were mutually verified. The higher the intramolecular
hydrogen bond strength, electrostatic interaction, qH+ value, and energy gap value, the
lower the EHOMO value, the more stable the SMs substitute molecule, and the higher the
synthesis probability will be.

3. Materials and Methods
3.1. Molecular Structures of SMs and SM Derivatives—Literature Review Method

A total of 88 SMs and their derivatives were retrieved, including 11 commercialized
SMs (i.e., Phantolide, Celestolide, Tonalid, Galaxolide, Versalide, Musk xylene, Muscone,
Musk methy, Musk ambrette, Moskene, and Musk ketone) and 77 environmentally friendly
SM derivatives that have been theoretically designed but have not yet been experimentally
synthesized. The 77 SM derivatives consist of 19 functionally improved SM derivatives [23],
10 SM derivatives with reduced bioaccumulation ability and enhanced odor sensitivity [24],
and 48 SM derivatives with lower abortion risks [18]. The molecular structures of 88 SMs
and SM derivatives are shown in Table S1.

3.2. Construction of Machine Learning Models for the Synthesizability of SM Derivatives

SMs are widely used in personal care products. Due to the extensive use of SM,
environmental and human health problems were accelerated. Therefore, it is of great
practical significance to develop and design environmentally friendly SM derivatives. The
process of developing SM derivatives takes a long time and much labor. The machine
learning (ML) method can reduce unnecessary consumption in the early research stage
by helping to discover and terminate the molecular design of SM derivatives with low
synthesizability. Therefore, it is necessary to predict the synthesizability of the theoretically
designed SM derivatives before synthesizing.

3.2.1. Calculation of Molecular Descriptors of SMs and SM Derivatives—Software
Calculation Method

The research found that structural parameters (e.g., Gibbs energy, atomic volume,
energy of crystal structure, bond strength, and bond length between adjacent atoms, total
energy, atomic energy, formation energy, Bader charge, lattice constant, and electronegativ-
ity) can affect the physic-chemical properties of molecules [24,52]. Dolz et al. [53] pointed
out that the maximum exfoliation energy is a key descriptor affecting the synthesis of
MXenes. Mladenović et al. [54] reported that Highest Occupied Molecular Orbital is one
of the key descriptors affecting the synthesis of 4-hydroxy-chromene-2-one. Therefore,
the descriptors of SMs molecules were selected in this study as the original eigenvalues
of the ML model for predicting the synthesizability of SM derivatives. ChemBioDraw
12.0 (PerkinElmer, USA) was utilized to calculate the physico-chemical parameters, struc-
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tural parameters, and topological parameters (e.g., critical temperature, critical pressure,
hydrophobic constant of organic compounds, Henry constant, heat of formation, steric
parameters, molecular weight, and polar surface area) of SMs and SM derivatives [37].
The density functional theory (DFT) in Gaussian 09 software was used to optimize the
molecular structures of SMs and SM derivatives at the B3LYP/6-31G basis set level and to
calculate the spectral, geometric, and electronic parameters (e.g., Milligan charge, occupied
orbital energy, positive frequency value, energy gap value, dipole moment, quadrupole
moment, infrared, and Raman spectra) [24]. The topological, electronic, geometric, and
physico-chemical parameters (e.g., van der Waals volume and atomic number) of SMs and
SM derivatives can be calculated using PaDEL-Descriptor software.

3.2.2. Dimensionality Reduction on Descriptors of SMs and SM Derivatives—Pearson
Correlation Coefficient Method

The Pearson correlation coefficient is widely used in statistical analysis, pattern recog-
nition, image processing, and other fields. The Pearson correlation matrix can be used
to select suitable descriptors for multiple linear regression analysis [55] and analyze the
correlation between production data, dilution attributes, and system efficiency [56]. The
molecular descriptors of SMs and SM derivatives calculated in this study may have re-
peatability. Moreover, in the process of constructing PU machine learning models, not
all descriptors can provide different molecular information. Some descriptors are highly
correlated and express similar molecular information [56]. Therefore, Pearson’s correlation
coefficient method was used in this study to rank the eigenvalues with a high degree
of similarity in the correlation coefficient matrix [56,57]. Eliminating features with high
similarity and screening out the key descriptors. The Pearson correlation coefficient can be
calculated below:

rxy =
∑n

i=1 (xi −
_
x)(yi −

_
y)√

∑n
i=1 (xi −

_
x)2
√

∑n
i=1 (yi −

_
y)2

(4)

Among which,
_
x and

_
y are the average values of the two eigenvalues of SMs and SM

derivatives (X and Y), respectively. The absolute value of the Pearson correlation coefficient
rxy is less than or equal to 1, indicating a degree of correlation: rxy > 0.5 indicates a strong
correlation; 0.3 < rxy < 0.5 indicates a moderate correlation; 0.1 < rxy < 0.3 indicates a weak
correlation; and rxy < 0.1 indicates almost no correlation.

