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Abstract: Autism spectrum disorder (ASD) is a heterogeneous collection of neurodevelopmental
disorders, difficult to diagnose and currently lacking treatment options. The possibility of finding
reliable biomarkers useful for early identification would offer the opportunity to intervene with
treatment strategies to improve the life quality of ASD patients. To date, there are many recognized
risk factors for the development of ASD, both genetic and non-genetic. Although genetic and
epigenetic factors may play a critical role, the extent of their contribution to ASD risk is still under
study. On the other hand, non-genetic risk factors include pollution, nutrition, infection, psychological
states, and lifestyle, all together known as the exposome, which impacts the mother’s and fetus’s life,
especially during pregnancy. Pathogenic and non-pathogenic maternal immune activation (MIA)
and autoimmune diseases can cause various alterations in the fetal environment, also contributing to
the etiology of ASD in offspring. Activation of monocytes, macrophages, mast cells and microglia
and high production of pro-inflammatory cytokines are indeed the cause of neuroinflammation, and
the latter is involved in ASD’s onset and development. In this review, we focused on non-genetic
risk factors, especially on the connection between inflammation, macrophage polarization and ASD
syndrome, MIA, and the involvement of microglia.

Keywords: macrophage; mast cells; polarization; cytokines; exposome; MIA; microglia; innate
immune system; ASD

1. Introduction

The first description of the pathology [1] has been overcome by the current Diag-
nostic and Statistical Manual of Mental Disorders (DSM-5) (APA, 2013), which describes
the criteria for the so-called autism spectrum disorder (ASD). These include a heteroge-
neous collection of neurodevelopmental disorders characterized by early onset behavioral
and social communication deficits associated with repetitive stereotypical behaviors. The
genetic origins represent the main field of research considering the high estimates of
heritability in ASD [2,3], as between 600 and 1200 genes associated with ASD have al-
ready been identified [4]. Additionally, many studies have highlighted the involvement
of non-genetic factors in the physiopathology of ASD [5,6], such as air pollutants and
pesticides [7–9], immune dysfunction [10] and other prenatal risk factors [3,11], as well
as the gut microbiote [12] and microglia activation [13]. Many of these factors are among
the categories forming the exposome, which consists of the multitude of environmental
hazards to which people are exposed throughout their life, from conception to death. The
exposome can lead to a wide range of human health dysfunctions, including neurodevelop-
mental problems such as in ASD. On the other hand, infections contracted in humans and
rodents during pregnancy are known to result in maternal immune activation (MIA), which
in turn can affect fetal neurodevelopment, resulting in an increased risk of developing
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central nervous system (CNS) disorders [3,11,14]. MIA induces activation of many cellular
components of the innate and adaptive immune systems [15], and a maternal storm of
pro-inflammatory cytokines and chemokines, which sustain inflammation [16,17]. Among
the cells involved in MIA, macrophages/microglia exhibit plastic characteristics, undergo-
ing the so-called polarization, i.e., changes in distinct functional phenotypes (M1/M2) in
response to environmental stimuli. Macrophages/microglia’s polarization plays several
diverse roles in tissue repair and homeostasis maintenance, as well as in numerous neu-
rodegenerative diseases, in autoimmunity, atherosclerosis, and cancer; its dysregulation
can cause chronic inflammation and pathological conditions [18,19].

To our knowledge, to date, there is only one study that directly correlates the polariza-
tion of maternal macrophages with ASD in humans [20], and very few investigating the
fetal/childhood myeloid lineage activation/polarization in ASD (see “MIA fetal/childhood
involvement” and “Microglia” paragraphs). Other data can be deduced from investigat-
ing maternal or fetal cytokines’ production (see “MIA maternal involvement” and “MIA
fetal/childhood involvement” paragraphs).

The main topics addressed by this review are the role of the exposome, MIA and
microglia in the onset of ASD. In particular, its purpose is to analyze the most recent studies
concerning the implication of the myeloid lineage and their pro-inflammatory cytokines
on the risk of developing ASD in humans, focusing on the potential macrophage switch
between M1 and M2 status, where reported.

2. Exposome
2.1. Background

During their lifetime, people experience exposure to a multitude of environmental
hazards found in water and air (i.e., pollution from pesticides, heavy metals, ultraviolet
radiation, temperature) as well as in food and consumer products. The whole environmen-
tal exposure that people are subjected to from conception to death (all non-genetic factors,
also including lifestyle factors) is called the “exposome”.

