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Abstract: Reactive oxygen species, including singlet oxygen, play an important role in the onset
and progression of disease, as well as in aging. Singlet oxygen can be formed non-enzymatically
by chemical, photochemical, and electron transfer reactions, or as a byproduct of endogenous
enzymatic reactions in phagocytosis during inflammation. The imbalance of antioxidant enzymes
and antioxidant networks with the generation of singlet oxygen increases oxidative stress, resulting
in the undesirable oxidation and modification of biomolecules, such as proteins, DNA, and lipids.
This review describes the molecular mechanisms of singlet oxygen production in vivo and methods
for the evaluation of damage induced by singlet oxygen. The involvement of singlet oxygen in the
pathogenesis of skin and eye diseases is also discussed from the biomolecular perspective. We also
present our findings on lipid oxidation products derived from singlet oxygen-mediated oxidation in
glaucoma, early diabetes patients, and a mouse model of bronchial asthma. Even in these diseases,
oxidation products due to singlet oxygen have not been measured clinically. This review discusses
their potential as biomarkers for diagnosis. Recent developments in singlet oxygen scavengers such as
carotenoids, which can be utilized to prevent the onset and progression of disease, are also described.

Keywords: reactive oxygen species; singlet oxygen; biomarkers; lipid peroxidation

1. Introduction

Oxygen can be recognized as a “double-edged sword” because aerobic organisms can-
not live without it, even though the oxidative metabolism produces toxic by-products. Most
deleterious phenomena arise because of free radicals. Hence, for survival, the elimination
of highly reactive oxygen species (ROS) is important for living organisms. The human body
is also constantly threatened by oxidative injury and radicals. Over the course of evolution,
humans have developed defense systems to counteract oxidative damage, including the
transformation and/or elimination of ROS, as a part of normal physiological homeostasis.
When this homeostatic balance is disturbed by stress caused by environmental or radiation
exposure, it is termed oxidative stress, that is, a state in which the homeostatic balance
between oxidation reactions and antioxidant defenses is lost, leading to the oxidation of
vital biomolecules and, finally, the onset of disease.

Thousands of studies have been reported over the past decade on the role of ROS in
cell and tissue injury. ROS are generally accepted to be involved in various pathologies,
including inflammation, asthma, muscular dystrophy, dementia, anaphylaxis, rheumatoid
arthritis, reperfusion injury following ischemic stroke or heart attacks, cardiac toxicity of
anti-cancer drugs, carcinogenicity of various chemicals, and smoking [1–5].

In this review, we focus on singlet oxygen (1O2) in ROS. However, we exclude photo-
dynamic therapy (PDT), in which 1O2 is stimulated by the light irradiation of a photosensi-
tizing agent to induce a therapeutic effect on cancer [6], because many interesting review
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articles on PDT have already been published in recent years. The molecular aspects of
(1) the mechanism of 1O2 production in vivo, (2) methods for detecting 1O2 and its
oxidation-modification products, (3) implications in the pathogenesis of skin and eye
diseases, and (4) compounds that scavenge 1O2 are presented. Furthermore, we present our
findings on the measurement of 1O2-mediated oxidation products in diabetes, bronchial
asthma, and ocular diseases. Although 1O2 has been known to potentially be involved
in the pathogenesis of certain diseases, lipid peroxidation products and other products
produced by 1O2 have not been actively measured clinically. In this review, we exam-
ine the usefulness of lipid peroxidation products produced by 1O2 in diagnosing and
understanding the pathophysiology of diseases.

2. Chemical Properties and Possible Production of Singlet Oxygen In Vivo

ROS are redox-active intermediates that are formed by the chemical, photochemical,
or biochemical reduction in oxygen that, at least partially, triggers a chain of oxidative
reactions. ROS are grouped into non-radical and radical species, the former including
1O2 and hydrogen peroxide (H2O2), and the latter including superoxide anions (O2

•−),
hydroxyl radicals (HO•), hydroperoxyl radicals (HO2

•), alkoxyl radicals (RO•), and peroxyl
radicals (ROO•) [7]. 1O2 is generated by energy transfer via chemical or photochemical
pathways from an activated species to the oxygen molecule (triplet oxygen, 3O2) (Figure 1).
Other species are formed by a series of reactions initiated by 1O2, or by certain one-electron
reduction processes [7]. Therefore, ROS have been actively studied over the past three
decades to determine whether they are beneficial or harmful.
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that are 1.6 eV and 0.98 eV higher than the ground state 3O2 (3Σ−g), respectively. The lifetime of 1O2 
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several microseconds, which is significantly longer than that of 1O2 (1Σ+g), the 1O2 generated in vivo 
can be 1O2 (1Δg). The arrows indicate the direction of the electron spin of the highest occupied mo-
lecular orbital (HOMO). 

High-energy radiations, such as X- and γ-rays, generate radical ROS directly by the 
ionization of H2O or oxygen, whereas various chemical and photochemical reactions pro-
duce 1O2 (Figure 2A), which in turn creates other ROS [8]. In the energy transfer mecha-
nism, a photoactivated chromophore causes intersystem crossing to the triplet state, and 
triplet–triplet annihilation transfers part of the electronic energy to oxygen to generate 1O2 
[9,10]. Since the energy of most photoactivated molecules is higher than the excitation 

Figure 1. Relationship between energy levels of ground state triplet oxygen molecule 3O2 and
singlet oxygen molecule 1O2. The ground state oxygen molecule, triplet oxygen 3O2 (1Σ−g), has
two unpaired and spin-parallel electrons in π* antibonding orbitals. 3O2 (3Σ−g) in the ground state
receives energy and is excited to the singlet state, forming singlet oxygen (1O2). 1O2 is the spin-
flipped electron state of 3O2 (3Σ−g). There are two states of 1O2:1O2 (1Σ+

g) and 1O2 (1∆g). 1O2 (1Σ+
g)

and 1O2 (1∆g) have energies that are 1.6 eV and 0.98 eV higher than the ground state 3O2 (3Σ−g),
respectively. The lifetime of 1O2 (1Σ+

g) is a few picoseconds, and it is rapidly converted to 1O2 (1∆g).
Since the lifetime of 1O2 (1∆g) is several microseconds, which is significantly longer than that of 1O2

(1Σ+
g), the 1O2 generated in vivo can be 1O2 (1∆g). The arrows indicate the direction of the electron

spin of the highest occupied molecular orbital (HOMO).

High-energy radiations, such as X- and γ-rays, generate radical ROS directly by the
ionization of H2O or oxygen, whereas various chemical and photochemical reactions
produce 1O2 (Figure 2A), which in turn creates other ROS [8]. In the energy transfer
mechanism, a photoactivated chromophore causes intersystem crossing to the triplet state,
and triplet–triplet annihilation transfers part of the electronic energy to oxygen to generate
1O2 [9,10]. Since the energy of most photoactivated molecules is higher than the excitation
energy of 1O2 (0.98 eV) (Figure 1), 1O2 is readily produced by endogenous chromophores
activated by ultraviolet (UV) irradiation [11]. Hatz et al. showed that the lifetime of 1O2
generated by pulsed laser irradiation of a photosensitizer (5,10,15,20-tetrakis(N-methyl-4-
pyridyl)-21H, 23H-phine (TMPyP)) incorporated into the nucleus of HeLa cells is about



Int. J. Mol. Sci. 2023, 24, 2739 3 of 39

3 µs. They also found that the generated 1O2 diffuses from the formation point to a
sphere radius of about 100 nm [12,13]. On the other hand, Liang et al. created a system
that generates organelle-specific 1O2 by irradiating 660 nm light using a photosensitizer
that is locally expressed in the membrane, cytosol, endoplasmic reticulum, mitochondria,
and nucleus [14]. Using this system, they observed differences in the irradiation energy
required to induce cell death depending on the organelle in which the photosensitizer is
expressed, as well as differences in the type of cell death (early apoptosis, necrosis, or late
apoptosis) [14]. This result indicates that 1O2 generated in intracellular organelles may
not spread to other organelles. These reports indicate that 1O2 generated by intracellular
photosensitizers may induce cell death by oxidizing the components of the organelle
containing the photosensitizer, rather than diffusing widely within the cell.
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Figure 2. Major 1O2 production mechanisms. 1O2 production pathways; (A) photochemical reaction,
(B) reactions mediated by hydrogen peroxide produced by myeloperoxidase (MPO), (C) decompo-
sition of peroxyl radicals (Russel mechanism), (D) reaction mediated by superoxide anion (O2

•−),
(E) pathway via peroxynitrite decomposition.

The secretion of myeloperoxidase (MPO) from phagocytes generates hypochlorite
(ClO−), which reacts with H2O2 to form 1O2 (Figure 2B) [15]. In leukocytes, 1O2 gener-
ated via peroxidases and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
critically contributes to an antimicrobial role [16]. Another endogenous pathway of 1O2 is
the degradation of lipid peroxides or ROO• via the Russel mechanism (Figure 2C) [17,18].
ROO• and lipid peroxides, which are the substrates of the Russel mechanism, are de-
rived from the peroxidation of polyunsaturated fatty acids (PUFA) by auto-oxidation and
enzymatic-oxidation, such as cytochrome c, lactoperoxidase [19], and lipoxygenases [20].
In addition, the light-independent generation pathways of 1O2 include reactions involving
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O2
•− (Figure 2D) [21], peroxynitrite (Figure 2E) [22,23], and ozone [24–26]. Atmospheric

particulates also catalyze the 1O2 generation [27,28].