SPSS 18.0 software (SPSS Inc., Chicago, IL, USA) is commonly used for Pearson corre-
lation coefficient analysis of eigenvalues. However, since there are over 1000 descriptors of
SMs and SM derivatives in this study, the Pearson correlation coefficient was calculated and
analyzed by self-writing “code packages” in python software [28]. The correlation between
each molecular descriptor was calculated as well. The number of eigenvalues required for
PU machine learning was set by adjusting the classification threshold (which was set to
p = 0.6 in this study), and the highly correlated descriptors were eliminated independently.
The specific process code is shown in Figure S1.

3.2.3. Molecular Synthesizable Prediction Model for SM Derivatives—Bagging-Random
Forests Algorithm

In this paper, the number of positive samples (i.e., 11 synthesized and commercialized
SMs) used to construct the PU machine learning prediction model of synthesizability is
small, and its number is much smaller than that of unlabeled samples (i.e., 77 theoret-
ically designed SM derivatives). Thus, traditional classifiers such as the random forest
(RF) method are more appropriate. A bagging classification model was constructed in
this study based on the basic classifier (i.e., RF) and the independent variables (i.e., de-
scriptors obtained by dimensionality reduction through the Pearson correlation coefficient
method) [58].

In the Bagging-RF classification method, the synthesized commercial SMs were set
as positive samples (marked as “1”), and the theoretically designed yet unsynthesized
environment-friendly SM derivatives were set as unlabeled samples (marked as “0”). The
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above samples were used to construct a PU machine learning classification model. During
the model training process, unlabeled samples are divided into unlabeled synthesizable
samples and unlabeled non-synthesizable samples, and their synthesizability can be output
simultaneously. By adjusting the n_estimators, criterion, and random_state parameters
inside the RF algorithm and the n_estimators, max_samples, random_state, and other
parameters in the PU classifier, a PU classification model with a model evaluation score
(out-of-bag (OOB) score) greater than 0.7 is obtained. Finally, the model with a high
oob_score (greater than 0.7) is used to predict the synthesizability of the positive and
unlabeled samples. In this way, the synthesizability of SM derivatives was obtained. When
the synthesizability is >0.5, it is considered synthesizable, and when the synthesizability
is <0.5, it is considered not synthesizable [28]. The specific code package is shown in
Figure S2.

3.2.4. Molecular Synthesizable Prediction Model for SM Derivatives—Bagging-Extremely
Randomized Tree Classifier Algorithm

In this paper, the bagging-Extremely Randomized Tree Classifier (ERT) machine learn-
ing method was also used to predict the synthesizability of environmentally friendly SM
derivatives. ERT was used as an alternative algorithm for PU machine learning predictive
models to demonstrate that the synthesis of SM derivatives is not dependent on a specific
predictive model. The ERT algorithm is a machine learning method based on tree structure
for decision-making. Its algorithm is very similar to the random forest algorithm, which is
composed of many decision trees. The RF uses randomly selected samples. In comparison,
the ERT uses all samples with randomly selected molecular characteristics because the split
is random. Therefore, to some extent, ERT is more appropriate than the prediction results
simulated by the RF algorithm [59]. The RF model selects the optimal forked features
in a feature subset, while the ERT model randomly selects the forked features [60]. The
ERT model can adjust the minority class of target features in classification by reducing
the variance of tree-splitting nodes [60]. The ERT model was used to reduce the variance
inherent in many tree-based and neural network algorithms through an enhanced tree
splitting technique. Due to its randomization properties for numerical inputs, ERT was
very efficient in solving problems involving a large number of numerical features [60].
Thus, this paper adopted the ERT model for the synthesizability prediction of unlabeled
samples. An ensemble of decision trees generated a decision function. The classifier took an
input feature vector and classified it for each tree in a forest-like structure. Then the labeled
class was output based on the majority vote [61]. The specific code package is shown in
Figure S3.

