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Abstract: Coffee is one of the most widely consumed beverages worldwide, and epidemiology
studies associate higher coffee consumption with decreased rates of mortality and decreased rates of
neurological and metabolic diseases, including Parkinson’s disease and type 2 diabetes. In addition,
there is also evidence that higher coffee consumption is associated with lower rates of colon and
rectal cancer, as well as breast, endometrial, and other cancers, although for some of these cancers,
the results are conflicting. These studies reflect the chemopreventive effects of coffee; there is also
evidence that coffee consumption may be therapeutic for some forms of breast and colon cancer,
and this needs to be further investigated. The mechanisms associated with the chemopreventive or
chemotherapeutic effects of over 1000 individual compounds in roasted coffee are complex and may
vary with different diseases. Some of these mechanisms may be related to nuclear factor erythroid
2 (Nrf2)-regulated pathways that target oxidative stress or pathways that induce reactive oxygen
species to kill diseased cells (primarily therapeutic). There is evidence for the involvement of receptors
which include the aryl hydrocarbon receptor (AhR) and orphan nuclear receptor 4A1 (NR4A1), as
well as contributions from epigenetic pathways and the gut microbiome. Further elucidation of the
mechanisms will facilitate the potential future clinical applications of coffee extracts for treating
cancer and other inflammatory diseases.
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1. Introduction

Coffee is among the most widely consumed beverages in the world, and it is estimated
that over two billion cups of coffee are consumed daily [1,2]. Coffee intake is highly variable
with respect to different countries, ages, and sex, and there appears to be a continuing
increase in consumption which parallels, in part, the increasing number of specialty coffee
shops in many countries. Coffee intake is often associated with the stimulant caffeine,
which is a major component of coffee, and the average caffeine intake in the United
States is 135 milligrams per day, which is equivalent to about 1.5 cups per day. Many
individuals consume up to 6 cups of coffee per day and much higher amounts of caffeine.
Although roasted coffee beans and brewed coffee contain high levels of caffeine, there are
several hundred individual phytochemical-derived compounds in coffee, and these include
chlorogenic acid/lignans, alkaloids, polyphenolics, terpenoids, melanoidins, vitamins, and
metals [3].

Figure 1 illustrates some examples of the compounds identified in coffee, and these in-
clude the flavonoid quercetin, chlorogenic acid, caffeine, the alkaloid norharman
(β-carboline), and the terpenoid cafestrol. The health impacts of coffee consumption
have been extensively investigated and are associated with lower all-cause mortality, dia-
betes mellitus, dementia, Parkinson’s disease, cardiovascular disease, and many types of
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cancer [2–6]. The effects of coffee on mortality and other diseases have been extensively
investigated in many countries and in groups of individuals that are both “normal” or have
specific health problems. The results of recent and past studies clearly show the overall
health benefits of higher coffee consumption compared to lower consumption; however,
there are also many studies that do not correlate and, in some cases, report conflicting
results. The reasons for these differences in some cases may be the failure to examine the
effects of sex dependency; however, many other potential unknown confounders may be
involved and these need to be further investigated.
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2. Coffee and Health Benefits: Non-Cancer
2.1. Mortality

A number of recent studies (2020–present) have demonstrated that the higher con-
sumption of coffee is associated with decreased mortality in both men and women. For
example, in the UK Biobank study [2], the coffee intake of 395,539 individuals was collected
between 2006–2010, and their overall disease-specific mortality was followed through
2020 (a median follow-up of 11.8 years). High levels of coffee intake (≥4 cups/day) were
inversely associated with mortality from 30 of 31 diseases, with HRs ranging from 0.61–0.94,
and these inverse associations were more predominant in women vs. men [2]. Interestingly
the association between a high vs. low consumption of coffee in this population and mor-
tality from various diseases was dependent on multiple variables, which include the sex of
the individual, specific diseases, regular vs. decaffeinated coffee, and consumption levels.
Examples of male vs. female differences with respect to a high vs. low consumption of cof-
fee were associated with female/male HR values of 0.73/1.0 (digestive disorders), diabetes
mellitus (0.74/0.92), and gout (0.71/0.59). In this study, there were “2 distinct clusters of
medical conditions affecting mainly the cardiometabolic and gastrointestinal systems” [2].
In contrast, other studies did not observe inverse associations between coffee consumption
and decreased mortality from neurogenerative diseases. Other studies in Korea [4], the
United States [7–10], an Asia cohort [11], and an adult Mediterranean population [12] also
reported that the higher consumption of coffee is associated with decreased mortality. Thus,
the overall effect of coffee on mortality is comparable to previous and ongoing studies on
other groups, including Seventh Day Adventists and the consumption of a Mediterranean
diet, where high intakes of vegetables are also associated with decreased mortality [13,14].