Wild [21] described three general categories for the exposome: (1) “processes internal
to the body”, indicating the endogenous status of the organism (metabolism, gut microbiota,
inflammation, lipid peroxidation, oxidative stress and aging, pregnancy complications);
(2) “specific external exposures” (chemical contaminants and environmental pollutants,
radiation, infectious agents, drugs, smoke); and (3) “general external exposures” (psy-
chological, social, and economic influences on the individual, as lifestyle factors, medical
interventions, physical activity, diet, climate, noise and light) (Figure 1). The three cate-
gories overlap and/or intertwine, and a complete exposome results from the combination
of the internal environment of the body, the contexts (social, cultural, ecological) of peo-
ple’s lives and the specific external agents of exposure. The highly dynamic nature of the
exposome is among its challenging features, as it varies spatiotemporally and is diverse for
each individual.

2.2. General External Exposome

The general external exposure considers several factors present in the environment
in which we live, including climate, urban milieu, and lifestyle (physical activity, diet)
as well as the socio-economic circumstances that physically and psychologically affect
individuals. Despite numerous studies, it is still challenging to apply a distinction between
exposure and response for social and psychological factors, and to find a direct cause–effect
between them. Among the general external exposome factors, urbanization has undoubt-
edly brought several socio-economic benefits, but the urban milieu has also provided high
levels of environmental hazards often associated with adverse health outcomes, especially
in early life [22].
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Figure 1. Schematic representation of the effects of different exposome factors on MIA, neuroinflam-
mation and immune dysregulation occurring in the period of neurodevelopment. 
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2.3. Specific External Exposome

Over the years, considerable interest has focused on the effects of human exposure to
environmental pollutants, chemical contaminants, and radiation, all of which belong to the
“specific external exposures” category. A critical and very sensitive phase of the human
life cycle concerns pregnancy as, for example, it is increasingly recognized that maternal
exposure to air pollution and environmental chemicals during pregnancy can affect both
the health of the mother and the offspring, with possible outcomes even in the long-term,
although the underlying mechanisms still remain mostly unknown [23].

Two different lines of research have shown one the link between air pollution exposure
and a broad range of health dysfunctions [24,25], including also neurodevelopmental
damages like ASD [26], the other the induction of an inflammatory response because of air
pollution exposure [27] (Table 1). In particular, the possible role of exposure to air pollutants
in the etiology of ASD had been suggested by numerous epidemiologic studies [28]. Within
the framework of the Early Markers for Autism (EMA) study, Volk et al. [29] analyzed
any potential relationship among the circulating levels of maternal cytokines/chemokines
during pregnancy, the air pollution exposure in the month prior to the maternal serum
collection, and their interplay in the risk of ASD in the future child. Although well-defined
and clear relationships have not yet been established, this study is interesting as it began to
address this critical issue by providing the necessary tools [29] (Table 1).



Int. J. Mol. Sci. 2023, 24, 2703 4 of 18

Table 1. Relationship between exposome and maternal/child pathological outcome.

Type of Exposure Outcome References

Air pollution Neurodevelopment damage [26,28]

Air pollution Pro-inflammatory cytokines [27,29]

Traffic-related air pollution Pro-inflammatory metabolites [30]

Chemicals Pro-inflammatory metabolites [23,31]

Hg, Pb Pro-inflammatory cytokines [32,33]

A recent study employed high-resolution metabolomics on neonatal blood spots to
examine the metabolic effects of maternal exposure to traffic-related air pollution during
pregnancy, known to raise the risk of adverse health outcomes, both pregnancy complica-
tions and birth and childhood disorders [30] (Table 1). Metabolomic changes were found,
including alterations in the levels of pro- and anti-inflammatory metabolites mainly belong-
ing to lipid and amino acid metabolisms, which were related to inflammation and oxidative
stress pathways [23,31]. This study provided further evidence for the already known
problem of the long-lasting negative effects of air pollution on developing organisms.

As a part of a European study (the HELIX project), researchers wanted to characterize
the “early life exposome”, and one study reported the association of prenatal exposure
to mercury (Hg) with pro-inflammatory cytokine responses (increased concentrations
of interleukin (IL)-1β (IL-1β), IL-6, IL-8 and tumor necrosis factor-α (TNF-α)), a sign of
ongoing inflammation, and an increased risk of liver damage in children [32]. Lead (Pb)
intoxication is a potential etiological factor for the development of a chronic inflammatory
response in ASD, as it induces mitochondrial dysfunction, reactive oxygen species (ROS)
overproduction, and activation of a T-cell-dependent immune response with the production
of pro-inflammatory cytokines (TNF-α) [33].