3. Damage to Biomolecules by 1O2-Mediated Oxidation

Notably, because 1O2 has electrophilic properties, it attacks the π-bonds of the com-
pound to form hydroperoxide by the ene reaction or endoperoxide by the 1,4-addition
reaction (Figure 3A). 1O2 oxidatively modifies biomolecules, such as amino acids
(Figure 3B) [29,30], nucleic acids (Figure 3C) [31,32], and lipids (Figure 3D) [33,34], ei-
ther by a direct reaction or by the induction of ROS.
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by 1O2. (B) Reaction products of tryptophan and methionine with 1O2. (C) Formation of 8-oxo-2′-
deoxyguanosine (8-oxo-dG) by 1O2 oxidation to deoxyguanosine (dG). (D) Oxidative modification of
fatty acids in membrane phospholipids by 1O2.
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Amino acids, which are components of proteins, are the targets of 1O2. Among the
20 natural amino acids, tryptophan, histidine, tyrosine, and the sulfur-containing amino
acids cysteine and methionine, are susceptible to reaction with 1O2 because of their struc-
tural properties. The reaction products of tryptophan and methionine with 1O2 are shown
in Figure 3B. Tryptophan reacts with 1O2 to form a hydroperoxide at the C3 position as an
intermediate, which undergoes ring closure to form hydroxypyrroloindole, and finally, N-
formylkynurenine [35]. Tryptophan reacts with 1O2 to form C2-C3 cross-linked dioxetanes
as intermediates, followed by the conversion to N-formylkynurenine [35]. Methionine
reacts with 1O2 to form methionine sulfoxide and the cyclic product dehydromethionine via
a persulfoxide intermediate [30]. Oxidative modifications to amino acids cause alterations
in protein properties, resulting in cellular damage accompanied by reduced enzyme activity
and disruption of the cell structure.

1O2 reacts specifically with the guanine portion of DNA bases converting to 7,8-
dihydro-8-oxo-2′-deoxy-guanin (8-oxo-dG) (Figure 3C) [36]. 8-oxo-dG is a potential mu-
tagenic substance because it pairs with adenine to cause a G→ T transversion, and it is
widely recognized as one of the indicators for evaluating oxidative DNA damage [37]. The
details are discussed below in Section 5.1.4. on skin cancer.

Phospholipids in the membrane react with 1O2, resulting in the oxidative modification
of fatty acids (Figure 3D). Oxidized fatty acids are cleaved and serve as signaling molecules
involved in carcinogenesis and skin aging. The cleavage of short-chain aldehydes from
fatty acids also results in membrane instability and increased permeability. The oxidation
products derived from linoleic acid and cholesterol by 1O2 are described below.

1O2 also oxidatively modifies steroids [38], vitamins [39,40], carbohydrates, terpenes [41],
and flavonoids [42]. In addition, 1O2 contributes to the stimulation of stress-activated
kinases and the regulation of gene expression [43].

4. Detection Methods of 1O2 In Vivo and In Vitro

The oxidative modification of biomolecules by 1O2 has been related in several diseases,
including skin and eye diseases [44]. The development of methods to precisely detect and
quantify 1O2 contributes not only to an understanding of its roles in physiological and
pathological conditions, but also in cancer therapy, by understanding the mechanism of
PDT. Detection methods for 1O2 have been developed to verify 1O2 production in living
systems [45]. The detection of 1O2 is mainly performed using the following methods:
spectroscopic measurement of near-infrared (NIR) luminescence [46,47], electron spin
resonance (ESR) with sterically hindered amine [48,49], fluorescence measurement by
reaction with fluorescence probes [50,51], and the measurement of oxidation products
produced by the reaction of 1O2 with biomolecules [52,53]. These methods were utilized
for in vitro and in vivo experiments.

4.1. Direct Detection of 1O2

The measurement of 1O2 NIR luminescence is a reliable method for the direct spectro-
scopic detection of 1O2, as 1O2 emission (1270 nm) can be excited by an argon laser [54].
This luminescence emission was first used for the time-resolved detection of 1O2 in solution
by Krasnovsky in 1976. This measurement method has been used as a standard technique
for 1O2 formation yields, lifetimes, and deactivation constants in various solutions. The
in vivo detection of 1O2 luminescence has been attempted previously, and it has been
reported that 1O2 in a suspension of leukemia cells [55,56] and red cell ghost [57] can
be detected using a sophisticated near-infrared photomultiplier device. However, this
luminescence signal is weak because the inactivation of 1O2 is dominated by nonradiative
pathways; typical phosphorescence yields are of the order of 10−5 to 10−7 [58]. In addition,
these methods require the usage of deuterium oxide (D2O) to extend the lifetime of 1O2
and remove the 1270 nm emission absorption due to H2O [59]. This difficulty in detecting
1O2 in vivo can be attributed to the short lifetime of 1O2 in cells and tissues and the lack of
sufficient sensitive detectors at NIR wavelengths.
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ESR spectroscopy, which has been proposed for paramagnetic materials and organic
compounds with unpaired electrons, has been used for the detection of free radicals [60].
To detect 1O2, a method was developed for measuring nitroxide radicals produced by
the reaction of 1O2 with sterically hindered secondary amine probes such as 2,2,6,6-
tetramethylpiperidine (TEMP) (Figure 4A) [61–63] and hydroxy-TEMP (Figure 4B) [64].
This method has been applied to the in vitro 1O2 scavenging activity of various substances
in solution, and there is considerable evidence demonstrating the 1O2 scavenging effects
of various substances using this method [48,65,66]. However, ESR spectroscopy is not
considered suitable for the detection of intracellular 1O2, which may be because the time
resolution in ESR measurements is not suitable for the short lifetime of 1O2 in cells existing
in 1O2 quenching molecules.

1 
 

 

Figure 4. Structures and oxidation modification of probes for 1O2 detection. (A) 2,2,6,6-
tetramethylpiperidine (TEMP), (B) Hydroxy-TEMP, (C) 9,10-dimethylanthracene (DMA), (D) 9-
[2-(3-Carboxy-9,10-diphenyl)anthryl]-6-hydroxy-3H-xanthen-3-ones (DPAXs), (E) Singlet Oxygen
Sensor Green (SOSG), (F) silicone-containing rhodamine-9,10-dimethylanthracene (Si-DMA).
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4.2. 1O2 Detection by Fluorescent Probes

Fluorescent probes are excellent sensors for the detection of ROS because of their
high sensitivity, simplicity of data acquisition, and high spatial resolution in micr-
oscopic imaging [67–69]. Fluorescent probes, including 9,10-dimethylanthracene (DMA)
(Figure 4C) [68,70,71] and 9-[2-(3-Carboxy-9,10-diphenyl)anthryl]-6-hydroxy-3H-xanthen-
3-ones (DPAXs) (Figure 4D) [72], have been developed for the detection of 1O2 in neutral or
basic aqueous solutions. These probes react specifically and rapidly with 1O2 to form stable
endoperoxides with a high rate constant. Singlet Oxygen Sensor Green (SOSG) (Figure 4E)
is a fluorescent probe for in vitro detection because of its high 1O2 selectivity [73–75]. To ap-
ply fluorescence probes in biological samples, the probes must penetrate the cell membrane
and be localized in the cell. Recently, a far-red fluorescent probe consisting of DMA and
silicon-containing rhodamine (Si-rhodamine) moieties, namely Si-DMA (Figure 4F), was
developed for detecting 1O2 in the mitochondria. The advantages of Si-DMA are its cell-
permeable ability and increased sensitivity to specifically detect mitochondrial 1O2 by the
Si-rhodamine moiety [76]. It is important to precisely measure intracellular 1O2 generation
to clarify the characteristics of fluorescence probes in terms of their signal-to-noise ratio
and dynamic changes. We have demonstrated that intracellular 1O2 can be quantitatively
measured using Si-DMA in living cells, as time-lapse imaging using Si-DMA provides an
apparent signal-to-noise ratio in the treatments of a 1O2 generator and quencher [77]. Other
fluorescent probes have been used to detect intracellular 1O2 using nanoparticles, includ-
ing SOSG-based nanoprobes [50], super-pH-resolved nanosensors encoding SOSG [78],
and biocompatible polymeric nanosensors encapsulating SOSG within their hydrophobic
core [79]. The use of these fluorescence probes will improve our understanding of the
1O2 generation mechanism and the biological function of 1O2 in the physiological and
pathological conditions of cultured cells.

4.3. Detection of 1O2-Mediated Peroxidation Products
1O2 generated in vivo quickly reacts with biomolecules, including lipids, proteins,

and nuclei, and the subsequent comparatively stable oxidized products remain in the 1O2
generation site. This chemical property has been used for the development of in vivo
ROS detection methods, and these oxidation products are widely used as oxidative stress
biomarkers because they can be detected stably and correlate with oxidative stress status
in vivo [80,81].