2.2. Cardiovascular Diseases (CVDs)

In the Biobank study noted above [2], there was a strong association between decreased
mortality from cardiometabolic diseases and the higher consumption of coffee [6], and
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this was also observed in a recent study on the Biobank population [15]. In contrast, a
meta-analysis of 32 prospective cohorts reported that various studies showed that higher
coffee consumption was associated with increased, decreased, or no effect on CVD [16].
In the UK Biobank studies, the higher consumption of coffee was associated with higher
total cholesterol and LDL-cholesterol levels, and this was highest in the expresso coffee
drinkers [17]. A meta-analysis of studies showed that higher coffee consumption was
associated with “an increased risk of CHD in men and a potentially decreased risk in
women” [16], and an increased risk was also observed in another analysis of the UK
Biobank population [18]. Another recent report indicated that, among individuals with
grade 2–3 hypertension, the HR mortality values were 0.98 (<1 cup/day), 0.74 (1 cup/day),
and 2.05 (≥2 cups/day) compared to noncoffee drinkers [19]. In contrast, it was also
reported that the medium–high consumption of coffee (3–5 cups/day) had a beneficial or
neutral impact on hypertension and blood pressure [20]. Thus, the relationship between
the higher consumption of coffee and mortality from cardiovascular diseases is somewhat
variable between studies, and the factors that modulate the impact of the effects of coffee
on this disease need to be determined.

2.3. Neurological Diseases

The linkage between higher coffee consumption and decreased mortality for neuro-
logic diseases such as dementia, Parkinson’s disease, and Alzheimer’s disease have been
extensively investigated, and the results has been variable. It was recently confirmed
that high coffee consumption is associated with decreased risks of neurological disorders,
including dementia, stroke, and Parkinson’s disease [16,17,19,21–23]. These results were
also observed in the UK Biobank prospective study [24]. As noted above, another report
using the UK Biobank did not observe any correlation between coffee consumption and
decreased mortality from neurodegenerative diseases [2]. A negative finding was the
association between the early age of onset of Huntington’s disease with increased coffee
consumption, and this outlier might be due to the strong genetic origins of this debilitat-
ing autosomal dominant disease [25]. However, there is evidence for the improvement
of specific neurologic conditions with coffee consumption. For example, the moderate
consumption of mocha coffee in an elderly population was associated with higher cogni-
tive and mood status [26]; coffee consumption enhanced the age at onset of Parkinson’s
disease in Ashkenazi Jewish patients [27]; the results of a meta-analysis showed that coffee
consumption reduced the risk of overall stroke, hemorrhagic, and ischemic stroke [28].
Thus coffee–neurological disease interactions are variable in terms of mortality; however,
there is evidence of protection from nonlethal neurological diseases that also needs to be
considered and more fully investigated.

2.4. Metabolic Diseases including Diabetes

The higher consumption of coffee is also associated with a decreased risk of metabolic
diseases and type 2 diabetes [29–34]. An analysis of plasma biomarkers in nondrinkers
vs. individuals consuming ≥4 cups/day showed that in the latter group, the changes
in biomarkers were consistent with favorable outcomes [31]. For example, higher con-
centrations of sex hormone binding globulin (SHBG) (5.0%), total testosterone (7.3 and
5.3% in women and men, respectively), and total (9.3%) and high molecular weight
(17.2%) adiponectin were increased in the coffee drinkers. In contrast, the group con-
suming high amounts of coffee exhibited lower levels of inflammatory markers, such
as interleukin-6 (−8.1%), soluble tumor necrosis factor receptor (−5.8%), and C-reactive
protein (−16.6%) [31]. These results were obtained from two large prospective studies:
the Nurses Health Study and the Health Professionals Follow-up Study in the United
States [31]. There is also evidence that coffee consumption interacts with other factors that
modify the association between coffee and metabolic diseases. For example, in patients
with rheumatoid arthritis, coffee intake was associated with lower metabolic syndrome
scores [33]; increased caffeinated and noncaffeinated coffee intake protected against nonal-
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coholic fatty liver disease (NAFLD) severity in individuals with type 2 diabetes [35], and
similar results were observed in a normal population [36]. The protective effects of coffee
on metabolic disorders were also observed in individuals with a history of gestational
diabetes [37], diabetic retinopathy [38], and hepatitis B viral infection [39]. These results are
complemented by several recent studies showing that high coffee consumption is also asso-
ciated with protection from inflammatory bowel disease and gut recovery in gynecological
patients from surgery [40–42].