2.4. Internal Exposome

The state of health of the mother is an essential condition for the correct neurological
development of the fetus. Important risk factors for the health of the fetus are linked to
exposure, during pregnancy, to an unbalanced diet, a lack of some essential nutrients, the
presence of hypertension, diseases such as diabetes, and of course infection/inflammation
that will be discussed later (see “MIA” paragraph).

For example, many studies highlight the relationship between maternal exposure
to nutrients (diet) and neurodevelopment outcomes. In fact, the diet followed by the
mother during preconception, conception and pregnancy is fundamental for a correct
development of the nervous and immunological systems of the fetus through epigenetic
mechanisms [34–37].

In general, however, all those pathological events attributable to the onset of an acute
or chronic inflammatory state in the mother constitute the real point of the risk of devel-
oping neurological disabilities [35]. In addition, various types of dysfunctions related to
the internal exposome have been highlighted in ASD patients, such as dysregulation of
the amino acid (AA) metabolism or alteration of the gut microbiota [36–39]. Indeed, AAs
have key roles in numerous pathways related to the brain functions, such as metabolic in-
termediates or neurotransmitters. Moreover, there is evidence on the reciprocal interaction
between the pediatric gut microbiome and the developing brain, namely the gut–brain axis,
through various signaling molecules produced by both systems.



Int. J. Mol. Sci. 2023, 24, 2703 5 of 18

3. MIA
3.1. Background

Infection, inflammation and stress during pregnancy may activate the maternal im-
mune system and can affect the development of the fetus [40,41]. MIA may result in
activation of monocytes, macrophages, T cells and mast cells, involving the production
of pro-inflammatory molecules, chemokines and cytokines. All these molecules can cross
the placenta and the blood–brain barrier (BBB) with negative consequences for the neural
development of the fetus [42,43]. Indeed, several studies have shown that pathogenic and
non-pathogenic MIA (autoimmune and atopic diseases) may play a role in neurodevelop-
mental pathologies such as autism, schizophrenia and learning disabilities [44].

In general, the idea that infections, inflammation, and atopic disorders caused by the
exposome (first hit) contribute to altering the maternal and fetal immune system and the
fetal nervous system’s development has been consolidated. Moreover, the fetal nervous
system becomes more susceptible to a subsequent secondary exposome hit, which could
heavily impair its functionality [45–47] (Figure 2).
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3.2. MIA Maternal Involvement

Maternal infection during pregnancy occurs in approximately 60% of women [48]. A
large population-based study in the USA concerned the potential association of maternal
infection during pregnancy accompanied by fever with ASD of the offspring [49,50]. The
results showed that women who had an infection accompanied by fever during the second
trimester of pregnancy were more likely to have children with ASD, compared to the
general population [50] (Table 2). Fever is a physiological body response to infection and
inflammation that permits the restoration of homeostatic conditions. During fever, many
cellular components of the immune system, such as monocyte-macrophages [51] and mast
cells [52], are activated, and both can produce pro-inflammatory and anti-inflammatory
cytokines. In particular, IL-6 is associated with the induction of fever in the case of infection
and inflammation [53], and with ASD [54].
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Mac Giollabhui [55] investigated the relationship between the time of exposure to
maternal infection (first trimester T1 and second trimester T2 were analyzed) with the risk
of developing psychiatric diseases. The study was conducted on a cohort of 737 mothers
and their offspring (aged 9 to 11 years) by measuring the maternal blood levels of some
pro-inflammatory cytokines. The results demonstrated higher levels of IL-6, IL-8, tumor
necrosis factor receptor-II (sTNF-RII), and IL-1 receptor antagonist (IL-1ra) in mothers of
children showing psychiatric symptoms [55] (Table 2).

The cytokine IL-6 is the inflammation hallmark, produced mainly by M1 macrophages
and activated mast cells; it is able to cross the placenta [56] and can influence fetal brain
development in animal models [57]. Interestingly, IL-6 levels were measured in maternal
serum in a cohort of 86 women during pregnancy (early, mild, and late), and this study
correlated them with the structural and functional characteristics of offspring’s brain at birth.
In particular, some characteristics of the amygdala, a region of the brain where emotional
and stress behaviours are controlled, were taken into account [58]. The results suggested
that maternal inflammation enhances the risk of developing psychiatric disorders, in part
by altering the amygdala itself [58] (Table 2).