ERT is an extension of RF, where a further randomization stage is added for selecting
cut points and, at the same time, randomizes the attributes in RF, randomly selecting
attributes and splitting cut points [62]. According to Soltaninejad et al. [62], each tree was
determined by tε{1 . . . T}, where T is the number of random trees. For a given data point x
and data set Dtrain, the feature vector is represented by f Dtrain, and the feature vector
is represented by f (x, Dtrain). To classify the data from class c, each tree learned a weak
predictor pt(c| f (Dtrain)) for an n-dimensional feature representation. During testing, for
an unseen data point x’, the probability of belonging to class c is calculated by the average
of the probabilities on all trees, as shown in Equation (5):

p
(
c
∣∣ f (x′, D

))
=

1
T

T

∑
t−1

pt
(
c
∣∣ f (x′, D

))
(5)

3.2.5. Molecular Synthesizable Prediction Model for SM Derivatives—Bagging-Gradient
Boosting Classifier

In this paper, the machine learning of the bagging-gradient boosting classifier (GBC)
was used to construct and compare the predictive models for the synthesis of SM derivatives
to prove once again that the synthetic properties of SM derivatives do not depend on specific
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prediction models. GBC is an ensemble classifier that performs well when the number
of variables exceeds the number of samples (high-dimensional data) [63]. GBC has been
applied to the status classification of water quality. Experiments showed that GBC was
more effective in classifying water quality status than the AdaBoost classifier, supporting
vector classifiers, and random forest classifiers [64]. Gradient boosting is a method used to
develop classification and regression models to optimize the learning process of the models,
which are mostly nonlinear and are more broadly known as decision trees or regression
trees. The GBC algorithm [65,66] first used prior information to initialize the classifier
F0(x). F0(x) is the average value of the training target value, and the proportion of y = 1
in the training sample is P(Y = 1|x). For the first iteration, t = 1, the formula was shown
as follows:

F0(x) = log
(

P(Y = 1|x)
1− P(Y = 1|x)

)
(6)

The loss function negative gradient rm,i can be calculated by Formula (7), among which
m = 1, 2, 3, . . . , M.

rm,i =

[
∂L(yi, F(xi))

∂F(x)

]
F(x)=Fm−1(x)

= yi −
1

1 + e−F(xi)
(7)

Best-fit value cm,j can be calculated using Formula (8). The regression tree was used
to fit the data

(
xi, rm,j

)
, among which i = 1, 2, 3, . . . , N. The leaf nodes under the mth

regression tree are Rm,j, among which j = 1, 2, 3 · · · , Jm, Jm is the number of leaf nodes for
the mth regression tree.

cm,j =
∑xi∈Rm,j

rm,i

∑xi∈Rm,j
(y− rm,i)(1− y + rm,i)

(8)

The calculation of Fm(x) classifier:

Fm(x) = Fm−1(x) +
Jm

∑
j=1

cm,j I
(
x ∈ Rm,j

)
(9)

The best classifier FM(x):

FM(x) = F0(x) + ∑M
m=1

Jm

∑
j=1

cm,j I
(
x ∈ Rm,j

)
(10)

The final computational form of the classifier model:

P(Y = 1|x) = 1
1 + e−FM(x)

(11)

The detailed code package is provided in Figure S4.

3.3. Mechanism Analysis of the Synthesizability of SM Derivatives
3.3.1. Identification and Analysis of Key Descriptors Affecting the Synthesis of SM
Derivatives—2D-QSAR Model

Sensitivity analysis is mainly used to analyze the sensitivity of model output values
to changes in characteristic parameters [29]. In this study, the linear regression module of
SPSS 18.0 software (SPSS Inc., Chicago, IL, USA) was used to construct two-dimensional
quantitative structure-activity relationships (2D-QSAR) models. The models were con-
structed based on the dependent variable (i.e., synthesizability of SM derivatives) and
the independent variables (i.e., key descriptors screened by the machine learning model).
The structure-activity relationship between the synthesizability of SM derivatives and
the characteristic parameters was thus created. Sensitivity analysis was then carried out
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with the help of characteristic parameter coefficients to screen the key descriptors, which
helps to accurately analyze the influence of key descriptors on the synthesizability of SM
derivatives [30].

The sensitivity coefficient can be calculated as follows:

SCi = (∆Yi/Yi)/(∆Xi/Xi) (12)

where SCi represents the sensitivity coefficient of the input feature parameter i, ∆Xi/Xi
indicates the change rate of the input feature parameters, ∆Yi/Yi is the synthesizability
change rate of SM derivatives. The sensitivity analysis on each descriptor was conducted
with the help of each descriptor’s coefficient in the linear regression model. The sensitivity
coefficients for each descriptor varying by 10%, 20%, 30%, 40%, and 50% of its value were
calculated, which helped to screen out the key descriptors.