The oxidation product of linoleic acid, hydroxyoctadecadienoic acid (HODE), contains
six isomers. 1O2 reacts with molecules containing double bonds to form hydroperoxides
as primary products, which are subsequently reduced to hydroxides (Figure 5). 1O2 pro-
duces 9-, 10-, 12-, and 13-(Z,E)-hydroperoxyoctadecadienoic acid (HPODE) from linoleates;
however, only 10- and 12-(Z,E)-HPODE are specific products by 1O2 because 9- and 13-
(Z,E)-HPODE are also formed by both free radical- and enzyme-mediated oxidation. The
chemical structures of 10- and 12-(Z,E)-HPODE differ significantly from those of 9- and
13-(Z,E)-HPODE: the latter contains a conjugated diene, while the former does not. These
structural features cause differences in physiological functions; for example, 10- and 12-
(Z,E)-HODE cause adaptive responses to UV-derived oxidative damage in cultured cells,
whereas 9- and 13-(Z,E)-HODE do not [82,83].

Cholesterol is an important lipid that constitutes biological membranes and undergoes
oxidative modification to produce 7-, 24-, and 27-hydoroxycholesterol. Cholesterol, as well
as unsaturated fatty acids, are substrates for the oxidative reaction of 1O2. When 1O2 re-
acts with cholesterol, it forms 5α-hydroperoxide (cholesterol 5α-OOH), 6α-hydroperoxide
(cholesterol 6α-OOH), and 6β-hydroperoxide (cholesterol 6β-OOH) (Figure 6). Cholesterol
5α-OOH is produced in larger amounts than 6α/β-OOH. Therefore, cholesterol 5α-OOH
could be used as a biomarker for oxidative reactions involving 1O2 in vivo. Furthermore,
the Hock cleavage of cholesterol 5α-OOH converts to cholesterol 5,6-secosterol. Choles-
terol 5,6-secosterol, also called ateronal, is involved in the development of cardiovascular
diseases [84] and neurodegeneration [85].
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Figure 5. Structures and formation mechanism of hydroxyoctadecadienoic acid (HODE), an oxidation
product derived from linoleic acid. 1O2 oxidizes linoleic acid to produce 13-(Z,E)-HODE, 9-(Z,E)-
HODE, 12-(Z,E)-HODE, and 10-(Z,E)-HODE. 13-(Z,E)-HODE and 9-(Z,E)-HODE are also produced
by ROS other than 1O2 and by enzymatic oxidation reactions via lipid oxidases. 9-(E,E)-HODE and
13-(E,E)-HODE are produced in a radical-specific manner.

We have developed a method to comprehensively measure lipid peroxidation and
proposed the measurement of HODEs and hydroxycholesterol [86–91]. In this method, lipid
components are extracted from biological samples after reduction and saponification. These
pretreatments result in the measurement of both free and esterified forms of hydroperoxides
and hydroxides as free hydroxides. HODEs and hydroxycholesterol are analyzed by liquid
chromatography–tandem mass spectrometry (LC-MS/MS) and gas chromatography–mass
spectrometry (GC-MS), respectively. Biological samples to be measured with this method
include plasma, urine, erythrocytes, as well as cultured cells and tissues. This method
allows for the measurement of not only radical-mediated oxidation products, but also
1O2-specific oxidation products using the HODEs isomer as an indicator [89–91], in other
words, indirect in vivo 1O2 detection is possible. We have determined the relationship
between 1O2-mediated oxidation and the early diagnosis of diabetes in humans and mice
based on the production of 10- and 12-(Z,E)-HODEs [83,92,93], which will be discussed
in more detail later. 1O2 measurements using 10- and 12-(Z,E)-HODEs as indicators can
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evaluate 1O2 generation not only in living cells, but also in humans and animals in vivo,
and they can precisely analyze the involvement of 1O2 generation and diseases.
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oxidizes cholesterol to produce 5α-hydroperoxide (cholesterol 5α-OOH), 6α-hydroperoxide (choles-
terol 6α-OOH), and 6β-hydroperoxide (cholesterol 6β-OOH). Hock cleavage of cholesterol 5α-OOH
converts it to cholesterol 5,6-secosterols.

While ESR and fluorescent probes are useful for detecting 1O2 in vitro and in cells,
it is difficult to use these tools to assess the degree of damage caused by 1O2 in tissues.
Therefore, it is better to measure oxidation products that are relatively stable and retained
in biological samples. Table 1 summarizes the methods for measuring 1O2 itself or its
oxidation products and both their advantages and disadvantages. Table 2 summarizes
reports of the measurements of linoleic acid- or cholesterol-derived oxidation products
produced by 1O2-mediated oxidation reactions in human and animal samples. 1O2-derived
lipid oxidation products have been measured in the blood and tissue samples obtained from
patients with borderline diabetes, glaucoma, alcoholism, and atherosclerosis. In animal
experiments, cholesterol 5α-hydroperoxide in the skin tissue was measured following UVA
irradiation in mice. These results are important to understand the contribution of 1O2 to
the pathogenesis of various disorders.
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Table 1. Characterization of 1O2 detection methods in vivo and in vitro.

Detection Method of 1O2 Principle Pros/Cons Ref.

Near-infrared luminescence
1O2 emission
at 1270 nm

• A standard technique for the 1O2 yields,
lifetimes, and deactivation constants
in vitro.

• Weak signal (phosphorescence yields
are of the order 10−5 to 10−7)

• Requirement of deuterium oxide (D2O)
for longer lifetime

â Applied for in vitro detection

[54,57–59]

ESR spectroscopy

Measurement of nitroxide
radicals produced by the
reaction of 1O2 with sterically
hindered secondary amine
probes

• Applied for in vitro 1O2 scavenging
activity in solution

• Time resolution is longer for the short
lifetime of 1O2 in cells

â Applied almost for in vitro detection

[48,60,61,65,66]

Fluorescent probes [67–69]
9,10-dimethylanthracene
(DMA)

React with 1O2 and
form stable endoperoxides
with high-fluorescence
quantum yield (high
sensitivity,
simplicity of data acquisition,
and high spatial resolution in
microscopic imaging)

• Detection of 1O2 in neutral or basic
aqueous solutions

• React rapidly with 1O2 in a high
rate constant

• Impermeable cell membrane
â Applied for in vitro detection

[68,70–72]

9-[2-(3-Carboxy-9,10-
diphenyl)anthryl]-6-hydroxy-
3H-xanthen-3-ones
(DPAXs)

Singlet Oxygen Sensor Green
(SOSG)

• Commercially available highly selective
1O2 indicator

• Impermeable cell membrane
â Applied for in vitro detection

[73–75]

SOSG-based nanosensors
NanoSOSG
SPR-SOSG
PAM-SOSG

• Using nanoparticles for detection of
intracellular 1O2

• Permeable cell membrane
• Visualization of 1O2 signal at the

subcellular level
â Applied for in vitro and

intracellular detection

[50,78,79]

Si-DMA

• Cell-permeable and localization
of mitochondria

• Specifically detect mitochondrial 1O2
• Relatively quantitative
â Applied for intracellular detection

[76,77]

1O2-mediated peroxidation products

10- and 12-(Z,E)-HODEs
Products mediated
by the reaction of 1O2 with
linoleic acid

• Relatively stable
• Abundant in living organisms (cell

membrane)
• Can be used to evaluate in vivo

oxidative damage
â Applied for in vivo and

in vitro detection

[83,89–93]

Cholesterol 5α-OOH
Cholesterol 6α-OOH
Cholesterol 6β-OOH

Products mediated by the
reaction of 1O2 with
cholesterol

• Relatively stable
• Can be used to evaluate in vivo

oxidative damage
â Applied for in vivo and

in vitro detection

[52]
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Table 2. Report on the results of the determination of linoleic acid- or cholesterol-derived peroxides
produced by 1O2-mediated oxidation reactions using human and animal samples.

1O2-Mediated Oxidation Product Sample Species Disease/Model Ref.

10- and/or 12-(Z,E)-HODE

Human Borderline diabetes/oral glucose tolerance test [92,93]

Human High serum levels in patients with primary open-angle
glaucoma [94]

Pig Increased by kidney tissue damage [95]
Mouse High in the plasma of model mice with prediabetes [83,96]

Mouse
Increased in the lungs of model mice with asthma and
positively correlated with MPO activity and nerve growth
factor (NGF)

[97]

Cholesterol 5α-hydroperoxide

Human Alcoholic patients [98]
Rat Pheophorubide a and visible light irradiation [99]

Mouse UVA irradiation of hairless mice [100]
Mouse Effect of beta-carotene on UVA irradiation of hairless mice [101,102]

Cholesterol 5,6-secosterol

Human Cholesterol 5,6-secosterol detected in atherosclerotic plaques [103]
Human Cortex in patients with Alzheimer’s disease [104]

Rat Higher in the plasma of amyotrophic lateral sclerosis (ALS)
rats than before disease onset [85]

5. Diseases Involving 1O2 and Their Pathophysiology
5.1. Skin Diseases

The skin is the organ with the largest area exposed to sunlight. The skin is regularly
exposed to sunlight and is at a high risk of oxidative stress. UV radiation from the sun
generates ROS in keratinocytes, the major cells of the epidermis and the outermost layer of
the skin [105]. UV exposure also increases the activities of cyclooxygenase and lipoxygenase,
which produce eicosanoids from arachidonic acid. UV exposure of the skin causes erythema
and acute inflammation, and long-term UV exposure causes photo-carcinogenesis [106]
and skin aging [107]. Lipid oxidation on the skin surface is important in relation to sunburn,
hyperpigmentation, wrinkle formation, freckles, atopic dermatitis, acne, and skin cancer.