Non-pathogenic MIA may contribute to the development of abnormal behavior of
the child as well. As an example, maternal atopic dermatitis (AD) during late pregnancy
was associated with increased gestational IL-13 concentrations and polyunsaturated fatty
acids (PUFAs)’ specific profiles. In turn, IL-13 and PUFAs levels were associated with
increased risk of children’s behavioral difficulties (hyperactivity/inattention, emotional
symptoms, conduct problems) [59]. IL-13 is a critical modulator in the CNS and cognitive
function, and influences the development of the offspring’s brain by causing alterations
in the neuron–microglia interaction [60] (Table 2). Patel showed that offspring of mothers
with a history of non-pathogenic MIA (mainly asthma), displayed a higher severity of the
behavioral disorders than the control group, while no differences were observed between
the two groups regarding cognition disorders [61] (Table 2).

More recently, a large population-based study in Taiwan investigated the association
between first-degree parental allergic and autoimmune diseases with the development
of ASD and attention-deficit/hyperactivity disorder (ADHD) among children [62]. This
study concerns three allergic disorders (e.g., asthma, allergic rhinitis, or atopic dermatitis)
and four autoimmune diseases (e.g., rheumatoid arthritis, Sjogren’s syndrome, psoriasis,
and systemic lupus erythematosus (SLE)). The results showed a significant association
between allergic diseases of first-degree relatives and ASD of children, and among the
autoimmune diseases, only the SLE of the siblings was significantly associated with the
ASD of the children [62]. Mast cells and M1 macrophages are involved in allergic reactions,
and asthma with the production of histamine, TNF-α and IL-6 [63–65], which can cross the
placental barrier and can alter the BBB integrity [66].

In addition to maternal infections, life adversities occurring during pregnancy, such
as maternal depressive symptoms, single-parent families, and lower socioeconomic status,
showed significant association with children’s emotional health and ASD [67–70]. Different
studies have highlighted a transcriptional profile indicative of increased immune activation,
with upregulation of hallmark genes of macrophage polarization and slower fetal maturation
(brain, heart, and immune system development) in low-income women [20,71,72] (Table 2).

All these are variables that can influence the mother’s physical and mental health and
can act as multipliers of the risk of having children with psychiatric disorders.

MIA can induce the production of IL-17a by Th17 cells present in the placenta, and
this cytokine may affect fetal development indirectly by regulating the placental function
and the production of factors that can cross the placenta [73,74]. Casey and colleagues
analyzed maternal serum levels of IL-17a and found significantly reduced expression at
mid-gestation (20 weeks) in mothers of children with ASD [75] (Table 2).
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Table 2. Schematic list of maternal cytokines produced, stimuli received, and pregnancy time
analyzed in studies related to ASD mentioned in this review. T1 (0–3 months), T2 (3–6 months), T3
(6–9 months).

Cytokine/System Stimulus Pregnancy Time References

None Infection + fever T2 [50]
IL-6, IL-8, IL-1ra, IL-1β, sTNF-RII Infection T1 and T2 [55]

IL-6 and amygdala None T1, T2, T3 [58]
IL-13, PUFAs Atopic dermatitis T3 [59]

Pro-inflammatory cytokines Asthma after birth [61]
Pro-inflammatory cytokines Allergic and autoimmune diseases after birth [62]
Pro-inflammatory cytokines Prenatal adversity after birth [20]
Pro-inflammatory cytokines Low income at term [71]

Pro-inflammatory cytokines, NF-κb, AP1 Stress, low income T3 [72]
IL-17a Infection T2 [75]

3.3. MIA Fetal/Childhood Involvement

Alterations in innate and adaptive immune cells [76] as well as increased levels of
several pro-inflammatory cytokines, including IL-1β, IL-6, TNF-α, monocyte chemoat-
tractant protein-1 (MCP-1), and IL-8, have been shown in the brain and cerebrospinal
fluid of many ASD patients [77] (Table 3). Furthermore, high plasma levels of IL-1β,
IL-6, IL-8, and IL-17 [77,78], homocysteine (HCY) and C-reactive protein (CRP) [79], and
dysregulation of the antioxidant system [80] were found in children showing ASD and
behavioral alterations.