3.3.2. Molecular Force Field Analysis Affecting Molecular Synthesizability of SM
Derivatives—3D-QSAR Model

The chemical structures (i.e., designed SM derivatives) and their synthesizability were
used as independent and dependent variables, respectively, for the establishment of 3D-
QSAR models. The synthesizability of unlabeled samples (i.e., SM derivatives) is predicted
by the ML model with the highest model evaluation score. Using the SM derivative with
the highest synthesizability as a template, a 3D-QSAR model about the synthesizability of
environmentally friendly SM derivatives was constructed. The molecules of SM derivatives
were optimized using the Tripos force field and Gasteiger-Hückel charges [67]. The Powell
method was optimized up to 10,000 times, the energy convergence gradient value was set
to 0.005 kJ/mol, and the rest of the parameters were set to default values [5]. The template
molecules were then aligned with other SMs using the align database command in SYBYL.

The constructed 3D-QSAR model was then used to predict the synthesizability of
positive samples (i.e., synthesized and commercialized) for verifying the molecular syn-
thesizability of SMs and their derivatives predicted by the PU ML model. The plausibility
of the positive and unlabeled samples used in the PU ML model was also verified. At the
same time, the coupling of the force field information of the 3D-QSAR contour maps with
the key descriptors affecting the molecular synthesis of SM derivatives was used to analyze
the synthesizable mechanism of SM derivatives further.

3.3.3. Theoretical Analysis of Intramolecular Hydrogen Bonds Affecting Synthesizability of
SM Derivatives—DFT Method

The stability of chemicals is closely related to the ease of synthesis [68], and intramolec-
ular hydrogen bonds can directly affect the stability of compound molecules [32]. For
example, Berl et al. [69] reported in “Nature” that the intramolecular hydrogen bond be-
tween the amide group and the pyridine group could ensure that the pyridine carboxamide
oligomer has a stable double helix structure. Intramolecular hydrogen bonds have direc-
tional non-covalent interactions. According to this interaction, highly planar molecular
conformations can be designed, and finally, newly designed compounds with high stability
and easy synthesis can be obtained [33]. The basic form of intramolecular hydrogen bonds
is D−H···A, where D is a hydrogen bond donor and A is a hydrogen bond acceptor, and the
length of H···A is usually less than 3.2 Å [70]. This paper used the DFT method in Gaussian
09 software (Gaussian, Inc., Wallingford, CT, USA) to optimize the molecular structure of
SM derivatives under the B3LYP/6-31G basis set [71]. The bond critical point (BCP) was
obtained by using the topology analysis module of the wave function analysis program
Multiwfn, and finally, the intramolecular hydrogen bond strength (E_HB) was estimated
based on the BCP electron density defined by the Atoms in Molecules (AIM) theory. The
AIM theory is mainly based on the topological properties of the electron density function
to describe the bonding situation in the SM derivative molecules, where the point between
two interacting atoms in the SM substitute molecule is defined as BCP [4].
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4. Conclusions

This study investigated the synthesizability of environmentally friendly SM deriva-
tives by integrating machine learning, 3D-QSAR, 2D-QSAR, and DFT methods. Seven of
the 77 SM derivatives screened were found to have high synthesizability and low envi-
ronmental risks. SM derivatives were recommended based on their performances. D37
and D52, with low abortion risks, can be used as alternatives to HHCB and MK. D52, with
improved odor sensitivity (increased 10.77%), can be used as an alternative with improved
functional properties. From the perspective of reducing the dermal exposure risks of SMs,
D25 had a lower skin keratin enrichment (−17.25) and thus could be used as an alternative
to PHAN. In addition, the synthesizability of SM derivatives was analyzed by 3D-QSAR,
2D-QSAR, and DFT methods. Based on the mechanism analysis, descriptors such as qH+

and energy gap can influence the synthesizability of SMs and their derivatives. This study
analyzed the molecular structure and physico-chemical parameters of SM derivatives to
accurately screen high-performance, environmentally friendly SM derivatives with high
synthesizability. This research has remarkably improved in synthesizing high-performance
alternatives for emerging contaminants from molecular aspects. This technology can also
be applied to other fields, promoting the discovery and development of more advanced
functional materials in various areas.
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