UVA (320–400 nm) penetrates the dermis, whereas UVB (280–320 nm) only attacks
the epidermis. Both UVA and UVB produce ROS and free radicals in the presence of
photosensitizers (Figure 7). In type I reactions, an excited photosensitizer reacts with an
organic compound to produce O2

•− and lipid peroxyl radical (LOO•). In a type II reaction,
the excited photosensitizer reacts with a triplet oxygen molecule, producing 1O2 primarily
by energy transfer and, to a minor extent, O2

•− by electron transfer.

5.1.1. Photosensitizers

Porphyrins such as protoporphyrin IX (Figure 8A) [108] have been examined as en-
dogenous photosensitizers, and their derivatives [8] and 5-aminolevulinic acid [109], a
component of porphyrins, have been investigated for application as PDT in therapeu-
tic modalities against diseases such as cancer. Interestingly, coproporphyrin (Figure 8B)
produced by Propionibacterium acnes, an acne-causing bacterium, also acts as a photosen-
sitizer and generates 1O2, which is associated with skin inflammation [110,111]. Hemin
(Figure 8C) [112] and chlorophyll (Figure 8D) [113], which are metal complexes of porphyrin
and similar compounds, also exhibit photosensitizing effects. Hemin is an iron-containing
protoporphyrin IX, and chlorophyll is a chemical responsible for absorbing light energy in
the light reaction of photosynthesis. Pheophytin (Figure 8E), from which magnesium ions
are removed during chlorophyll degradation, and pheophorbide (Figure 8F), from which
the phytyl group is eliminated from pheophytin, also act as photosensitizers [114,115].
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Figure 7. Photosensitizers and the mechanisms of 1O2 production. (1) Photosensitizers (PS) absorb
photons (hv) from light and transform them to the excited singlet state (1PS•). (2) 1PS• returns to
the ground singlet state (1PS) by losing energy via fluorescence emission. (3) 1PS• was converted
to the long-lived triplet state (3PS•). (4) 3PS• can return to the ground singlet state (1PS) via light
emission (phosphorescence). (5) 3PS• forms organic radicals (L•) from organic compounds (LH)
through the transfer of electrons in the type I photochemical reaction. L• affects oxygen (3O2) to
produce ROS (superoxide anion O2

•−, lipid peroxyl radical (LOO•). O2
•− leads to the production of

H2O2 and hydroxyl radicals (OH•), resulting in the induction of radical chain reactions. (6) In type II
photochemical reactions, the energy of 3PS• is transferred to 3O2 to mainly produce 1O2, but O2

•− is
produced as a minor product via electron transfer from 3PS•.

In addition to porphyrins, tryptophan and tryptophan metabolites (kynurenine and
3-hydroxykynurenine) (Figure 8G) [116] and riboflavin (Figure 8H) [117,118] are endoge-
nous photosensitizers. Riboflavin, a water-soluble vitamin B2, is distributed in the skin,
eyes, brain, and blood vessels and increases the production of 1O2. Cholesta-5,7,9(11)-
trien-3beta-ol (9-DDHC) (Figure 8I), a metabolite of 7-dehydrocholesterol (7-DHC), is a
photosensitizer involved in rare cholesterol metabolism disorders [119]. Psoralen (Figure 8J),
found in citrus fruits, is a dietary photosensitizer that causes photosensitivity [120,121].

5.1.2. Lipids in the Skin and Lipid Peroxidation Products Mediated by 1O2

The lipid composition of the epidermis is a mixture of free fatty acids, ceramide, and
cholesterol at approximately 30–35% each [122]. The fatty acids in the epidermis include
linoleic acid (21%), oleic acid (15%), palmitic acid (14%), stearic acid (11%), and arachidonic
acid (6%) [123]. In contrast, the lipid composition of sebum is triacylglycerol (45–50%), wax
ester (25%), squalene (Sq) (12%), and free fatty acids (10%) [122]. The fatty acid composition
of sebum is palmitic acid (22%), palmitoleic acid (21%), oleic acid (15%), myristic acid (12%),
and myristoleic acid (5%) [124]. The lipid composition of the sebum differs significantly
from that of the epidermis.

Squalene (Sq) is a triterpene compound characteristically present in sebum, and six Sq
monohydroperoxides (2-, 3-, 6-, 7-, 10-, and 11-OOH-Sq) are produced in similar amounts
by the peroxidation of 1O2 (Figure 9) [125]. In contrast, 2- and 3-OOH-Sq were recently
reported to be produced by free radical oxidation [125]. Considering these results, 6-, 7-,
10-, and 11-OOH-Sq may be the specific products of 1O2. SqOOHs are also associated
with wrinkle formation [126] and inflammatory acne [127]. As SqOOHs are unstable,
further photooxidation was revealed to produce 2-OOH-3-(1,2-dioxane)-Sq (Figure 9) as
a secondary oxidation product [128]. SqOOH concentrations in sebum collected from
skin exposed to tobacco heating products or electronic cigarette aerosols are lower than
that in sebum from skin exposed to tobacco smoke, indicating consumer hygiene and
cosmetic benefits [129].
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Figure 8. The structures of photosensitizers. (A) Protoporphyrin IX, (B) coproporphyrin, (C) hemin,
(D) chlorophyll a, (E) pheophytin a, (F) pheophorbide a, (G) tryptophan, (H) riboflavin, (I) cholesta-
5,7,9(11)-trien-3beta-ol (9-DDHC), (J) psoralen.
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Figure 9. The structures of squalene and its peroxidation products. Squalene (Sq) is converted by
1O2 to six monohydroperoxides (2-, 3-, 6-, 7-, 10-, and 11-OOH-Sq). The monohydroperoxides of Sq
are further photo-oxidized to 2-OOH-3-(1,2-dioxane)-Sq.

Table 3 shows the results of SqOOH measurements in human and animal sebum
samples. The fact that SqOOHs, which are specifically produced by 1O2, can be detected
using sebum, which can be collected without severe invasion, makes it possible to assess
the effects of pollutants, sunlight, and UV. In the future, techniques for the measurement
of the SqOOH content in sebum could be further developed in the field of skin diseases,
including cosmetology.

As mentioned above, 1O2 peroxidation products from cholesterol are caused by ene re-
actions to 5,6 double bonds to form cholesterol 5α-OOH, 6α-OOH, and 6β-OOH (Figure 6).
However, cholesterol 5α-OOH is more abundant than cholesterol 6α- and 6β-OOH [52].

PUFAs in the skin are also target molecules for peroxidation by 1O2. UVA irradiation of
hairless mice has also been reported to increase 10-HPODE and 12-HPODE levels (Figure 5),
which are 1O2-specific lipid hydroperoxides of linoleic acid [130].
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Table 3. Report on the results of the determination of squalene-derived peroxides produced by
oxidation reactions mediated by 1O2 using human and animal samples.

1O2-Mediated Oxidation Product Sample Species Disease/Model Ref.

Squalene monohydroperoxides

Human Increased by exposure of human skin to tobacco smoke [131]
Human Sunlight exposure increases SqOOH in sebum [132]
Human UV irradiation to human sebum [133–135]
Human SqOOH reduction in sebum by application of cosmetics [136]
Human Human skin surface lipids [137]
Human Increased SqOOH in the scalp due to high dandruff [138]
Human Detection using human fingerprints [139]

Human Increase in SqOOH in the sebum due to ambient dust
and ozone [140]

Human
Less SqOOH in sebum exposed to tobacco heating
products and electronic cigarettes compared to cigarette
smoke exposure

[129]

Pig Cigarette smoke exposure to pig skin [141]
Rabbit UVA irradiation of rabbit ears [127]

Guinea pig Carotene reduces the increase in SqOOH caused by UV
irradiation of the skin [142]

2-OOH-3-(1,2-dioxane)-squalene Human Identification of cyclic peroxides of SqOOH [128]

5.1.3. Skin Aging

The main clinical sign of skin aging is the dysfunction of the dermis, with ultrastruc-
tural disruption of elastic fibers [143]. This is due to an imbalance in collagen remodeling
relative to proteolysis that occurs in the extracellular matrix. UVA-irradiated cultured
human fibroblasts and human epidermis have been shown to induce the expression of col-
lagenase, a protease that degrades elastic fibers in the dermis [144]. Moreover, the addition
of cholesterol oxidants derived from the 1O2 oxidation reaction to mouse fibroblasts causes
them to accumulate in lipid rafts, as well as upregulates matrix metalloprotease-9 (MMP-9)
activity [145]. The UVA irradiation of cells under protoporphyrin administration results
in the upregulation of MMP-9 activity with the formation of cholesterol oxide [145]. This
suggests that cholesterol oxidation products produced by 1O2 may alter the structure of
lipid rafts, resulting in the activation of signaling pathways that induce MMP-9 expression,
leading to skin aging.