A recent study analyzed the activation of circulating CD14+ monocytes triggered
by toll like receptor (TLR)2 and TLR4 stimulation in ASD patients [81] (Table 3). Higher
levels of IL-6 production, after TLR4 stimulation, were seen in ASD monocytes with re-
spect to healthy children, and the higher levels also correlated with worsening behaviors.
This dysfunctional activation of myeloid cells, which can include monocyte-macrophages
and microglia, may indicate dysregulation of immune response after activation. On the
contrary, the correlation of higher levels of IL-6 with worse behaviors indicates the re-
lationship between pro-inflammatory cytokines and ASD [81]. Mac Giollabhui [82,83]
reported that higher levels of IL-6, TNF-α and CRP were associated with psychiatric
disorders in adolescent and adult subjects, and determined a link to low socioeconomic
status, thus suggesting that demographic variables play an important role (Table 3). IL-6,
mainly produced by monocytes, macrophages M1 and activated mast cells, leads to an
inflammatory activation cascade that drives downstream innate and adaptive immune
responses, including T cell activation and expansion. The possible mechanisms affected
in the brain by IL-6 dysregulation are impaired cell adhesion and migration, and conse-
quently, improper formation of synapses, imbalances in excitation (glutamate-mediated)
and inhibitory (gamma-aminobutyric acid (GABA)-mediated) neurotransmission [84]. No
studies before Yamauchi had focused on polarized macrophages (M1 and M2) of patients
and their role in ASD disease [85] (Table 3). These authors induced in vitro the M1 and M2
polarization of blood peripheral monocytes isolated from ASD patients into macrophages,
and then measured the expression levels of both pro-inflammatory and anti-inflammatory
cytokines. The only significantly expressed cytokine was the TNF-α, which was markedly
higher in M1 macrophages from ASD patients with respect to control subjects. Interest-
ingly, resting monocytes did not show any differences between ASD children and control
subjects [67]. TNF-α produced by M1 macrophages could have similar effects in the CNS,
as TNF-α produced by microglia (i.e., macrophages of the CNS) has been reported to impair
synaptogenesis [86]. Furthermore, recent findings indicated that perivascular macrophages,
regularly renewed by monocytes, are critical for controlling brain functions [87,88]. Thus,
like TNF-α produced by microglia, macrophage-derived TNF-α likely weakens brain func-
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tion and may play a role in the development of neuropsychiatric disorders. Mast cells
reside in the brain and are involved in neuroinflammation responding to neuropeptides
(neurotensin (NT) and substance P (SP)), and in turn produce pro-inflammatory cytokines
IL-6 and TNF-α through the nuclear factor-κB (NF-κB) pathway [66,89,90]. In addition,
activated mast cells can damage the BBB, allowing the entry of large molecules (TNF-α)
and cells (monocyte-macrophage), which enhances neuroinflammation [66]. Higher levels
of TNF-α, IL-17a, and IL-23 increased the permeability of the BBB in mice [91]. In addition,
IL-17a stimulates neuroinflammation through its IL-17a receptor (IL-17ra), and the IL-17ra
blockade may reduce monocyte-associated oxidative stress [92]. ASD patients showed
increased IL-17 and IL-17ra expression in their monocytes associated with increased NF-κB
expression, and activity and inducible nitric oxide synthase (iNOS) expression compared
to typically developing children [92] (Table 3).

In a systematic study conducted on the Gene Expression Omnibus (GEO) database,
ASD children showed higher levels of infiltrate immune cells such as plasma cells, mono-
cytes, neutrophils, naïve CD4 T cells, and activated mast cells, dendritic cells and CD4
memory T cells compared to control subjects [93]. In addition, the authors identified
molecular subtypes based on ferroptosis-related genes (FRGs)’ expression [93]. Ferroptosis
is a recently reported novel non-apoptotic Fe2+-dependent cell death characterized by
increased intracellular oxidative stress NF-E2–related factor 2 (Nrf2)-dependent, which
induces lipid peroxide oxidation, and glutathione (GSH) depletion, accompanied by in-
flammatory reactions and macrophages’ polarization [94] (Table 3). As previously reported,
alteration of antioxidant networks has been found linked to dysregulation of monocytes in
ASD patients, suggesting that oxidative stress plays a role in the pathogenesis of ASD [95].
The IL-1β/IL-10 ratio has been used to subgroup patients with ASD who have different
symptoms (normal, low, high), since the ratio reflects the imbalance of pro-inflammatory
and anti-inflammatory cytokines produced by monocytes, and is associated with the sever-
ity of the disease [96]. Macrophage migration inhibitory factor (MIF), a mediator of the
immune response, can be produced from the monocyte-macrophage lineage [97] and has
been proposed to play a role in the pathogenesis of ASD, regulating the expression of innate
cytokines such as TNF-α [98,99] (Table 3). Recently, Ning et al. found that serum levels of
MIF in the children with ASD are significantly higher than in control subjects, and could
be used as a biomarker for the disease in association with IL-6 levels [100]. Analyzing
ASD monocytes, Kutuk et al. found that the increased expression levels of IL-6, IL-17
and IL-1α covered 56.6% of ASD children, suggesting that these cytokines may be used
as early markers of the pathology [101] (Table 3). A meta-analysis study, conducted in
2021 (including studies dated from 2002–2019), found that the levels of 13 different blood
cytokines (i.e., IL-6, IL-1β, IL-12p70, MIF, eotaxin-1, MCP-1, IL-8, IL-7, IL-2, IL-12, TNF-α,
IL-17, IL-4) were significantly altered in ASD patients with respect to the control group [102]
(Table 3). In general, different studies have shown that the imbalance between pro- and
anti-inflammatory cytokines and chemokines contributes to the dysregulation of immune
homeostasis in patients with ASD [103,104] (Table 3). However, the specific mechanism of
action of most of the altered cytokines in ASD is still unclear, and for this reason, further
studies are needed; that said, there is no doubt that an immune dysregulation occurs.