2.5. Sex-Dependent Effects of Coffee Consumption

The sex-dependent development of some diseases has been described and is thought
to be due to multiple factors; there is some evidence for differences with respect to the
effects of coffee on males and females [43]. The higher consumption of coffee decreased the
prevalence of metabolic syndrome in an adult Taiwanese population, and the protective
effects were more pronounced in women [44]. In a UK Biobank study [2], the overall effects
of high coffee consumption among subgroups of diseases were higher for women than men
and this was particularly evident for functional digestive disorders and diabetes mellitus,
whereas men were more protected from gout [2]. A meta-analysis of the risk of coronary
heart disease also showed that coffee consumption was associated with lower risks for
coronary heart disease in women than in men [16]. A recent review summarized the sex-
dependent differences in several neurological and psychiatric disorders and used estimated
caffeine consumption data to compare the association between these disorders [43]. Caffeine
is more effective in women than in men for improving depression and Parkinson’s disease,
and caffeine enhances anxiety in men more than in women. In this brief introduction to
the association between coffee and a decreased risk of some diseases, we have primarily
used references published from 2020–the present, and a similar selection of more recent
articles will be used to review the association of high coffee consumption to decreased risks
of cancer.

3. Coffee and Cancer

Coffee consumption and a decreased risk of cancer have been extensively investigated,
and multiple studies confirm the inverse association between high coffee consumption and
a decreased cancer risk [6,7,11,12,45,46]. Reports on the effects of coffee consumption on
the overall and specific cancer risks are extensive and sometimes contradictory, and this
review will primarily focus on the results of recent studies (i.e., 2020–the present) unless
data for a particular type of cancer have not been published recently.

3.1. Gastrointestinal Tract
3.1.1. Liver Cancer

A recent comprehensive review summarizes the lack of association between coffee con-
sumption and cancers of the different digestive organs, pointing to the powerful protective
effect of coffee against the risk of hepatocellular carcinoma [47]. Two studies using the UK
Biobank participants confirmed that the higher consumption of all coffee types (including
decaffeinated) decreased the risk of chronic liver disease [48] and liver cancer [49] but no
other digestive cancers [50]. Similar results were observed for liver cancer in a Japanese
population [49] and meta-analysis of other studies [51].

3.1.2. Colon and Rectal Cancer

Two recent studies have confirmed previous reports in which higher coffee consump-
tion did not decrease the risk of colon cancer [52–54], whereas another report indicated that
≥2 cups/day of decaffeinated coffee lowered the risk of colon cancer [55]. Two additional
papers reported that higher coffee consumption was associated with decreased risk of colon
cancer [56,57]. Moreover, in both studies, the interaction between genetic polymorphisms
was observed, including the variant aryl hydrocarbon (AhR) rs2066853 gene [52]. It was



Int. J. Mol. Sci. 2023, 24, 2706 5 of 19

also reported that higher coffee consumption was associated with some decreased risks of
rectal cancer.

3.1.3. Other Gastrointestinal Cancers

There was no association between high coffee consumption and the risk for pancre-
atic cancer [58,59] or gastric cancer [54,60,61]. Similar results were observed for overall
esophageal cancer [62,63]. However, in a European prospective cohort, there was a de-
creased risk of esophageal squamous cell carcinoma [63], and a decreased risk was observed
for East-Asian but not European participants, whereas an analysis of the UK Biobank data
suggested that coffee intake had increased the risk of esophageal cancer [45].

3.2. Genitourinary Cancers

The effects of coffee consumption on genitourinary cancers have not provided defini-
tive associations in epidemiological studies, and research in this area is ongoing.