5.1.4. Skin Cancer

DNA nucleobases are targets of oxidation reactions [44]. 1O2, as well as highly reactive
HO•, are oxidants that can damage cellular DNA [146–148]. Since UVA is among the
carcinogens to which organisms are exposed, it is important to understand the mechanisms
that cause DNA damage [149]. UVA in sunlight is a potential source of oxidative DNA
damage in the skin [150,151]. As discussed in the previous chapter, exposing skin to UVA
radiation produces 1O2. The reactivity of 1O2 to nucleobases tends to occur in the order
guanine > cytosine > adenine > uracil > thymine [152].

The introduction of an oxo group into the C8 of guanine and the addition of a hydrogen
atom to the nitrogen of N7 yields 8-oxo-dG (Figure 3C). The presence of 8-oxo-dG in DNA
causes problems in the S phase of the cell cycle. In the S phase, cells must replicate an
exact copy of the genome. Unlike most other types of DNA damage, 8-oxo-dG does not
stop the replication process but rather creates a point mutation. Normally, guanine pairs
with cytosine (C), whereas 8-oxo-dG mimics thymine (T), thus forming a pair with adenine
(A) [153]. Furthermore, the A:8-oxo-dG mispair does not cause helix distortion in the
DNA backbone, thus avoiding correction by the error detection mechanism of replication
polymerase [154]. This results in mutations that are essentially C:G→A:T mutations. The
presence of C:G→A:T mutations in many cancers emphasizes the importance of 8-oxo-dG
in cancer pathogenesis [155]. The amount of 8-oxo-dG produced is approximately 103/cell
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per day in normal cells, but increases to 105/cell in cancer cells [156]. 8-oxo-dG is also
markedly increased in human skin cells after UVA irradiation [157]. There are reports
that 8-oxo-dG is involved in photocarcinogenesis [158,159]. It has also been reported that
8-oxo-dG is increased in epidermal cells after chronic broadband UVB irradiation in Ogg1
knockout mice, which are unable to eliminate oxidized bases and are susceptible to skin
cancer [160]. However, cyclobutane pyrimidine dimers observed in UV-irradiated DNA
are also known to correlate with skin cancer development [161]. It is thought that DNA
mutation due to 1O2 generation is not the only cause of UV-induced carcinogenesis, but
that various mutagenic molecules are involved in the pathogenesis in a complex manner.

Furthermore, 8-oxo-dG has been used as a biomarker to evaluate the degree of oxidative
stress, and its application has been attempted as a risk assessment for many diseases [162].

5.1.5. Porphyria

Porphyria is a rare genetic disorder caused by a deficiency in any of the eight enzymes
involved in the heme metabolism, resulting in the accumulation of the photosensitizing
substance porphyrin or its precursors [163]. Porphyrin accumulation in the skin also causes
photosensitivity, resulting in burn-like skin lesions [164]. The nine porphyria are divided
into “cutaneous porphyria” and “acute porphyria”. Among cutaneous porphyria, pho-
tosensitivity symptoms begin to appear shortly after birth for congenital erythropoietic
porphyria (CEP) and hepato-erythropoietic porphyria (HEP), around age 5–6 for erythro-
poietic protoporphyria (EPP), and after age 50 for late-onset porphyria (PCT). Exposure
to sunlight causes pain, itching, redness, and swelling, and, in severe cases, blister-like
burns. Porphyrins accumulated in skin tissue become excited by the absorption of light and
induce the production of 1O2, resulting in tissue and vascular damage due to complement
activation. In addition, the release of histamine, kinins, and chemotactic factors is thought
to cause skin damage [165]. Currently, there is no cure for porphyria, and photoprotection
is the only way to treat this disease. Beta-carotene, a scavenger of 1O2, is widely used
to treat photosensitivity caused by EPP [166,167], but it has also been reported to be less
useful for photosensitivity associated with PCT [167,168].

The 1O2 produced via porphyrins causes protein oxidation and aggregation [169,170].
In a porphyria model mouse, in which porphyrin accumulation was induced by 3,5-
diethoxycarbonyl-1,4-dihydrocollidine, protein aggregation in liver tissue was observed
upon safelight exposure compared to non-exposure [171]. Moreover, overexposure to
sunlight in EPP and PCT is associated with liver dysfunction, cirrhosis, gallstones, and
acute liver failure, and the relationship between hepatic damage in porphyria and 1O2
production by irradiation is becoming clearer.

5.1.6. Smith–Lemli–Opitz Syndrome and Statin-Induced Skin Disorders

Smith–Lemli–Opitz syndrome (SLOS) is caused by mutations in the DHCR7 gene,
which encodes 7-dehydrocholesterol (7-DHC) reductase, involved in the final step of
cholesterol biosynthesis [172,173]. SLOS shows a cholesterol deficiency and increased
7-DHC in the plasma and tissues [173]. A variety of symptoms are recognized in SLOS,
including growth retardation, microcephaly, intellectual disability, characteristic facial
features, and external malformations; however, hypersensitivity to ultraviolet light is
recognized as a symptom of SLOS [174]. Although 7-DHC itself does not absorb UVA and
is not a direct source of photosensitivity in SLOS, 9-DDHC (Figure 8I), a 7-DHC metabolite
found in the plasma of SLOS patients, is highly absorbable to UVA [119]. Furthermore,
UVA exposure to 9-DDHC generates 1O2, providing a mechanism for the pathogenesis of
photosensitivity in SLOS [119].

In addition, some statins inhibit 7-DHC reductase [175]; thus, the accumulation of 9-
DDHC may also be involved in statin-induced skin photosensitivity [176] and cataracts [177].
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5.1.7. Skin Disorders Caused by Exogenous Photosensitizers

Pheophorbide (Figure 8F), a degradation product of chlorophyll (Figure 8D), is a
photosensitizing substance [178]. Pheophorbide is sometimes found in food, and the
exposure of humans [179] and animals [180] to light after ingesting this compound can
cause dermatitis due to photosensitivity. Cholesterol 5α-OOH (Figure 6) was detected in
rat skin administered with pheophorbide and exposed to visible light [99].

The thiopurine prodrugs azathioprine and 6-mercaptopurine are widely prescribed
for the treatment of leukemia and autoimmune diseases [181]. Although these drugs
have shown therapeutic efficacy, long-term administration has been reported to increase
the risk of basal cell carcinoma and squamous cell carcinoma by 10- and 65- to 250-fold,
respectively [182]. These adverse effects are induced by sunlight exposure. Thiopurine
derivatives absorb UVA, which is believed to be responsible for producing 1O2.

Ibuprofen and ketoprofen, both marketed as nonsteroidal anti-inflammatory drugs
with antipyretic and analgesic properties, also produce 1O2 due to their photosensitizing ef-
fects and have been associated with adverse skin symptoms, including photosensitivity [183].
Some commonly used pharmaceutical compounds whose side effects include skin disorders
associated with photosensitivity may also produce 1O2.

5.1.8. Diagnosis and Evaluation of Skin Diseases by Measuring 1O2-Mediated Products

In skin diseases, the measurement of 1O2-derived lipid peroxidation products in se-
bum, especially SqOOHs, may be useful in the diagnosis of skin aging and photosensitivity.
On the other hand, while the diagnosis of porphyria and SLOS can be made by measuring
porphyrin and 7-DHC, respectively, the measurement of 1O2-derived lipid peroxidation
products in sebum may be useful in elucidating the pathogenesis and understanding a
patient’s disease status. In skin cancer, 8-oxo-dG may be useful in assessing the risk of DNA
mutations induced by UV, but it should be evaluated in combination with the analysis of
compounds produced by UV irradiation, such as cyclobutane pyrimidine dimers.

5.2. Ophthalmological Diseases

Since sunlight directly impacts the skin and eyes, oxidative stress is involved not only
in the skin, but also in the eyes. In this section, we focus on eye structures, light permeation,
and dysfunctions, followed by diseases related to 1O2-mediated oxidative stress.

5.2.1. Structure and Optical Transparency of the Ocular Bulb

Light passes through the cornea, aqueous humor, and pupil through the lens and
vitreous body, to reach the retina. The pupil regulates light, and the crystalline lens acts
as the lens. The retina is a transparent membrane that lines the inside of the eyeball. It
mainly consists of a layered structure of four types of cells: retinal ganglion cells, com-
munication/glial cells, photoreceptors, and retinal pigment epithelium (RPE) cells of the
vitreous. Light is received by photoreceptors; the pigment cell layer is located outside
the photoreceptor layer. Under visible light, the light that passes through the eye dif-
fers depending on its wavelength, and UVA (320–400 nm), UVB (280–320 nm), and UVC
(100–280 nm) are absorbed by the cornea and lens [184,185], although UV can reach the
retina in an aphakic eye (i.e., an eye with no crystalline lens). In the human eye, light with
a wavelength of 400–760 nm reaches the retina with little absorption from the cornea to the
vitreous body. Since mid- and far-infrared rays are absorbed by water, they are absorbed
by water in the cornea, lens, and aqueous humor and do not reach the fundus of the eye.
Since near-infrared light has low water absorption, it penetrates the choroid [186].