In an attempt to find predictive and early ASD biomarkers, a proteomics study was
recently conducted [105]. A group of 9 proteins were found to be significantly altered
in the ASD subjects compared to the control group, using three different computational
methods. These proteins contribute to some pathways that participate in the regulation
of the response of the innate immune system [105] (Table 3). A very large number of
proteins were examined, and the only limitation of this study is that the investigation did
not consider gender-specific differences.
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Table 3. Schematic list of the cytokines produced, and related tissues found in patients with ASD
during the fetal/childhood period mentioned in this review.

Cytokine/System Tissue/cell References

IL-1β, IL-6, TNF-α, MCP-1, IL-8 Brain, cerebrospinal fluid [76,77]
IL-1β, IL-6, IL-8, IL-17 Plasma [77,78]

HCY, CRP Plasma [79]
Antioxidant system alteration Monocytes [80]

Il-6 Monocytes CD14+ [81]
IL-6, TNF-α, CRP Plasma [82,83]

TNF-α Macrophages M1 and M2 [85]
IL-17, IL-17ra, NF-κB, iNOS Monocytes [92]

Antioxidant system alteration
Plasma cells, monocytes, neutrophils, naïve CD4 T
cells, and activated mast cells, dendritic cells and

CD4 memory T cells
[93]

IL-1β/IL-10 ratio Monocytes [96]
MIF Serum [100]

IL-6, IL-17,IL-1α Monocytes [101]
IL-6, IL-1β, IL-12p70, MIF, eotaxin-1, MCP-1, IL-8,

IL-7, IL-2, IL-12, TNF-α, IL-17, IL-4 Blood [102]

MIP-1a, MIP-1b Blood [103]
Pro-inflammatory/anti-inflammatory cytokines ratio B cells [104]

Protein of immune system regulation Plasma/serum [105]
Pro-inflammatory cytokines Saliva [106]

Individuals with ASD are very fragile subjects; they cannot tolerate any action that
invades their body or their emotions. Hence, there is the need to find biomarkers useful
for the early diagnosis of ASD that can be detected in a non-invasive way. This prompted
researchers to look for new fluids, other than blood and urine, in which to measure the
altered levels of the cytokines. A recent study investigated the cytokine content in the
saliva of ASD patients showing that a panel of pro-inflammatory cytokines was increased
compared to normal subjects [106] (Table 3).

In conclusion, MIA may induce autism-like behaviors in offspring, but the mechanism
of action on the fetal brain is not yet clear. Growing evidence in animal models indicates an
action on microglia and their activation/inflammatory polarization.

4. Microglia
4.1. Biological Function

Microglia are tissue-resident macrophages of the CNS that regulate brain homeostasis,
and the first glial cells involved in host defense/infection of CNS through the process of
antigen presentation, the phagocytosis of toxic products and the release of numerous in-
flammatory mediators. In addition, microglia have a broad array of physiological functions
in the healthy brain, including the regulation of neurogenesis, myelination, and synaptic
remodeling [107,108].

Under physiological conditions, the microglial morphology in a “resting” or inacti-
vated state is typically ramified, and the number and the distribution of the microglial
population are strongly regulated and are in a continuous state of surveillance by the sur-
rounding microenvironment, carrying out neuroprotective effects [109]. In response to the
challenges of the CNS microenvironment, the microglia undergo activation and prolifera-
tion, changing their morphology in ameboid with an enlarged cell body and retracted, thick
processes, and assume the role of removing cellular debris, such as macrophages in the
periphery, by phagocytosis [110]. Similarly to macrophage phenotypic changes, the reactive
microglia can be differentiated into two polarization states: M1 and M2 phenotypes [111].
Generally, M1 microglia predominate at the injury site at the end stage of disease, caus-
ing a pro-inflammatory response with production of cytokines such as TNF-α and IL-1β,
superoxide, nitric oxide (NO) and ROS, which can lead to neuroinflammation. On the
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contrary, the M2 microglia, activated in the presence of IL-4 or IL-13, are involved in the anti-
inflammatory response directed towards immune resolution and tissue repair [112]. Their
phagocytic capacity is accompanied by the production of anti-inflammatory cytokines such
as IL-10 and transforming growth factor-β (TGF-β) [112]. Microglial dysfunction has been
closely associated with several disorders, ranging from neurodegenerative diseases, such as
Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophe lateral sklerose (ALS),
to neurodevelopmental disorders, including schizophrenia (SCZ) and ASD [113–117].