3.2.1. Prostate and Bladder Cancer

Some studies show that there is no association between high coffee consumption and
decreased risk of prostate cancer [64–66], while other reports show an inverse relation-
ship [67–71]. A recent study of a large Japanese cohort showed no association between
higher coffee consumption and prostate cancer risk [72]; clearly, these studies are incon-
clusive, and other factors may be involved. For bladder cancer, individual studies and
meta-analyses do not show an association between coffee consumption and bladder can-
cer [73,74].

3.2.2. Renal Cancer

A recent Mendelian randomization study did not observe a decreased risk of renal
cancer with increased coffee consumption [75]. These results were in contrast to a meta-
analysis of several cohorts [76] and another large study [77], where a 20% reduced risk
was observed in patients with coffee intakes of ≥2 cups/day. These effects may be due, in
part, to coffee constituents, such as kahweol and cafestrol which inhibit the growth and
migration of renal cancer cells [78].

3.2.3. Endocrine Cancers

The endocrine status of an organ modulates the effects of various exogenous sub-
stances, including diet and beverages, such as coffee, and this has been observed for breast
and endometrial cancers.

3.2.4. Breast Cancer

A recent review concluded that “there is no association between coffee intake and
breast cancer risk or a slight protective effect even at the higher dosages” [79]. However,
breast cancer is a highly complex disease and is observed in both pre and postmenopausal
women, and these factors may modify the effects of coffee. An analysis of the data from
the Women’s Health Initiative [80,81] did not show an association between high coffee
intake and decreased risk of breast cancer, and similar results were observed with the
Cancer Prevention Study-II Nutrition cohort [82]. In contrast, there is also evidence that
higher coffee consumption decreases breast cancer risk in postmenopausal and European
women [83,84], women expressing the minor allele of the bcl-2 gene haplotype [85], and
other bcl-2 polymorphisms.

3.2.5. Endometrial Cancers

A meta-analysis of several studies showed no association between coffee consumption
and the risk for endometrial cancer, whereas another large study demonstrated that coffee
consumption decreased the risk for endometrial cancer, particularly among women with a
body mass of ≥25 kg/m2 [86,87].
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3.2.6. Other Cancers

Results from lung cancer studies showed that coffee consumption increased [88,89] or
decreased [90] the risk; coffee consumption had no effect [91] or decreased [92,93] the risk
for glioma and decreased the risk of head and neck cancers [94]. Maternal consumption of
coffee was either not associated with or increased the risk of childhood cancers [95,96]. This
is an area that needs to be further investigated since the effects of in utero exposures on
the offspring are being studied for many other chemicals, including endocrine-disrupting
compounds and phytochemicals.

4. Chemopreventive and Chemotherapeutic Effects of Coffee

The dietary consumption of foods, including coffee, and specific diets, such as the
health-promoting Mediterranean diet, contain many of the same classes of phytochemi-
cals and are associated with some of the same health benefits linked to non-cancer and
cancer endpoints. These benefits are usually derived from the long-term consumption of
specific foods and beverages and are chemopreventive; namely, they decrease the risks of
developing a disease. Too few studies are designed to examine their chemotherapeutic
activities, which are the effects observed after disease diagnosis. Soldato and coworkers
investigated the effects of coffee consumption on breast cancer patient outcomes from years
1–4 after an initial diagnosis. Based on their patterns of coffee consumption, there was no
association with the clinical outcomes [97]. In contrast, the postdiagnosis effects of high
coffee consumption by women in the Nurses’ Health Study were associated with lower
breast cancer-specific mortality [98]. Another report showed that in a cohort of patients
being treated for advanced metastatic colon cancer, coffee consumption was associated with
a decreased risk of subsequent cancer progression and death [99]. For example, patients
“who consumed at least 4 cups of coffee per day have a multivariate HR for OS of 0.64
(95% CI, 0.46–0.87) and for PFS of 0.78 (95% CI, 0.59–1.05)”. Significant associations were
noted for both caffeinated and decaffeinated coffee [99]. These results suggest potential
therapeutic applications for coffee, which may be of value for treating multiple cancers.
Thus, either coffee or coffee extracts should be more extensively evaluated as cancer ther-
apeutics that can be used in combination with ongoing therapies to enhance the overall
survival from this deadly disease. This should also be investigated in other cancers.