5.2.2. Photooxidative Stress

Visual cells, which are photoreceptors, contain visual substances of chromoproteins
that receive light. They are composed of two types of cone cells that sense colors and
rod cells that sense the intensity (brightness and darkness) of light. Cone cells have
photopsins, and rod cells have rhodopsins. 1O2 is produced by the oxygen present in
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photoreceptors [187]. In addition, photoreceptor cells and retinal pigment epithelial cells
accumulate waste products, called lipofuscin, with aging [188], and these are also activated
by light absorption to produce radicals [189,190].

Lipofuscin is considered a waste product in the lysosome, consisting primarily of
30–58% protein, 19–51% lipid-like substances (oxidation products of PUFA), carbohydrates,
and trace metals (2%), including iron, copper, aluminum, zinc, zinc calcium, and man-
ganese [191]. Lipofuscin cannot be degraded by lysosomal hydrolytic enzymes because of
the polymerization and cross-linking of peptides with aldehydes, resulting in a plastic-like
structure that is not biologically degradable and accumulates in neurons and cardiomy-
ocytes with age. Retinal lipofuscin has been shown to exhibit strong photosensitizing
properties when photoexcited in the presence of oxygen [189].

Recently, fluorescent bis-retinoid N-retinyl-N-retinylidene ethanolamine (A2E)
(Figure 10A,B) has been implicated in photooxidation in the retina [192,193]. A2E is
the main component of lipofuscin that accumulates in RPE cells during aging. Rhodopsin,
a pigment protein present in photoreceptor cells, is composed of a protein moiety called
opsin and 11-cis-retinal (Figure 10A,B). The retina contains vitamin A (retinol). Rhodopsin
is broken down into opsin and all-trans-retinal when it absorbs light. The RPE regenerates
all-trans-retinal to 11-cis-retinal (a process called the visual cycle) (Figure 10B). During
this regeneration process, all-trans-retinal reacts with phospholipids and another all-trans-
retinal generates A2E (Figure 10A,B). A2E, a major component of lipofuscin, generates 1O2
upon light stimulation, especially high-energy blue light [194].

ROS and radicals generated by light act on the cell membrane lipids of photoreceptors
to form lipid radicals [195,196]. Recently, photo-oxidative stress has been found to lead to
retinal aging and is a factor in the onset of age-related macular degeneration [195,196].

5.2.3. Compounds Protecting against 1O2 in the Macular Pigment and Lens

The macula is susceptible to oxidative damage owing to the lack of a retinal inner layer,
which is affected by intense light. Therefore, the retina has a macular pigment composed
of lutein and zeaxanthin, which are carotenoids, and meso-zeaxanthin [197], which is
converted from lutein by the RPE-65 enzyme [198,199].

The lens contains lutein and vitamin C, which have a protective mechanism against
blue light, with an absorption peak at 400–500 nm. In addition, these macular pigments
and carotenoids have an antioxidant ability to eliminate 1O2 and are thought to maintain
retinal homeostasis [198].

5.2.4. Blue Light Hazard

Visible blue light (400–500 nm) from light-emitting diode (LED), mobile phones, and
industrial equipment is increasingly being used, and we are susceptible to this in our daily
lives. The accumulation of photo-oxidative stress caused by blue light, called blue light
hazard, has been reported to cause chronic retinal changes [200,201].

Marie et al. exposed a 10 nm wide light band, range 390–520 nm, to primary retinal
pigment epithelial cells treated with A2E and measured the precise action spectrum that
produced the highest amount of ROS in the cells [194]. Of the spectrum of sunlight reaching
the retina, blue light at 415–455 nm produced the highest amount of ROS and induced
mitochondrial dysfunction. Lipofuscin and A2E accumulate in the RPE with aging, and
blue light induce a photooxidative reaction that promotes cell death and angiogenesis. The
need for the elderly to filter these wavelengths of light is emphasized.

Exposure to blue light (415–455 nm) for 15 h decreased activities of SOD and cata-
lase and increased oxidized glutathione (GSSG) and ROS in A2E-treated RPE cells [194],
suggesting that the balance between the oxidant and antioxidants is readily disrupted by
massive blue light exposure [194].
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Figure 10. The structures of biosynthesis of A2E. (A) After Schiff base formation between all-trans-
retinal and ethanolamine or phosphatidylethanolamine, a [1,6]-proton tautomerization to enamine
follows. After further Schiff base formation with a second molecule of all-trans-retinal, a [3,3]-
sigmatropic rearrangement is followed by the hydrolysis of the linked phosphatidylethanolamine
adduct, resulting in the formation of N-retinyl-N-retinylidene ethanolamine (A2E). (B) 1O2 production
process mediated by A2E in the retina. Light irradiation of A2E accumulated in lipofuscin generates 1O2.



Int. J. Mol. Sci. 2023, 24, 2739 20 of 39

5.2.5. Age-Related Macular Degeneration

Age-related macular degeneration (AMD) is a disease in which the photoreceptor
cells in the macula of the central fundus of the eye are damaged. There are two types:
the exudative type with neovascularization generated from the choroid that feeds the
retina, and the atrophic type without it. AMD is a multifactorial disease characterized
by high oxygen consumption, massive radiation exposure, and high PUFA content in the
retina. Photooxidative stress is presumed to be one of the causes of retinal disorders such
as AMD [200]. PUFAs in the membranes are targets for ROS, which drastically increases
the susceptibility of the retina to photochemical damage. In addition, as described above,
A2E-containing lipofuscin, which accumulates in RPE cells with aging, is activated by light,
and 1O2 is generated from abundant oxygen in the retina. In the early stages of the disease,
the body’s defense mechanism acts. However, the lesion begins to progress as the body’s
defense mechanisms decline with age.

5.2.6. Glaucoma

Glaucoma is a progressive glaucomatous optic neuropathy that causes visual field
loss and irreversible blindness [202–204]. The death and axon loss of retinal ganglion cells
(RGCs) cause glaucomatous optic neuropathy [202]. Elevated intraocular pressure (IOP) is a
primary risk factor for open-angle glaucoma (OAG) including primary OAG (POAG) [202].
In OAGs, the elevation of IOP is explained by a reduction in aqueous humor (AH) outflow
at the trabecular meshwork (TM) due to qualitative and quantitative changes in the ex-
tracellular matrix in the TM [205]. Numerous reports have shown that various oxidative
stressors induce RGC damage [206,207]. For example, antioxidant thioredoxins prevent
glaucomatous tissue injury, specifically glutamate- and IOP-induced RGC death [208,209],
indicating that oxidative stress is thought to be involved in IOP elevation and then RGC
loss in POAG.

We previously demonstrated the involvement of oxidative stress in the pathogenesis
of glaucoma by measuring AH and serum HODE levels derived from free radical-mediated
oxidation [94,210,211], suggesting that systemic oxidation is at least partially involved
in the disease. Furthermore, the levels of HODEs/LA (oxidized/parent molecules ratio,
LA; linoleic acid) in AH correlated with those in serum, suggesting that ocular oxidative
injury proceeds simultaneously with systemic oxidative stress [211]. The serum levels of 10-
and 12-(Z,E)-HODEs/LA formed via 1O2 specific oxidation were correlated with IOP [94],
which are indices of glaucoma severity derived from TM cell dysfunction. One possible
process by which 1O2 is produced in the eye is type II photooxidation via a sensitizer
present in the vicinity of the reaction milieu, similar to a cataract [212]. The specific region
of oxidative injury has not been identified because sunlight does not reach TM cells. In
addition, the pathways of the excretion and circulation of HODEs formed in the eyes
remain undefined. However, our findings suggested that cerebrospinal HODE levels were
well reflected in plasma levels [213,214]. Other studies have simultaneously analyzed
the systemic and local redox status, suggesting that alterations in systemic oxidant and
antioxidant levels reflect local redox status [215–217].

5.2.7. Cataract

Epidemiological approaches have indicated that sun exposure is a risk factor in
age-related cataracts [218,219]. UVB is mostly filtered out by the cornea and aqueous
humor [220]. For this reason, UVA, which occupies nearly 95% of the UV in sunlight, has
been associated with cataracts [221]. It has been proposed that chromophores with UVA-
visible light absorption properties, which accumulate in the lens with age, influence the
development of cataracts through the ROS generation by photosensitizing reactions [222].

The major protein components of the lens are crystallins, of which there are three main
types: α-, β-, and γ-crystallin. The most abundant of these is α-crystallin, which functions
to maintain lens transparency and acts as a protective chaperone for the lens [223]. As α-
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crystallin is not turned over, damage to the amino acids/proteins constituting α-crystallin
accumulates. This leads to changes in refraction and lens opacity (cataract formation) [224].

Tryptophan metabolites (kynurenine (Figure 8G), 3-hydroxykynurenine (Figure 8G),
3-hydroxykynurenine o-β-D-glucoside, and 4-(2-amino-3-hydroxyphenyl)-4-oxobutanoic
acid o-β-D glucoside) are present in significant concentrations in the lens and act as en-
dogenous chromophores and UV-absorbing filters [225]. These endogenous chromophores
absorb UV and become excited but regenerate to their original ground state without
producing radicals or 1O2. These chromophores undergo deamination under physiolog-
ical conditions and are covalently bound to proteins (crystallin) via Michael addition
reactions [226]. As covalent modification progresses gradually with age, the lens turns yel-
low. Paradoxically, tryptophan derivatives, which act as UV filters, have also been shown
to generate 1O2 by acting as photosensitizers when bound to proteins [226]. However, the
association between cataract development and 1O2 remains undefined and has not been
confirmed in our studies [94,210].