4.2. Neuroinflammation

Neuroinflammation is defined as an inflammatory response within the brain or spinal
cord. This inflammation depends on the activation of resident CNS glial cells (microglia and
astroglia), endothelial and peripheral immune cells, and the production of their proinflam-
matory molecules. Neuroinflammation is an important contributor to ASD pathogenesis
and in this context, the microglial population seems to have a key role (Figure 3).
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Figure 3. Microglia and neuroinflammation. During homeostasis, branching microglia play crucial
roles such as surveillance, phagocytosis of debris, synaptic homeostasis, maintenance of neuronal
plasticity, and trophic support. Neuroinflammation causes the microglial phenotype to change to
an amoeboid state and the release pro-inflammatory cytokines (IL-6, TNFα, IL-1β), with loss of
homeostatic functions, synaptic alterations, increased spinal density and neuronal dysfunction.

In the last decades, the scientific interest has been directed to study the role of microglia
and their dynamic changes of M1/M2 phenotypes in several neurodegenerative diseases
such as AD, ALS and PD, whereas little on the role of microglia in ASD disease has been
investigated, and only very few studies have been focused on the study of microglia
polarization/activation in human ASD.

The activation of microglia can be influenced in both the prenatal and postnatal period,
suggesting the two-hit theory [14]. In fetal life, MIA may increase the sensitivity of microglia
to further events in postnatal life, leading to the development of the disease [14]. Prenatal
infection and psychological trauma in postnatal life can act synergistically to increase the
risk of developing SCZ disease [118].

MIA-induced neuroinflammation could affect fetal microglia, inducing changes in
their phenotype and consequently inducing functional alterations (microglial, synaptic,
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and neurobehavioral dysfunctions) in adulthood [119–121]. However, the underlying
mechanisms are largely unknown. Among the possible mechanisms leading to neuroin-
flammation in ASD children, it has been suggested that TNF-α might mediate inflammation
in the brain by stimulating microglia to recruit monocytes, although the development of
inflammation directly in the brain through glial cells cannot be excluded [33] (Table 4).

Table 4. Schematic list of the cytokines and microglia markers mentioned in this review, and potential
roles found in ASD patients.

Cytokine/Marker Tissue/Cell References

TNF-α Microglia activation and monocytes’ recruitment in human brain [33]

MCP-1, TARC, TGF-β Microglia activation in human [122]

TNF-α, IL-6, GM-CSF, IFN-γ, IL-8 Up-regulation in human brain cortex [123]

IL-6 Glial activation in human cerebellum [124]

IL-6 Upregulation in human brain [125]

Iba-1 Increased microglia density in human [126,127]

None Increased number of neurons and decreased of astroglia in human [128]

Iba-1 Increased number of microglia in human TC
and no variation in astroglia [129]

TSPO No change in human brain [130,131]

M2 genes Microglia activation in human [132]

MPZL2, SERPINA, HSPA6, GABRE Microglia activation in human [133]

GSK3, SYK, FYB Microglia, astroglia activation in human [134]

121 genes Microglia activation, dysregulation of
vascular system, neuroinflammation [135]

In humans, neuropathological studies conducted in ASD post-mortem tissues have
revealed important characteristics of the microglial population. The first evidence of mi-
croglial activation in several brain tissues of children and adult ASD patients has been
reported by Vargas [122]. A marked microglial involvement has been revealed in the
cerebellum, and a significant increase in the expression levels of two pro-inflammatory
chemokines (MCP–1 and thymus and activation-regulated chemokine (TARC)) and an anti-
inflammatory cytokine (TGF-β) has been found in the brain of ASD patients [122] (Table 4).
Other studies have demonstrated an imbalance between pro- and anti-inflammatory cy-
tokines (TNF-α, IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), inter-
feron γ (IFN-γ), IL-8) [123] and a preponderant production of a pro-inflammatory cytokine
(IL-6) in ASD and SCZ subjects [124,125]. Unfortunately, although they show evidence
of the neuroinflammatory process in progress in the brain tissue of ASD patients, these
last studies do not provide any information on the glial subtype involved (microglia
and astroglia).