5. Mechanisms of Coffee-Mediated Anticancer Activities

This review of cancer studies has primarily focused on coffee consumption and its
anticancer activities, which can be both chemopreventive (before cancer diagnosis) and
chemotherapeutic (after cancer diagnosis). The subset of coffee compounds that are chemo-
preventive and chemotherapeutic will not necessarily be the same compounds, and for
those compounds that are both chemopreventive and therapeutic, their mechanisms of
action for these two responses may also differ. Chemopreventive mechanisms are difficult
to establish in human and rodent models. However, it is assumed that the compounds that
reduce the formation of oxidative stress and other stressors and decrease radical formation
and inflammation play a role in disease prevention. These chemopreventive pathways are
also associated with the Mediterranean diet [100,101], which is enriched in phytochemicals
similar to those observed in coffee. Figure 1 illustrates examples of some of the major classes
of phytochemicals in coffee and include caffeine, quercetin, chlorogenic acid, cafestrol and
norharman (β-carboline).

Activation of Nrf2 by Coffee

A recent study examined the activities of the phytochemicals in coffee and concluded
that their overall effects were not sufficient to account for the required radical scaveng-
ing anti-inflammatory activity observed in human and laboratory animal studies. It was
proposed that the activation of nuclear factor erythroid 2 (Nrf2) and its protective path-
ways (Figure 2) play a major role in mediating the beneficial health effects of coffee [102].
For example, coffee/coffee phytochemicals induce or activate Nrf2 in cells under some
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oxidative stress [102–105]. Among the important Nrf2-regulated genes associated with
antioxidant activity are glutathione peroxidase haem oxygenase-1, glutathione reductases,
superoxide dismutase, quinone oxidoreductase, and several thioreductases. Nrf2 exists as
a cytosolic dimer with Keap2, and it also interacts with Cullin 3-based ubiquitin ligase and
this complex maintains basal cytosolic levels of the Nrf2-Keap heterodimer. A combination
of factors, including those that inhibit Keap-Nrf2 interactions or enhance Keap degradation,
results in the nuclear uptake of Nrf2, which binds to small musculoaponeurotic fibrosar-
coma (sMaF) protein to form the Nrf2-sMaF heterodimer, which then interacts with the
cis-acting antioxidant response element (ARE) in target gene promoters to activate gene
expression. This results in the activation of antioxidant genes (e.g., glutathione reductase,
glutathione peroxidase), multiple redox family genes, (e.g., catalase, haem oxygenase
(1)), anti-inflammatory genes (e.g., interleukins, interferons, tumor necrosis factor), drug
metabolism enzymes (e.g., epoxide hydrolase, UDP–glucuronyl transferases, CYP1B1)
and many other genes/pathways. All of these induced, Nrf2-dependent pathways/genes
play diverse roles as cellular protective proteins. In addition, several reports demonstrate
that the AhR and its ligands co-operatively enhance Nrf2 pathways [105–108]. One of
these pathways involves the aryl hydrocarbon receptor (AhR)-dependent induction of
CYP1A1 and CYP1A1-dependent substrate metabolism, which, in turn, enhances Nrf2
expression. The AhR also directly binds to the Nrf2 promoter and induces the levels of this
protein [106].
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Figure 2. Development of intracellular oxidative stress is attenuated by coffee-induced stress. Coffee-
induced stress results in the dissociation of NRF2 from KEAP and the subsequent translocation of
NRF2 into the nucleus where the NRF2-sMAF complex binds cis-acting AREs to induce NRF2 regu-
lated genes/pathways, including the antioxidant enzymes glutathione peroxidase (GPx), superoxide
dismutase (SOD), quinone oxidoreductase 1 (NQO1), glutathione reductase (GR), harm oxygenase 1
(HO-1), and several thioreductases family members [104–107].