5.2.8. 1O2-Derived Peroxidation Products in the Diagnosis and Evaluation of
Ophthalmological Diseases

The measurement of 1O2-derived lipid peroxidation products in tissues removed
during cataract and glaucoma surgery may provide assistance in elucidating the patho-
physiology and in selecting the use of singlet oxygen scavengers. As our results indicate,
measuring lipid oxides in circulation may also be useful for diagnosis and pathophy-
siological evaluation.

5.3. Diabetes Mellitus
5.3.1. Biomarkers for Diabetes and Diabetic Complications

Diabetes is characterized by a deficiency of the secretion or action of insulin, resulting
in microvasculature damage to the retina, renal glomerulus, and heart, as well as peripheral
neuropathy. Diabetes can be fatal if its complications include nephritis and atheroscle-
rosis. Type 2 diabetes mellitus (T2D) indicates elevated blood glucose levels caused by
the impairment of insulin secretion and insulin resistance. Prediabetic states, including
impaired fasting glucose, impaired glucose tolerance (IGT), or slightly elevated blood
glucose levels, may precede T2D for the year [227,228]. Progression from prediabetes to
T2D can be prevented or delayed by improving diet and increasing physical activity.

Diabetic vascular complications include nephropathy, myocardial infarction, and
glaucoma. The early detection of diabetes is important to prevent complications. Several
studies have been conducted on the early detection of these complications. Biomarkers of
diabetic nephropathy include urinary heme oxygenase-1 (HO-1) [229] and 8-hydroxyde-
oxyguanosine [230,231], and circulating microRNA 130b [232]. S-glutathionylation [233]
and oxidized dityrosine-containing protein [234] are considered candidate markers of vas-
culopathy in diabetes. Angiotensin-II, protein kinase C (PKC), and advanced glycation
end products (AGEs) activate NADPH oxidase and upregulate the production of ROS,
leading to cardiac dysfunction [235,236]. The metallic elements selenium [237], copper,
and zinc [238] are associated with the detection of diabetes risk in pregnant women. Re-
cently, band 3 anion transport protein, also known as anion exchanger 1 or band 3, or
solute carrier family 4 member 1, was proposed for the early detection of the glycation of
hemoglobin leading to AGEs [239–241]. To completely detect diabetes and its complications,
a combination of several biomarkers is necessary.

5.3.2. Diabetic Biomarkers of Lipid Peroxidation

Several studies have examined the association of oxidation products with diabetes
pathology [242–246]. Griesser et al. revealed the interplay between lipid and protein
modifications using animal models. A large cohort study showed that imbalances in the
redox system contribute to the development of T2D [245]. Leinish et al. clarified that the
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structural and functional alterations in RNase A result from oxidation by 1O2 and ROO•,
not solely from histidine and tyrosine cross-linking [246].

We recently found that 10- and 12-(Z,E)-HODE, 1O2-specific products derived from
linoleic acid, significantly correlated with a risk index for impaired glucose tolerance and in-
sulin resistance in oral glucose tolerance tests performed on healthy volunteers [92,247,248].
Free radical-specific lipid oxidation products, such as 9- and 13-(E,E)-HODE and 7β-
hydroxycholesterol, and hydroxyeicosatetraenoic acids (HETEs), which are oxidation prod-
ucts derived from arachidonic acid, have not been detected. The process by which these
1O2-specific lipid oxidation products are produced in diabetic pathology is speculated
to involve the reaction between H2O2 and ClO− derived from MPO (Figure 2B). This
1O2 generation mechanism is mediated by MPO from activated phagocytes [249,250] or
eosinophils peroxidase [251,252]. Several reports have shown that neutrophil-derived MPO
plays an important role in diabetic vascular injury (Figure 11) [253–255]. The source of
H2O2 in diabetic pathology is thought to be NADPH oxidase in the vascular endothelial
cells [253]. MPO released from activated neutrophils is known to bind to the vessel wall for
several days [256,257]. The H2O2 derived from hyperglycemia-activated NADPH oxidase
may be used by MPO bound to the vascular endothelium to produce HOCl, resulting in
the production of 1O2 and vascular injury. Compounds that inhibit the activity of MPO,
such as hydroxamic acids, hydrazides, and azides, have potentially harmful side effects.
In contrast, quercetin was recently reported to inhibit MPO-dependent HOCl production
and prevent vascular endothelial injury [258]. Onyango et al. reviewed the contribution
of 1O2 to insulin resistance and reported that 1O2 generates bioactive aldehydes and in-
duces mitochondrial DNA modification and endoplasmic reticulum stress, which lead to
insulin resistance [259].
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Figure 11. Assumed scheme of 1O2 production via NADPH oxidase and myeloperoxidase (MPO) in
vascular injury in diabetes mellitus. High glucose produces hydrogen peroxide (H2O2) by NADPH
oxidase in vascular endothelial cells. 1O2 is generated via MPO in activated neutrophils bound to the
vessel wall.

Clinicians may be able to manage and/or advise patients regarding their food and
exercise habits before the onset of diabetes, by evaluating the levels of 1O2-induced lipid
peroxidation products in the near future. In any event, more information and studies are
needed to determine the pathological significance of 1O2 and 10,12-(Z,E)-HODE.
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5.4. Bronchial Asthma

Bronchial asthma is characterized by chronic airway inflammation, reversible air-
flow obstruction, airway hyperresponsiveness, and structural changes in the airways,
and its clinical manifestations include variable airway narrowing, cough, dyspnea, and
wheezing [260]. Asthma is caused by multiple interactions between epigenetic regulation
and environmental factors. Although this heterogeneity has made it difficult to define
biologically distinct subgroups based on the differences in clinical phenotypes, recent
advances in genetics and molecular biology have led to the pathogenetic classification of
endotypes [261]. These characteristics of asthma may be helpful for understanding the
pathophysiology and precision of medicine.

More than 300 million people worldwide suffer from asthma, of which approximately
10% have severe asthma. Symptom control in severe refractory asthma is difficult to achieve
despite optimal treatment with high-dose inhaled corticosteroids (ICS) and long-acting
adrenergic receptor β2 agonists [262]. Airway inflammation in asthma is typically involved
in the submucosal infiltration of activated Th2 lymphocytes, neutrophils, eosinophils, mast
cells, and macrophages [263,264]. Although Th2 cytokines and eosinophilic inflammation
are typical factors in the development of mild to moderate asthma in response to ICS,
a subset of asthmatics with Th2 high-eosinophil-predominant have a refractory course
despite optimal treatment [265]. In more severe cases of steroid-resistance, the cellular envi-
ronment is characterized by airway inflammation induced by Th1/Th2 cytokine expression
and neutrophil, with poorly reversible airflow obstruction [265–267]. In adults, elevated
neutrophil counts in sputum are related to disease severity [268] and the persistence of
symptoms [269]. These reports suggest an important role for neutrophils in asthma and
their association with a more steroid-refractory subtype.

Neutrophils are recruited to the site of pathogen invasion for immune defense [270,271].
Several proinflammatory mediators, including cytokines, chemokines, and complements,
contribute to the regulation of lung neutrophilic recruitment. Accumulated neutrophils
release chemotactic factors that attract monocytes and/or macrophages to the infection
site and, subsequently, exacerbate airway inflammation [272]. In particular, Th17/IL-17
and IL-8 are involved in the pathogenesis of steroid-resistant asthma [273,274]. Neutrophil
extracellular traps (NETs) comprising neutrophil DNA, whose formation is facilitated by
proinflammatory cytokines, are also thought to be implicated in the pathological condition
of neutrophilic asthma [274–277]. Activated neutrophils release not only inflammatory
cytokines, but also ROS and MPO, which damage airway endothelial cells and exacerbate
allergic inflammation [278–281]. Plasma MPO levels in asthmatic patients have been
proposed as biomarkers for the evaluation of asthma severity in adults [277,282]. As
described in Sections 2 and 5.3.2, MPO contributes to the production of 1O2 mediated
by the progression of the reaction with H2O2 and Cl− producing HClO. These suggest
that 1O2 may be associated with pathogenesis phenotypes in refractory asthma. We have
demonstrated a positive correlation between the levels of 1O2-mediated oxidation products
10- and 12-(Z,E)-HODEs, and the levels of MPO activity and IL-17-derived nerve growth
factor (NGF) in the bronchoalveolar lavage fluid (BALF) of an asthmatic mouse model with
mixed inflammation [97]. As increased NGF in the BALF of asthmatic patients induces
smooth muscle hyperplasia in the airway [283,284] and anti-NGF antibodies improve
airway hyperresponsiveness [285], NGF is also considered a therapeutic target for lung
disease [286]. Interestingly, the generation of 1O2 with an endoperoxide [(3-(1, 4-epidioxy-4-
methyl-1, 4-dihydro-1- naphthyl) propionic acid] increased NGF and IL-8 levels in human
bronchial epithelial cells, suggesting that 1O2 generation may be an upstream event of
increase in NGF.