Microglia express different surface proteins that can be used as markers. These include
ionized calcium-binding adapter molecule 1 (Iba-1), 18 kDa translocator protein (TPSO),
CD11b and CD68. Iba-1 is a member of the calcium-binding protein group and is the most
used marker for microglia. Further studies have observed an increase in the microglial density
(studying the expression of Iba1) and a morphological change in the active form in multiple
regions of cortex, including the prefrontal cortex (PFC), and the visual and front insular cortex
from children and adults with ASD [126,127] (Table 4). The identification of microglia has
been conducted in specific layers of PFC in ASD subjects, where changes in the number of
neurons and astroglia have been reported compared to control subjects [128] (Table 4).

However, contradictory results are reported on microglia activation observed by
studying Iba-1, TSPO and their localization inside the brain of ASD patients [129–131]
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(Table 4). These contradictory results depend on the non-exclusive expression of these
molecular markers in microglia, as they are also expressed in monocytes and macrophages.

A transcriptomic study of post-mortem brains has shown a specifically enriched M2
microglial “signature” and “immune response” genes in ASD brains [132] (Table 4). In
addition, the M2 microglial signature has been negatively correlated with a differentially
expressed neuronal signature, suggesting its alteration in innate immunity and neuronal
activity in the ASD disease [132]. Accordingly, a transcriptomic study conducted on post-
mortem brains of neuropsychiatric and neurodegenerative patients (n = 2633) showed
a dysregulation of many genes related to microglia, such as myelin protein zero like 2
(MPZL2), SERPINA, heat shock protein family A (Hsp70) member 6 (HSPA6) and gamma-
aminobutyric acid type A receptor subunit epsilon (GABRE), in eight different brain
regions [133] (Table 4).

Recently, single-nucleus RNA sequencing of cortical tissue from ASD patients has
highlighted enriched expression of genes associated with microglia and astrocytes’ activa-
tion, as well as transcription factors regulating developmental processes and upregulation
of cell motility (glycogen synthase kinase3 (GSK3), spleen tyrosine kinase (SYK), fyn bind-
ing protein (FYB)) [134] (Table 4). A new approach to studying data, based on systems
biology and focused on molecular targets, could be useful for integrating data from patients
and from experimental studies on animals. A clinical database of subjects with ASD was
interrogated to investigate the presence of gene copy number variation (CNV) [135]. In the
CNV gene frame (n = 659), 121 genes were highly expressed in the prenatal period in the
brain, and concerned the signaling pathways involving the vascular system, neuroinflam-
mation, and activation of microglia (Table 4). In particular, defects in genes that regulate
the neurovascular system appear to correlate with symptoms of ASD. For this purpose, the
authors used a knockout mouse model of the semaphorin 3F- neuropilin 2 protein (Sema
3F-NRP2 KO), involved as a neuronal guidance molecule in the developing brain in a wide
variety of tissues including the immune and vascular systems, and demonstrated that in
the brains of the mice presenting ASD symptoms, there was neuroinflammation, microglial
activation, induction of iNOS and increased 3-nitrotyrosine, BBB deficiency, and disruption
of neurovascular signaling [135].

Considering the studies conducted so far, activated microglia capable of producing pro-
inflammatory cytokines play an important role in the development of neuroinflammation
and disease, although many aspects are still to be clarified. The main difficulty is that studies
can be conducted in the human brain only after death. On the other hand, animal studies,
easier to perform, have highlighted the relationship between MIA, polarized microglia and
the disease [136]. However, even if it is true that the conclusions obtained from the studies
conducted on animals cannot be directly transferred into strategies/therapies for humans,
they constitute an important starting point.

5. Conclusions

Our final considerations mainly concern the limitations of these studies. Many studies
have a limited number of subjects with ASD pathology enrolled. Another weakness is
the great difficulty of considering all the socio-demographic variables (race, ethnicity, age,
economic level, etc.), the comorbidities present (epilepsy, anxiety, etc.), and the influence
exerted by diet, pollution, and epigenetic and genetic factors, etc. In addition, other factors
must be taken into consideration, such as the type of maternal immune dysregulation
(infection bacterial/viral, autoimmunity, allergy, asthma), the severity (acute versus chronic
infection/inflammation), the timing (early versus late pregnancy), and the duration of the
exposure. For all these reasons, it is difficult to translate preclinical conclusions obtained
from animals into human strategy.

Therefore, further studies are needed to understand the exact mechanisms and the
reciprocal interactions of all the factors that may have a role in the development of ASD
and cognitive alteration.
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