The protective properties of Nrf2 are dependent on the induction of Nrf2 and Nrf2-
dependent genes, as illustrated in Figure 2, and there is evidence that many of the con-
stituents in coffee, including chlorogenic acids, phenolics, caffeine, cafestrol, and kahweol,
are inducers of Nrf2 [109–119]. Moreover, a recent study showed that aqueous coffee
extracts induced Nrf2 and Nrf2-dependent genes in various cell lines, and the co-operative
role of the coffee-induced activation of AhR/Nrf2 had been reported in several in vitro
and in vivo studies involving coffee extracts [120–125]. The activation of Nrf2 and Nrf2
protective genes by coffee and its individual components is consistent with their activity
to protect nontransformed cells from oxidative stress. However, there is also evidence
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that the cytotoxicity of coffee components can occur by multiple pathways, including the
disruption of the mitochondrial membrane, and this results in a loss of mitochondrial
membrane potential and ROS-dependent cytotoxicity [125–131] (Figure 3). This pathway
has been observed for many ROS-inducing phytochemicals and includes the inactivation of
cMyc and cMyc-regulated microRNAs (miRs), the induction of ZBTB genes, which repress
Sp1-, Sp2-, and Sp3-regulated genes/pathways [131]. Thus, coffee components activate cell
context-dependent antioxidant and oxidative stress pathways that are primarily but not
exclusively linked to chemopreventive and chemotherapeutic pathways in non-cancer and
cancer cells, respectively.
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Figure 3. Coffee extracts induce ROS. Treatment of cancer cells with ROS inducers, such as chlorogenic
acids and quercetin, inhibits redox enzymes and decreases mitochondrial membrane potential
(MMP) to induce ROS, which downregulates cMyc + cMyc-regulated microRNAs (miRs: miR 17-
92/27a). This results in the induction of ZBTB genes (ZBTB4, ZBTB10) + inhibition of pro-oncogenic
Sp1/Sp3/Sp4-regulated genes/pathways [127–133].

Although the activation of Nrf2 plays an important role in alleviating oxidative stress,
the increased levels of Nrf2 in cancer cells are linked to malignant progression and drug
resistance [132]. Coffee extract-induced Nrf2 and the similar effects of other phytochemical-
enriched diets may be beneficial in normal cells that require low levels of ROS; however, in
cancer cells, this can result in enhanced carcinogenesis [132,133]. Nrf2 levels in cancer cells
are enhanced due to overexpressed mutations that activate Nrf2 or mutations in Keap, and
this enhances the pro-oncogenic pathways and the development of resistance to anticancer
agents [133,134]. For example, in hepatic progenitor cells, Nrf2 induces malignant transfor-
mation due to the activation of the wnt-β-catenin pathway [135]; suppression of Nrf2 by
histone lysine methyltransferase SETDB2 inhibits the progression of lung adenocarcinoma
cells, whereas the decreased SETDB2 in these cells enhances Nrf2-mediated tumorigene-
sis [136]. It has also been reported that the chemically or genetic-mediated downregulation
of Nrf2 increases ROS-medicated cell death and reverses some drug resistance [137–139].
Interestingly, coffee extracts contain trigonelline, which inhibits Nrf2 activity and thereby
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modulates the potentially beneficial and harmful effects of NRF2. The inhibitor of Nrf2
trigonelline and other coffee components inhibit cancer cell growth, migration, and drug
resistance [140–145]. In contrast, Nrf2 inhibitors, such as trigonelline, can interfere with
Nrf2-mediated antioxidant activity and thereby reverse some of the protective effects of
Nrf2. Thus, coffee and some of its key chemical components (chlorogenic acid and pheno-
lics trigonelline) and pathways (Nrf2 and ROS) exhibit cell context-dependent opposing
effects. This suggests that other cell-specific factors must also contribute to the regulation
of other pathways/genes that are associated with the health benefits of this beverage.
Moreover, the issue of coffee and other phytochemicals and their beneficial effects need to
be further evaluated with respect to cancer, where Nrf2 may not be beneficial.

6. Receptor-Mediated Responses

The thousands of membrane-associated and intracellular receptors are the key genes
that are the sensors of dietary and intracellular cues and are required for maintaining cellu-
lar homeostasis and are involved in pathophysiology. PubMed lists over 40,000 manuscripts
under the heading “Receptors and aging”, and these include papers on most of the age-
related responses, such as decreased mortality and improved neurological responses, which
are associated with the higher consumption of coffee. However, the direct linkages between
the individual compounds in coffee extracts to the specific receptors that play a significant
role in coffee extract-induced health benefits have been understudied. This review identi-
fies some receptors that may serve as targets for coffee components and their associated
beneficial health effects.