Recent studies have described neutrophil-derived MPO as a potential biomarker for
neutrophilic asthma [277,282]. Therefore, we would expect that 10, 12-(Z,E)-HODEs, which
are elevated according to neutrophil recruitment, could also be a prominent biomarker with
more stability than MPO for neutrophilic asthma. Glucocorticoids, which are used as the
first choice for asthma therapy, fail to attenuate neutrophilic inflammation and may even
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promote neutrophil survival [268,287]. It seems reasonable to choose macrolide antibiotics
for the treatment of asthma rather than steroids when the levels of 10- and 12-(Z,E)-HODEs
are increased. However, the use of macrolides is not appropriate for the long-term treatment
of neutrophilic asthma due to the risk of bacterial resistance. Although future studies are
needed to determine how 1O2 is related to the pathological condition of asthma patients,
10- and 12-(Z,E)-HODEs may be useful in stratifying patients with refractory asthma and
in selecting treatment options.

6. 1O2 Scavengers

The living body contains superoxide dismutase and catalase, which can scavenge
ROS such as O2

•− and H2O2, but it does not have enzymes that can scavenge 1O2. Sub-
stances that can effectively scavenge 1O2 depend on exogenous compounds such as
dietary carotenoids.

6.1. Carotenoids

Carotenoids are plant pigments that are pro-vitamin A and potent scavengers of 1O2.
The 1O2 scavenging of carotenoids is mainly based on physical scavenging. The excitation
energy of 1O2 is transferred to carotenoids (singlet carotenoids; 1Car) to produce triplet
oxygen (3O2) and triplet carotenoids (3Car). 3Car, which receives excitation energy, returns
to ground state carotenoids by releasing heat as energy. Thus, carotenoids can repeatedly
scavenge 1O2 [288].

1Car + 1O2 → 3Car + 3O2

Carotenoids are the most potent 1O2 scavengers found in nature, and carotenoids
with 11 carbon atoms involved in the π-conjugation length, such as lycopene (Figure 12A),
β-carotene (Figure 12B), and astaxanthin (Figure 11C), are the most efficient 1O2 scav-
engers [288]. Among carotenoids, studies have mainly been conducted on the prod-
ucts associated with the 1O2 scavenging of β-carotene, and β-carotene 5,8-endoperoxide
(Figure 12B) is a specific product mediated by 1O2 oxidation [102,289,290]. In contrast,
β-carotene 5,6-epoxide is formed by a free radical-mediated reaction. β-Carotene-5,8-
endoperoxide has been detected in vitro [291,292] and in vivo [289]. Among carotenoids,
lycopene has the strongest 1O2 scavenging capacity [293]. The second-order rate constants
of physical quenching (kq) in ethanol/chloroform were 31,000 × 106 M−1s−1 for lycopene,
14,000 × 106 M−1s−1 for β-carotene, 8000 × 106 M−1s−1 for lutein, and 10,000 × 106 M−1s−1

for zeaxanthin, indicating that lycopene was the most efficient 1O2 quencher [294]. Ly-
copene and β-carotene also exhibited the fastest 1O2 scavenging rate constants under the
conditions of the model membrane system using liposomes [295]. Unlike other carotenoids,
lycopene does not possess a ring structure. Since 2-methyl-2-hepten-6-one (Figure 12A) and
apo-6′-lycopenal (Figure 12A) were detected under 500 W light irradiation in the presence
of methylene blue, a photosensitizer, lycopene is assumed to react with 1O2 via a dioxetane
intermediate [296,297].

Carotenoids in plants exist in close proximity to chlorophyll in chloroplasts and scav-
enge 1O2 generated by the photosensitizing effect of chlorophyll during light absorption.
Thus, carotenoids have a protective property against light stress in plants. In addition,
carotenoids, such as xanthophylls (lutein (Figure 12D) and zeaxanthin (Figure 12E), specifi-
cally accumulate in the macula of the retina, which is an organ exposed to light. In sunlight,
the energy of blue light (400 nm), in particular, is 100-fold greater than that of red light
(590 nm) and causes severe damage to cells. Since lutein and zeaxanthin have absorption
maxima for light at approximately 440 nm, these carotenoids can efficiently absorb blue
light. Therefore, the accumulation of lutein and zeaxanthin in the retinal macula can pre-
vent the oxidative degeneration of macular tissue and reduce the risk of AMD and other
diseases. Lutein and zeaxanthin are also present in the lens, where they prevent the devel-
opment of cataract [298,299]. The consumption of tomatoes rich in β-carotene and lycopene
can reduce the formation of erythema in human skin due to UV irradiation [300,301].
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6.2. Vitamin E (Tocopherol)

α-Tocopherol, a primary fat-soluble antioxidant in vivo, also has 1O2 scavenging capac-
ity that is approximately 30–100 times weaker than that of carotenoids [302]. However, the
1O2 scavenging capacity of carotenoids is also reported to be reduced in liposomes, which
are biomembrane models, compared to solution [303].Considering the level of tocopherols
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in vivo, the in vivo 1O2 scavenging activity of α-tocopherol is considered to be functional.
Among tocopherols, α->β->γ->δ-tocopherol have 1O2 capacities in this order [304,305].
Tocotrienols, which are homologues of tocopherols, also have 1O2 scavenging ability in the
order of α->β->γ->δ-tocotrienol [304].

The oxidation product of α-tocopherol produced by 1O2 is α-tocopherylquinone,
which can be measured in biological samples [306–308]. α-Tocopherylquinone is not an
1O2-specific marker because it is also produced by ROS other than 1O2.

6.3. Other Compounds

As previously mentioned, PUFA is susceptible to oxidation by 1O2 and has 1O2
scavenging capacity, although it is very weak compared to carotenoids [309].

Bakuchiol (Figure 13A), a terpeno-phenolic compound, is a functional analog of retinol
that has attracted attention in skincare for its ability to induce retinol gene expression and
stimulate collagen production [310]. Bakuchiol protects retinol from degradation by 1O2
produced by H2O2 and lithium molybdenum. It was shown to inhibit the 1O2-induced
peroxidation of squalene, prevent pore clogging, and reduce the onset of acne by 42% with
topical bakuchiol treatment in 54 volunteers [311]. In addition, the 12-week application of
a cream containing bakuchiol (0.5%) improved wrinkles and pigmentation [312].
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Zingerone (4-[4-hydroxy-3-methoxyphenyl]-2-butanone) from Zingiber officinale Roscoe
(ginger) scavenges 1O2 [313]. The structure of zingerone is similar to that of turmeric-
derived curcumin (1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6-heptane-3,5-dione). Zingerone
and curcumin can both prevent skin aging. Acetyl zingerone (3-(4-hydroxy-3-methoxybenzyl)
pentane-2,4-dione) (Figure 13B), a multifunctional skincare ingredient, was synthesized
using the molecular structures of zingerone and curcumin [314]. Curcumin has been shown
to have 1O2 scavenging activity in an in vitro experimental system by ESR spectroscopy
using TEMP as a spin-trap [315]. Acetyl zingerone, which has a higher 1O2 scavenging
activity than α-tocopherol [316], decreases the expression of genes associated with extracel-
lular matrix degradation (MMP-3 and cathepsin V) and inhibits the activity of MMP-1, -3,
and -12 [314]. Clinical reports have demonstrated that treatment with a cream containing
1% acetyl zingerone applied twice daily for 8 weeks improves wrinkles, hyperpigmentation,
and erythema [317].



Int. J. Mol. Sci. 2023, 24, 2739 27 of 39

7. Summary and Outlook

As previously described, diseases and dysfunctions mediated by or, at least, related to
1O2 can be categorized into two groups: those caused by the UV irradiation of photosensi-
tizers accumulated in the living body, and those resulting from the activation of MPO in
leukocytes. The former includes cutaneous photosensitivity and retinal diseases, which
have been clinically investigated. For the latter, we have previously reported findings in
diabetic patients, glaucoma patients, and in an asthma mouse model. MPO is expressed
in leukocytes and is implicated in many inflammatory diseases [318]. MPO is associated
with cardiovascular disease, atherosclerosis, glomerulonephritis, arthritis, and Alzheimer’s
disease. Practical biomarkers are required for the early diagnosis, assessment, and progres-
sion of diseases, and for the evaluation of treatment efficacy. However, as summarized in
Tables 2 and 3, there are few reports on the analysis of lipid peroxidation products formed
by 1O2 in clinical samples, except for SqOOHs. SqOOHs can be measured noninvasively as
they are found in sebum; therefore, an increasing number of reports are available (Table 3),
especially in the cosmetics and beauty industries. SqOOHs are lipid peroxidation prod-
ucts, but not specific products of 1O2. Since lipid peroxidation is a major oxidative injury
in vivo, lipid peroxidation products, especially hydroxides, may be useful biomarkers. It
should be noted, however, that lipid peroxidation products are generally not diagnostic
indicators of specific diseases. Their usefulness should be enhanced by combination with
other biomarkers. Further prospective studies and analysis of the correlation between lipid
peroxidation products, specifically from 1O2, and the severity of disease progression should
be conducted in the future. When disease risk can be assessed by a prominent biomarker,
advice on diet, including carotenoids, and exercise habits can be provided.
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