6.1. Aryl Hydrocarbon Receptor (AhR)

As indicated above, Nrf2 and the AhR are co-operatively activated by coffee extracts,
and studies in our laboratories have primarily focused on the direct effects of coffee extracts
as AhR ligands in the intestine (Figure 4A) [146]. AhR plays an important role in multiple
organs/tissues, and there is extensive evidence that AhR is involved in aging and is related to
diseases, suggesting that AhR and its ligands can affect these conditions [147–151]. Aqueous
coffee extracts induced the Ah- responsive CYP1A1, CYP1B1, and UGT1A1 genes in Caco-2
colon cancer cells and YAMC mouse colonocytes, and these responses were abrogated in
their corresponding AhR knockout (AhR-KO) cell lines. In addition, Ah responsiveness was
primarily observed in a chloroform extract of aqueous coffee extracts, and chromatographic
and cell culture analysis indicated that caffeine was not an AhR-active compound. The
chloroform extracts from coffee were separated by this layer chromatography into three
bands: a less polar band, a caffeine band, and a polar band. The extracts of the polar and less
polar bands were AhR-active [146]. A comparison between aqueous extracts of unroasted
and roasted ground coffee demonstrated that the high levels of AhR-active extracts in
brewed coffee were primarily due to the roasting process. In vivo studies showed that
coffee extracts inhibited DSS-induced colonic inflammation and inhibited the growth of
organoids enriched in colonic stem cells. This latter response is consistent with anticancer
activity since colonic stem cells are precursors for the development of colon tumors. We
observed some of the same responses for the alkaloid norharman(β-carboline), which is
one of the AhR agonists in coffee extracts that contributes to the AhR-dependent responses
observed in the study. These results for coffee were observed in wild type but not AhR-KO
cells and animal models and are consistent with previous studies showing a protective role
for AhR and its ligands in colonic inflammation and cancer [152–157]. The identities of most
AhR ligands in coffee extracts have not been determined; however, it should be pointed
out that AhR and its ligands can be both beneficial and harmful, and these responses are
organ/tissue-context-dependent [158]. The beneficial effects of AhR ligands in colon cancer
are well supported; however, AhR is also a pro-oncogenic factor in other tumor types,
including head and neck cancer [159]. Thus, at least some of the health-promoting effects
of coffee are mediated through its binding and activation in AhR signaling.
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6.2. Nuclear Receptor 4A1 (NR4A1, Nur77)

NR4A1, NR4A2 (Nurr1), and NR4A3 (Nor1) are orphan nuclear receptors and the
immediate, early genes that respond to stress and play a role in maintaining cellular home-
ostasis and pathophysiology [160,161]. These receptors are often increased in the diseased
cell types that are associated with stress, and this includes many solid tumors and derived
cancer cell lines [162]. It was hypothesized that NR4A orphan nuclear receptors were the
potential targets for anti-aging interventions [163] due to the functions of these receptors in
the immune system and stress-related diseases, and this has now been confirmed by several
studies [164–167]. For example, age-related cognitive impairment in mice results in de-
creased NR4A expression, and treatment with a bis-indole-derived NR4A2 ligand enhanced
long-term spatial memory and rescued memory deficits in mouse models [166]. Age-related
renal fibrosis was also suppressed by NR4A1 [165], and there are other reports showing
that NR4A is involved in age-related diseases. Recent studies reported that polyphenolics,
including flavonoids such as quercetin and kaempferol that occur in coffee, bind to NR4A1
in cancer cells, act as receptor antagonists, and inhibit pro-oncogenic NR4A1-regulated
genes and pathways (Figure 4B) [168]. When using Rh30 rhabdomyosarcoma cells as a
model, it was reported that quercetin and kaempferol decreased NR4A1-dependent transac-
tivation, inhibited Rh30 cell growth, survival, and invasion, decreased tumor growth, and
also decreased mTOR signaling and β1-integrin expression. All of these effects were also
observed after NR4A1 knockdown or after treatment with other NR4A1 antagonists [168].
Ongoing studies have identified multiple polyphenols that are present in coffee extracts and
in Mediterranean diets. Thus, it is likely that NR4A1 and its phytochemical ligands may
play important roles in the health-promoting effects of coffee and phytochemical-enriched
diets, and this needs to be further investigated.
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7. Other Coffee-Induced Pathways
7.1. Changes in DNA Methylation

Based on the health benefits of coffee consumption, an epigenome-wide association
meta-analysis of DNA methylation with coffee drinkers was reported [169]. The data were
generated from epigenome-wide association studies of coffee (and tea) consumption among
15,789 European and African American participants from 15 cohorts. An analysis of the
data identified several CpGs that were related to coffee consumption, and these included
the AHRR, F2RL3, FLJ43663, HDAC4, GFL1, and PHGDH genes. The relationship between
these genes and the effects of coffee is uncertain, although it was suggested that PHGDH
might be associated with protection from liver damage. In addition, AHRR represses AhR
activation and could also affect AhR activity. The nuclear receptor NR4A1 regulates the
methyltransferase gene G9A [168], and, possibly, the other methyltransferases and the
epigenetic effects of coffee could be due, in part, to NR4A1 ligands, such as flavonoids and
other polyphenolics in coffee extracts. Thus, the linkage between coffee extract-induced
epigenetic changes as causal factors needs to be further investigated, along with parallel
comparisons with animal models.

7.2. Coffee-Induced Microbiome Changes and Health

The gut microbial populations and their metabolites strongly influence intestinal
health and also affect distal organs, and there is extensive evidence that the influence of
diet on health may be due, in part, to changes in the gut microbiome [170–173]. The effects
of coffee on the gastrointestinal system have recently been reviewed, and it is clear that
coffee modulates the composition of intestinal microbiota and microbial metabolites [55].
Moreover, in mouse models, caffeine-induced sleep restriction affects the composition of the
gut microbiome and fecal metabolites [174]. For example, the nondigestible polysaccharides
in coffee are rapidly metabolized to short-chain fatty acids in the gut, and this results in
increased levels of Bacteroides/Prevotella species [175,176]. Another study also reported
higher levels of Bacteroides-Prevotella-Porphyromonas in high consumers of coffee [177],
and this was also accompanied by lower levels of lipoperoxidation and the increased
microbial production of short-chain fatty acids that are chemoprotective in the gut [178].
It was also observed in a human dietary study that a high fiber/coffee (no red meat) diet
improved insulin sensitivity in type 2 diabetes and decreased the expression of the pro-
inflammatory marker interleukin-18 [179]. It was reported that Prevotella induced IL-18
and other inflammatory cytokines in the colon of SPF mice, whereas inflammation (DSS),
induced colonic inflammation, and cytokine production were inhibited by Prevotella, and
this was consistent with the overall beneficial effects of Prevotella [180], which is enhanced
in coffee drinkers. The results of several other studies indicate that coffee induces bacterial
species and their metabolites that are known to have beneficial effects [181–183]. However,
due to the variability in the diet-induced changes of the intestinal microbes and their
metabolites [172,184], the role of these coffee-induced effects on changes in microbial
populations and microbial metabolites is not yet fully understood.

8. Summary

Coffee is not only the most consumed beverage worldwide, but it joins the Mediter-
ranean diet as being among those dietary components that extend life, protect against
neurological and liver diseases, and protect against the diseases of other organs. There
is also an association between higher coffee consumption and overall anti-inflammatory
effects and protection against some cancers, whereby coffee acts as both a chemopreventive
and chemotherapeutic agent. The mechanisms of action of coffee are dependent on the
effects of its constituents, including chlorogenic acids, polyphenolics, terpenoids, alkaloids,
and other phytochemicals. Caffeine may contribute to some coffee-induced responses, but
there are studies showing similar health benefits in individuals consuming caffeinated or
decaffeinated coffee. There is evidence that the antioxidant activity of coffee, which acti-
vates Nrf2, may be an important mechanism of action. However, since Nrf2 exhibits both
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health-protective and drug-resistant activities, other cell context-dependent factors may
also be important. There is also evidence that the protective effects of coffee in the gut and
decreased colon cancer risk may be due to its activity as an AhR ligand. Moreover, some
of the components of coffee bind the orphan nuclear receptor NR4A1 to the interactions
with this receptor, and as of yet, unidentified receptors may also be important. Overall,
these mechanisms, in concert with possible epigenetic pathways and the modulation of
gut microbiota/microbial metabolites, contribute to the health benefits of higher coffee
consumption, and this suggests that clinical applications of coffee extracts, particularly for
treating some cancers, should be considered.
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